隐身材料与结构基本特性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隐身技术作为重要的军事用途已在美国等发达国家中进入实战应用,我国也正在积极开发这一前沿的高科技技术。作为这一高新技术的研制,除了最为基础的隐身材料的开发研制外,如何建立刻画其隐身性能的有效分析方法,即评价隐身材料的有效性也是这一研究的基础。本博士学位论文主要针对我国核壳结构的隐身性能与梯度型(即多层渐变)结构吸波材料在电磁波作用下的隐身特性与热性能及热应力特性、超材料薄膜-质量块结构系统在声波作用下的负质量隐身特性等开展了理论研究。主要研究工作及结果如下:
     首先,针对电磁波在核壳结构吸波剂中的传播特性,采用Maxwell电磁理论,解析地给出了其电磁波的散射与吸收的定量结果。考虑了吸收剂颗粒形状的影响,引入了离散偶极子近似理论,并与Maxwell理论结果进行了对比,获得了不同核壳粒径下隐身性能随吸收剂颗粒形态(即椭球)、波长之间的变化规律,这对于不同电磁波环境(即波长)下的隐身材料有效的选择是重要的,并为进一步开展隐身材料的隐身性能和力学行为的研究打下了基础。
     其次,针对梯度型结构吸波材料在电磁波作用下的隐身特性及其所产生的热效应与热应力特性进行了理论研究。由于材料性质梯度渐变,求解非均匀材料的电磁波问题比较困难,因此我们将梯度型结构吸波材料分成多层均匀层,求解了电磁波在其中的传播问题。考虑了吸波过程中的能量转化特性,以及由此产生的热变形性质,给出了其随梯度材料的参数、电磁波入射方向与极化方式变化的定量结果。结果表明:梯度材料隐身性能要优于单一均匀材料(包括更宽的隐身频带);通过设计梯度型结构吸波材料的参数能够获得兼有良好吸收性能和良好力学性能的高效吸波材料;在隐身结构背面附有金属薄层后,可一定程度上提升其隐身性能。
     最后,针对超材料薄膜-质量块结构系统在声波作用下的负质量隐身现象,基于薄膜振动理论,将配重质量块以外力引入,建立了一个能够分析附有环形质量块的薄膜系统的理论模型。给出了薄膜-质量块系统自由振动的频率和模态,并分析了系统在声波作用下的声学响应,理论上解释了系统发生局域共振和负质量现象的原因。该模型能够很好地预测薄膜-圆环系统透射损耗峰的位置(即负质量发生的位置),并对薄膜-中心质量块局域共振系统的声学响应预测同样有效。通过该模型给出了在单个薄膜局域共振单元中实现多个声波透射损耗峰的方法。
As an important military application, the stealth technology has been taken into actual combat in United Sates and other developed countries. Meanwhile, our country is also actively developing the front technology. In addition to the basic preparation and manufacturing, establishing effective analysis method to characterize the stealth performance, and evaluating the effectiveness of the stealth materials are also the basis in stealth technology development. This doctoral thesis presented some theoretical analyses to the stealth performance of the core-shell absorbent, and the stealth, thermal and thermal stress properties of the gradient absorbing structures with multi-layer gradients materials in electromagnetic wave circumstance are also studied. In addition, the negative mass phenomenon of the membrane-mass metamaterial structure in acoustic wave is also investigated theoretically. The main research works and the results are as follows:
     Firstly, for the propagation characteristics of electromagnetic wave in the core-shell structure absorbent, some quantitative results of the scattering and absorption properties are achieved theoretically by Maxwell electromagnetic theory. On the basis of this, considering the effect of the particle shape, the discrete dipole approximation method is employed and compared to the Maxwell's theory. The stealth performances for different core-shell shapes under different radios of particle size and wavelength are discussed, and the principles of selecting optimal core-shell absorbent are obtained, which is important for effectively selecting the stealth material in different electromagnetic wave environment. The study is the basis for further studying the stealth and mechanical behaviors.
     Secondly, some theoretical analyses of the stealth, thermal and thermal stress properties of the functionally graded wave-absorbing material in electromagnetic wave environment are presented. Since the material properties change continuously inside the absorbing plate, the EM wave propagation analysis is generally difficult to conduct. To treat with the inhomogeneity, the plate is approximated by subdividing it into thin homogeneous layers, and the electromagnetic wave propagation is solved. Based on this, considering the energy converting and the thermal deformation properties during wave absorption, some quantitative results of the stealth and mechanical performance are solved by numerical method with the effects of gradient parameter, plate thickness, wave incident angle and wave polarization mode. The results snow mat compared to the homogeneous plate, the stealth performance of graded absorbing plate is better, and has broad frequency band. The absorbing material with good performance on the high absorption and good mechanical properties is achieved by designing the parameter of the graded absorbing plate. In addition, the stealth performance can be evaluated by adding a metal substrate to the structure.
     Finally, for the negative mass phenomenon which in metamaterial stealth, this paper based on the vibration theory of membrane and treating the inertia forces of the ring mass as concentrated force, a theoretical model and analytical approach is presented to investigate the transmission loss of a circular membrane-ring structure of locally resonant acoustic metamaterials. The modes of membrane-ring system with free vibration are presented and the acoustic responses of the system are studied in the acoustic wave. The reasons of the locally resonant and negative mass phenomenon are explained theoretically. The model is good to predict the frequency of the system transmission loss where the negative mass occurred. As a degeneration of the ring inner radius being zero, the present model and approach is also suited for acoustic response analysis of the membrane-central mass structure. Good method is presented to show multi-peak transmission loss in the single locally resonant materials unit.
引文
[1]Alu, A. and N. Engheta. Achieving transparency with plasmonic and metamaterial coatings[J]. Physical Review E 2005,72(1):016623.
    [2]Azimi, S. Free vibration of a circular plate carrying a concentrated mass at its center[J]. Journal of Sound Vibration 1988,127:391-393.
    [3]Balmori, A. Electromagnetic pollution from phone masts. Effects on wildlife[J]. Pathophysiology 2009,16(2):191-199.
    [4]Bohren C.F. and Hufman D. R. Absorpon and scattering of light by small particles. New York:wiley; 1983.
    [5]Bruzzone, S., G. Arrighini and C. Guidotti. Theoretical study of the optical absorption behavior of Au/Ag core-shell nanoparticles[J]. Materials Science and Engineering:C 2003.23(6):965-970.
    [6]Caruso F. S. X. Y., Caruso R A.Susha. A.Hollow titania spheres from layered precursor deposition on sacrificial colloidal core[J]. Adv. Mater 2001,13(10):740-746.
    [7]Chen, H. and C. Chan. Acoustic cloaking and transformation acoustics[J]. Journal of Physics D:Applied Physics 2010,43:113001.
    [8]Cheng, Y., F. Yang, J. Y. Xu and X. J. Liu. A multilayer structured acoustic cloak with homogeneous isotropic materials[J]. Applied Physics Letters 2008,92(15): 151913-151913-151913.
    [9]Christina J. Naify, C.-M. C., Geoffrey Mcknight, and Steven Nutt. transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials[J]. Journal of Applied Physics 2010,108:114905.
    [10]Creighton, J. A., C. G. Blatchford and M. G. Albrecht. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength[J]. J. Chem. Soc., Faraday Trans.2 1979,75(0):790-798.
    [11]Devan, R. and B. Chougule. Effect of composition on coupled electric, magnetic, and dielectric properties of two phase particulate magnetoelectric composite[J]. Journal of Applied Physics 2007,101:014109.
    [12]Ding, Y., Z. Liu, C. Qiu and J. Shi. Metamaterial with simultaneously negative bulk modulus and mass density[J]. Physical Review Letters 2007,99(9):93904.
    [13]Draine, B. T. The discrete-dipole approximation and its application to interstellar graphite grains[J]. The Astrophysical Journal 1988,333:848-872.
    [14]Draine, B. T., Flatau, P.T. Discrete-dipole approximation for scattering calculations[J]. J.Opt.Soc.Am.A 1994,11:1491.
    [15]E. I. Starovoitov, D. V. L., and A. V. Yarovaya. cicular sandwich plates under local impulsive loads[J]. International Applied Mechanics 2003,39(8):945-952.
    [16]Emerson, W. H. Electromagnetic wave absorbers and anechoic chambers through the years[J]. IEEE Transactions on Antennas and Propagation 1973,21:484-490.
    [17]Eringen, A. C. Theory of electromagnetic elastic plates[J]. International Journal of Engineering Science 1989,27(4):363-375.
    [18]Fahy, F. and F. J. Fahy. Sound and structural vibration:radiation, transmission and response[M], Academic Pr; 1987.
    [19]Fang, N., D. Xi, J. Xu, M. Ambati, et al. Ultrasonic metamaterials with negative modulus[J]. Nature materials 2006,5(6):452-456.
    [20]Fleming, M. S., T. K. Mandal and D. R. Walt. Nanosphere-microsphere assembly: methods for core-shell materials preparation[J]. Chemistry of Materials 2001.13(6): 2210-2216.
    [21]Folgueras, L. C., E. L. Nohara, R. Faez and M. C. Rezende. Dielectric microwave absorbing material processed by impregnation of carbon fiber fabric with polyaniline[J], Materials Research 2007,10(1):95-99.
    [22]Fulghum, D. Stealth engine advances revealed in JSF designs[J]. Aviation Week and Space Technology 2001,154(12):90-93.
    [23]Giannakopoulou, T., L. Kompotiatis, A. Kontogeorgakos and G. Kordas. Microwave behavior of ferrites prepared via sol-gel method[J]. Journal of Magnetism and Magnetic Materials 2002,246(3):360-365.
    [24]Gong, R., Y. He, X. Li, C. Liu, et al. Study on absorption and mechanical properties of rubber sheet absorbers[J]. Materials Science-Poland 2007,25(4).
    [25]Green, A. E. and P. Naghdi. On electromagnetic effects in the theory of shells and plates[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 1983:559-610.
    [26]Gu, Y., X. Luo and H. Ma. Low frequency elastic wave propagation in two dimensional locally resonant phononic crystal with asymmetric resonator[J]. Journal of Applied Physics 2009,105(4):044903.
    [27]Han, X. and Y. S. Wang. Studies on the synthesis and microwave absorption properties of Fe3 O4/polyaniline FGM[J]. Physica Scripta 2007,2007:335.
    [28]Hatakeyama, K. and T. Jnui. Electromagnetic wave absorber using ferrite absorbing material dispersed with short metal fibers[J]. IEEE Transactions on Magnetics 1984,20(5): 1261-1263.
    [29]He, Y., R. Gong, Y. Nie, H. He, et al. Optimization of two-layer electromagnetic wave absorbers composed of magnetic and dielectric materials in gigahertz frequency band[J]. Journal of Applied Physics 2005,98(8):084903-084903-084905.
    [30]Hirsekorn, M., P. P. Delsanto, A. C. Leung and P. Matic. Elastic wave propagation in locally resonant sonic material:Comparison between local interaction simulation approach and modal analysis[J]. Journal of Applied Physics 2006,99(12): 124912-124918.
    [31]Holloway, C. L., R. R. DeLyser, R. F. German, P. McKenna, et al. Comparison of electromagnetic absorber used in anechoic and semi-anechoic chambers for emissions and immunity testing of digital devices[J]. IEEE Transactions on Electromagnetic Compatibility 1997,39(1):33-47.
    [32]Huang. H. and C. Sun. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density[J]. New Journal of Physics 2009.11(1):013003.
    [33]J.A.Straton. Electromagnetic theory. Mcgraw-hill, New York; 1941.
    [34]Janaswamy, R. Oblique scattering from lossy periodic surfaces with applications to anechoic chamber absorbers[J]. IEEE Transactions on Antennas and Propagation 1992,40(2):162-169.
    [35]Johansson, M., C. L. Holloway and E. F. Kuester. Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers[J]. IEEE Transactions on Antennas and Propagation 2005,53(2):728-736.
    [36]Karim, M., M. Awal and T. Kundu. Elastic wave scattering by cracks and inclusions in plates:in-plane case[J]. International Journal of Solids and Structures 1992,29(19): 2355-2367.
    [37]Kim, S. S., S. T. Kim, J. M. Ahn and K. H. Kim. Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density[J]. Journal of Magnetism and Magnetic Materials 2004,271(1):39-45.
    [38]Kuester, E. F. and C. L. Holloway. A low-frequency model for wedge or pyramid absorber arrays-I:Theory[J]. IEEE Transactions on Electromagnetic Compatibility 1994,36(4): 300-306.
    [39]Larabi, H., Y. Pennec, B. Djafari-Rouhani and J. Vasseur. Multicoaxial cylindrical inclusions in locally resonant phononic crystals[J]. Physical Review E 2007,75(6): 066601.
    [40]Lee, S. H., C. M. Park, Y. M. Seo, Z. G. Wang, et al. Acoustic metamaterial with negative density[J]. Physics Letters A 2009,373(48):4464-4469.
    [41]Lee, S. H., C. M. Park, Y. M. Seo, Z. G. Wang, et al. Acoustic metamaterial with negative modulus[J]. Journal of Physics:Condensed Matter 2009,21(17):175704.
    [42]Lee, S. H., C. M. Park, Y. M. Seo, Z. G. Wang, et al. Composite acoustic medium with simultaneously negative density and modulus[J]. Physical Review Letters 2010,104(5): 54301.
    [43]Leonhardt, U. Notes on conformal invisibility devices[J]. New Journal of Physics 2006,8(7):118.
    [44]Leonhardt, U. Optical conformal mapping[J]. Science 2006,312(5781):1777-1780.
    [45]Li, J. and C. Chan. Double-negative acoustic metamaterial[J]. Physical Review E 2004,70(5):055602.
    [46]Li, L., X. Wang and Y. H. Zhou. Dynamic characteristics of traveling waves for a rotating laminated circular plate with viscoelastic core layer[J]. Journal of Sound and Vibration 2011.
    [47]Li, L. W., X. K. Kang, M. S. Leong and J. Wiley. Spheroidal wave functions in electromagnetic theory[M], Wiley Online Library; 2002.
    [48]Li, X., X. Han, Y. Tan and P. Xu. Preparation and microwave absorption properties of Ni-B alloy-coated Fe3O4 particles[J]. Journal of Alloys and Compounds 2008,464(1-2): 352-356.
    [49]Liu, G., K. Dai, X. Han and T. Ohyoshi. Dispersion of waves and characteristic wave surfaces in functionally graded piezoelectric plates[J]. Journal of Sound and Vibration 2003,268(1):131-147.
    [50]Liu, H., Z. Wang and T. Wang. Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure[J]. International Journal of Solids and Structures 2001,38(1):37-51.
    [51]Liu, H. T., M. S. Cao, C. J. Qiu and J. Zhu. Design of functionally graded materials towards RAM and their microwave reflectivity, Materials Science Forum 2003, 423-425:427-430
    [52]Liu, J., M. Itoh, M. Terada, T. Horikawa, et al. Enhanced electromagnetic wave absorption properties of Fe nanowires in gigaherz range[J]. Applied Physics Letters 2007,91:093101.
    [53]Liu, Z., C. Chan and P. Sheng. Analytic model of phononic crystals with local resonances[J]. Physical Review B 2005,71(1):014103.
    [54]Liu, Z., X. Zhang, Y. Mao, Y. Zhu, et al. Locally resonant sonic materials[J]. Science 2000,289(5485):1734-1736.
    [55]Mao-Sheng, C., Z. Wei, Q. Gui-Min and R. Ji-Li. Dynamic Response and Fracture Mechanism of a Novel Structural Radar Absorbing Material[J]. Chinese Physics Letters 2008,25:2954.
    [56]Markworth, A., K. Ramesh and W. Parks. Modelling studies applied to functionally graded materials[J]. Journal of Materials Science 1995,30(9):2183-2193.
    [57]Matsumura, K. and Y. Kagawa. A method for the evaluation of electromagnetic wave absorption potential using surface temperature change under microwave irradiation[J]. Journal of Materials Science 2007,42(9):3251-3254.
    [58]Mercier, D., J. C. S. Levy, G. Viau, F. Ficvet-Vincent, et al. Magnetic resonance in spherical Co-Ni and Fe-Co-Ni particles[J]. Physical Review B 2000,62(1):532.
    [59]Milton, G. W., M. Briane and J. R. Willis. On cloaking for elasticity and physical equations with a transformation invariant form[J]. New Journal of Physics 2006.8(10): 248.
    [60]Milton, G. W. and J. R. Willis. On modifications of Newton's second law and linear continuum elastodynamics[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science 2007.463(2079):855-880.
    [61]Mugnai, A. and W. Wiscombe. Scattering of radiation by moderately nonspherical particles[J]. Journal of Atmospheric Sciences 1980,37:1291-1307.
    [62]Naify, C. J., C.-M. Chang, G. McKnight and S. Nutt. Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses[J]. Journal of Applied Physics 2011,110(12):124903.
    [63]Naify, C. J., C. M. Chang, G. McKnight, F. Scheulen, et al. Membrane-type metamaterials: Transmission loss of multi-celled arrays[J]. Journal of applied physics 2011,109:104902.
    [64]Naify, C. J., C. M. Chang, G. McKnight, F. Scheulen, et al. Membrane-type metamaterials: Transmission loss of multi-celled arrays[J]. Journal of Applied Physics 2011,109(10): 104902-104902-104909.
    [65]Nilsson, A. Wave propagation in and sound transmission through sandwich plates[J]. Journal of Sound and Vibration 1990,138(1):73-94.
    [66]Oldenburg, S., R. Averitt, S. Westcott and N. Halas. Nanoengineering of optical resonances[J]. Chemical Physics Letters 1998,288(2):243-247.
    [67]Owen B.Toon, T. P. A. Algorithms for the calculation of scattering by stratified spheres[J]. Appl.Phys 1981,20(20):3657.
    [68]Pao, Y. H.. Electromagnetic forces in deformable continua[J]. Mechanics Today 1978,4:209-305.
    [69]Paria, G. Magneto-elasticity and magneto-thermo-elasticity[J]. Advances in Applied Mechanics 1966,10:73-112.
    [70]Park, M. J., J. Choi and S. S. Kim. Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders[J]. IEEE Transactions on Magnetics 2000,36(5): 3272-3274.
    [71]Pendry, J. B., D. Schurig and D. R. Smith. Controlling electromagnetic fields[J]. Science 2006,312(5781):1780-1782.
    [72]Qian, J., X. Wang, H. Zhu and R. Wu (2000). Novel pyramidal microwave absorbers for out-door using[J]. IEEE IEEE Transactions on Antennas, Propagation and EM Theory 2000,8:347-349.
    [73]Rousselle, D., A. Berthault, O. Acher, J. Bouchaud, et al. Effective medium at finite frequency:Theory and experiment[J]. Journal of applied physics 1993.74(1):475-479.
    [74]Saville. P. Review of Radar Absorbing Materials[J]. Defence Research and Development Atalantic Dartmouth (Candada).2005.
    [75]Sharma, R., R, Agarwala and V. Agarwala. Development of electroless (Ni-P)/BaNi0. 4TiO.4Fe11.2019 nanocomposite powder for enhanced microwave absorption[J]. Journal of Alloys and Compounds 2009,467(1-2):357-365.
    [76]Soedel, W. and M. S. Qatu. Vibrations of Shells and Plates[J]. The Journal of the Acoustical Society of America 2005,117(4):1683-1683.
    [77]Stepanov, Y.Antiradar camouflage techniques. Soviet Radio Publishing House, Moscow; 1968.
    [78]Suga, R., O. Hashimoto, R. K. Pokharel, K. Wada, et al. Analytical study on change of temperature and absorption characteristics of a single-Layer radiowave absorber under irradiation electric power[J]. IEEE Transactions on Electromagnetic Compatibility 2005,47(4):866-871.
    [79]Sugano, Y. and S. Takahashi. Material Design of Functionally Graded Plates with the Function of Electromagnetic Noise Suppression[J]. Journal of Solid Mechanics and Materials Engineering 2008,2(7):912-923.
    [80]Sun, D. and S. N. Luo. Wave propagation of functionally graded material plates in thermal environments[J]. Ultrasonics 2011,51(8):940-952.
    [81]Tan, H., Y. Huang, C. Liu and P. Geubelle. The Mori-Tanaka method for composite materials with nonlinear interface debonding[J]. International Journal of Plasticity 2005,21(10):1890-1918.
    [82]Tang. X. and Y. Yang. Surface modification of M-Ba-ferrite powders by polyaniline: towards improving microwave electromagnetic response[J]. Applied Surface Science 2009,255(23):9381-9385.
    [83]Tiefu, Z.The study of static dynamic mechanic properties of fiber reinforced absorbing laminates. Master Thesis. Harbin Engineering University; 2002.
    [84]Ting, T., R. Yu and Y. Jau. Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2-40GHz[J]. Materials Chemistry and Physics 2011,126(1):364-368.
    [85]Torrent, D. and J. Sanchez-Dehesa. Acoustic cloaking in two dimensions:a feasible approach[J]. New Journal of Physics 2008,10(6):063015.
    [86]van de Hulst, H. C.Light scattering by small particles[M], Dover publications; 1981.
    [87]Viau, G., F. Fievet-Vincent, F. Fievet, P. Toneguzzo, et al. Size dependence of microwave permeability of spherical ferromagnetic particles[J]. Journal of Applied Physics 1997.81: 2749.
    [88]Walser, R., W. Win and P. Valanju. Shape-optimized ferromagnetic particles with maximum theoretical microwave susceptibility[J]. IEEE Transactions on Magnetics 1998.34(4):1390-1392.
    [89]Wang, B. L., Y. W. Mai and X. H. Zhang. Thermal shock resistance of functionally graded materials[J]. Acta Materialia 2004,52(17):4961-4972.
    [90]WANG, S., F. WEN, W. HAO and Y. CAO. Electromagnetism Pollution and Protection Materials for Electromagnetic Radiation[J]. Environmental Science & Technology 2006,12:038.
    [91]Wang, X.. J. S. Lee and X. Zheng. Magneto-thermo-elastic instability of ferromagnetic plates in thermal and magnetic fields[J]. International Journal of Solids and Structures 2003,40(22):6125-6142.
    [92]Wang, X., Y. H. Zhou and X. Zheng. A generalized variational model of magneto-thermo-elasticity for nonlinearly magnetized ferroelastic bodies[J]. International Journal of Engineering Science 2002,40(17):1957-1973.
    [93]Watanabe, S., K. Saito, A. Taniguchi, O. Hashimoto, et al. Study of Temperature Distribution of λ/4 Type EM-absorber Using Resistive Film under High Power Injection[J], IEEE Microwave Coference 2006:1028-1031.
    [94]Wu, K., T. Ting, G. Wang, C. Yang, et al. Synthesis and microwave electromagnetic characteristics of bamboo charcoal/polyaniline composites in 2-40GHz[J]. Synthetic Metals 2008,158(17):688-694.
    [95]Y.F. He, R. Z. G., X.C. Li, X. Wang, H.H. He. Preparation and microwave absorbing properties of multi-layer radar (microwave) absorbing materials composites[J]. J Inorg Mater 2006,21:1449-1453.
    [96]Yang, H. Y. D. Theory of microstrip lines on artificial periodic substrates[J]. IEEE Transactions on Microwave Theory and Techniques 1999,47(5):629-635.
    [97]Yang, S. and F. Yuan. Transient wave propagation of isotropic plates using a higher-order plate theory[J]. International Journal of Solids and Structures 2005,42(14):4115-4153.
    [98]Yang, Z., H. Dai, N. Chan, G. Ma, et al. Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime[J]. Applied Physics Letters 2010,96(4): 041906-041906-041903.
    [99]Yang, Z., J. Mei, M. Yang, N. Chan, et al. Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass[J].Physical Review Letters 2008,101(20).
    [100]Yang. Z., J. Mei, M. Yang, N. Chan, et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Physical Review Letters 2008.101(20):204301.
    [101]Yao, S., X. Zhou and G. Hu. Experimental study on negative effective mass in a 1D mass-spring system [J]. New Journal of Physics 2008,10:043020.
    [102]Yong, H. and Y. Zhou. Transient anti-plane crack problem for two bonded functionally graded piezoelectric materials[J]. Archive of Applied Mechanics 2006.76(9):497-509.
    [103]Yong, H. and Y. H. Zhou. Analysis of a mode Ⅲ crack problem in a functionally graded coating-substrate system with finite thickness[J]. International journal of fracture 2006,141(3):459-467.
    [104]Yong, H. D. and Y. H. Zhou. A mode Ⅲ crack in a functionally graded piezoelectric strip bonded to two dissimilar piezoelectric half-planes[J]. Composite Structures 2007,79(3): 404-410.
    [105]Yu, J., X. Zhang and T. Xue. Generalized thermoelastic waves in functionally graded plates without energy dissipation[J]. Composite Structures 2010,93(1):32-39.
    [106]Zhang, D. G. and Y. H. Zhou. A theoretical analysis of FGM thin plates based on physical neutral surface[J]. Computational Materials Science 2008,44(2):716-720.
    [107]Zhang Qiaoxin, Y. L., Guan Jianguo. Preparation of magnetic core-shell Fe3O4/Ag nanoparticles and its properties[J]. Journal of the Chinese Ceramic Society 2007,35(8): 987-990.
    [108]Zhang, S., C. Xia and N. Fang. Broadband acoustic cloak for ultrasound waves[J]. Physical Review Letters 2011,106(2):24301.
    [109]Zhang, X., X. Dong, H. Huang, Y. Liu, et al. Microwave absorption properties of the carbon-coated nickel nanocapsules[J]. Applied Physics Letters 2006,89:053115.
    [110]Zhang, X., X. Dong, H. Huang, B. Lv, et al. Microstructure and microwave absorption properties of carbon-coated iron nanocapsules[J]. Journal of Physics D:Applied Physics 2007,40:5383.
    [111]Zhang, X., P. Guan and X. Dong. Multidielectric polarizations in the core/shell Co/graphite nanoparticles[J]. Applied Physics Letters 2010,96:223111.
    [112]Zhang, Y, J. Wen, Y. Xiao, X. Wen, et al. Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials[J]. Physics Letters A 2012.
    [113]Zheng, X. and X. Wang. A magnetoelastic theoretical model for soft ferromagnetic shell in magnetic field[J]. Internationa) Journal of Solids and Structures 2003,40(24): 6897-6912.
    [114]Zhou, H. M., Y. H. Zhou, X. J. Zheng, Q. Ye, et al. A general 3-D nonlinear magnetostrictive constitutive model for soft ferromagnetic materials[J]. Journal of Magnetism and Magnetic Materials 2009.321(4):281-290.
    [115]Zhou, X. and G. Hu. Acoustic wave transparency for a multilayered sphere with acoustic metamaterials[J]. Physical Review E 2007,75(4):046606.
    [116]Zhou, Y. H. and X. Zheng. A general expression of magnetic force for soft ferromagnetic plates in complex magnetic fields[J]. International Journal of Engineering Science 1997,35(15):1405-1417.
    [117]亢一澜,徐千军.功能梯度材料(FGM)温度应力的实验研究[J].科学通报1998,43(004):442-445.
    [118]王文娟.核壳粒子复合材料电磁波吸收层的吸波特征数值模拟.[硕士论文].兰州:兰州大学.2008.
    [119]王自荣,余大斌.雷达隐身技术概述[J].上海航天1999(3):52-56.
    [120]王政平,王晓晓,秦世明,张振辉.一种左,右手材料结构吸波体吸波特性研究[J].哈尔滨工程大学学报2007,28(12).
    [121]王琦,张清杰and官建国.铁氧体空心微球与磁性金属核壳粒子的制备和性能研究[硕士论文].武汉:武汉理工大学;2004.
    [122]王豫,姚凯伦.功能梯度材料研究的现状与将来发展[J].物理2000,29(004):206-211.
    [123]工宝瑞,嵇驿民.分层均匀旋转椭球体对偏振电磁波的散射理论及数值计算[J].大气科学1989,3:329-342.
    [124]王宝瑞,张培昌.分层旋转椭球散射场准解析解级数系数的确定[J].南京气象学院 学报1997,20(001):1-10.
    [125]朱林利,郑晓静.基于Boltzmann方程在外加电场和磁场作用下热传导及电磁热弹性理论[J].兰州大学学报:自然科学版2005,41(2):104-108.
    [126]何琴淑.沙尘暴的沙粒带电对电磁波传播的影响研究.[M],兰州大学博士学位论文;2005.
    [127]何琴淑,周又和.带电椭球粒子对电磁波的散射[J].兰州大学学报2004.
    [128]何燕飞,龚荣洲,王鲜,赵强.蜂窝结构吸波材料等效电磁参数和吸波特性研究[J].物理学报2008,57(8):5261-5266.
    [129]何燕飞,龚荣洲,何华辉.双层吸波材料吸波特性研究[J].功能材料2004,35(6):782-784.
    [130]何燕飞,龚荣洲,李享成,王鲜等.多层复合吸波材料的制备及其吸波性能[J].无机材料学报2006,21(6):1449-1453.
    [131]克拉特EF.雷达散射截面——预估,测量和减缩[J].北京:电子工业出版杜1988.
    [132]李世涛,乔学亮,陈建国.纳米复合吸波材料的研究进展[J].宇航学报2006.27(2):317-322.
    [133]李永,张志民,马淑雅.耐热梯度功能材料的热应力研究进展[J].力学进展2000,30(4):571-580.
    [134]李兵,刘朝辉.国外陆军武器装备隐身技术研究现状及我国陆军武器装备隐身对策初探[J].中国化学会第二届隐身功能材料学术研讨会论文集2004.
    [135]李金儡,陈康华,范令强,彭伟才等.雷达吸波材料的研究进展[J].功能材料2005,36(008):1151-1154.
    [136]李臻熙,张同俊.梯度功能材料的热应力研究现状与展望[J].材料导报1997,11(005):59-61.
    [137]李进亚,许希武,毛春见.复合材料蜂窝夹芯板低速冲击损伤研究[J].科学技术与工程2012,20(10):2379-2386.
    [138]邢丽英,刘俊能.电阻渐变型结构吸波材料的研究与发展[J].航空材料学报2000,20(003):187-191.
    [139]邢丽英,蒋诗才,李斌太.含电路模拟结构吸波复合材料[J].复合材料学报2004,21(6):27-33.
    [140]邢丽英,蒋诗才,李斌太.含电路模拟结构吸波复合材料力学性能研究[J].航空材料学报2004,24(002):22-26.
    [141]周又和,郑晓静.电磁固体结构力学[M],科学出版社;1998.
    [142]周友杰,刘祥萱,张有智.雷达吸波材料研究进展[J].飞航导弹2007(10):59-62.
    [143]孟建华,杨桂琴,严乐美,王秀宇.吸波材料研究进展[J].磁性材料及器件 2004,35(004):11-14.
    [144]邵蔚,赵乃勤,师春生,李家俊.吸波材料用吸收剂的研究及应用现状[J].兵器材料科学与工程2003,26(4):65-67.
    [145]邱琴,张晏清,张雄.电磁吸波材料研究进展[J].电子元件与材料2009(008):78-81.
    [146]泮世东,吴林志,孙雨果.蜂窝夹芯试件破坏行为分析[J].力学学报2007,39(5):610-617.
    [147]崔晓冬,李长茂,刘顺华.双层雷达波吸收平板吸波特性研究[J].材料开发与应用2006,21(004):8-10.
    [148]曹茂盛,王国凡,高正娟,张铁夫等.结构型隐身复合材料吸波及动/静态力学性能研究[J].复合材料学报2003,2.
    [149]曹茂盛,刘海涛,张铁夫,朱静.双峰响应结构型吸波材料动O静态力学性能研究[J].材料工程2002,3(10):26-32.
    [150]梁迪飞,杨勇,邓龙江LSMO/SiO2复合材料变温微波吸收特性研究[J].中国稀土学报2009(1):76-80.
    [151]程小全.寇长河,郦正能.复合材料蜂窝夹芯板低速冲击损伤研究[J].复合材料学报1998,15(3):124-128.
    [152]葛副鼎,朱静.吸收剂颗粒形状对吸波材料性能的影响[J].宇航材料工艺1996(005):42-49.
    [153]管登高,黄婉霞,毛健,蒋渝等.低反射高吸收梯度电磁波屏蔽复合材料研究[J].功能材料2003.34(006):676-678.
    [154]刘冰,王德平,黄文旵,周萘等.核壳结构磁性复合纳米粒的制备及研究进展[J].材料导报2007,21(F05):185-188.
    [155]刘列,于翘.吸波涂层材料技术的现状和发展[J].宇航材料工艺1994,24(1):1-9.
    [156]刘海定,曹旭东,贺文海,李济林等.吸波涂层界而结合机理(Ⅰ):涂层力学性能影响因素分析[J].功能材料2007,38(7):1045-1048.
    [157]刘飚,官建国,王琦,张清杰.核壳型铁钴纳米复合材料的制备及其性能[J].电子元件与材料2004,23(8):1-3.
    [158]吕述平,刘顺华,赵彦波.谐振型吸波材料的理论分析与实验研究[J].材料科学与工程学报2006,24(001):135-138.
    [159]张永康,孔德军,冯爱新,鲁金忠等.涂层界面结合强度检测研究(Ⅱ):涂层结合界面应力检测系统[J].物理学报2006,55(11):6008-6012.
    [160]张永康,孔德军,冯爱新,鲁金忠等.涂层界而结合强度检测研究(Ⅰ):涂层结合界面应力的理论分析[J].物理学报2006,55(6):2897-2900.
    [161]许占显,孔立堵.超电磁材料与未来隐身技术[J].现代防御技术2011,39(2):45-49.
    [162]赵伯琳,王卓,饶克谨.多向定向铁纤维吸波材料的雷达反射特性研究[J].电波科学学报2004,19(3):280-285.
    [163]陈雪刚,叶瑛,程继鹏.电磁波吸收材料的研究进展[J].无机材料学报2011,26(5):449-457.
    [164]韩磊,王自荣.单层雷达吸波涂层电磁参量匹配解析式的推导及其应用[J].光电技术应用2006,21(002):55-58.
    [165]马科峰,张广成,刘良威,燕子.夹层结构复合材料的吸波隐身技术研究进展[J].材料开发与应用2010,25(006):53-57.
    [166]鲁先孝,马玉璞,林新志.功能梯度材料在隐身方而的应用[J].材料开发与应用2007,22(2):52-56.
    [167]黄大庆,王智永,刘俊能.偶联剂对吸波涂层力学性能的影响及其作用机理的研究[J].材料工程1999,28(9):28-31.
    [168]黄远,马铁军.吸收剂含量对结构吸波材料吸波性能的影响[J].功能材料1999,30(004):369-371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700