透明陶瓷的光传输机理及散射模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透明陶瓷材料因其优良的光学性能和机械性能,成为新一代光电子材料的研究热点,对于国家安全和国民经济可持续发展具有重大战略意义。目前对于透明陶瓷光学性能研究主要集中在制备工艺及实验探索上,从物理机制上探讨透明陶瓷的光学性能的研究尚不深入,因此阻碍了透明陶瓷材料的发展和应用。
     透明陶瓷的透光性能不仅与材料本身的化学组成有关,还受到材料的显微结构的影响。本文对透明陶瓷的透光机理及影响因素进行了探讨,建立了光波在多晶陶瓷中与气孔、晶粒、晶界等显微结构单元之间相互作用关系的散射模型,通过研究显微结构对光学性能的影响规律来分析提高陶瓷透明度的方法。
     首先,本文阐述了光散射的基本理论,研究了针对球形的Mie散射理论和针对非球形的离散偶极子近似法。基于两种方法计算了长方体、椭球体和圆柱体三种不同形状粒子以及等体积球形粒子在不同尺度参数下的散射效率因子。通过分析结果得到了将非球形粒子作为球形处理的适用范围,为光散射理论在分析透明陶瓷的光学性能中的应用提供了基础。
     其次,针对立方晶系透明陶瓷的结构特点,分别对其中的气孔和晶界这两个主要的散射元建立了光散射模型。采用Mie理论计算研究了气孔率、气孔尺寸及气孔尺寸分布等因素对直线透过率的影响。基于球形核壳散射理论计算研究了晶界折射率、晶界厚度及晶粒尺寸对直线透过率的影响。结果表明,残余气孔是影响透明陶瓷透光性能的最大因素。气孔造成的散射随着气孔率的增大而增大,且在气孔尺寸与波长相接近时达到最大。同时,只有当晶界上存在第(?)相时晶界相才会造成散射,直线透过率随着晶界相与晶粒折射率差异的增大及晶界相含量的增加而减小。在制备过程中通过消除气孔降低气孔率,保持晶界与晶粒成分一致,降低晶界相的比例,使晶粒尺寸更小更均匀可有效提高立方晶系陶瓷的透光性能。
     再次,针对非立方晶系透明陶瓷的结构特点,以氧化铝陶瓷为研究对象,建立了单轴晶陶瓷双折射散射模型。基于Mie理论计算研究了晶粒尺寸及晶粒尺寸分布等因素对直线透过率的影响。同时,在瑞利-德拜近似散射理论的基础上,深入研究了各向异性晶粒取向的变化对直线透过率的影响。结果表明,制备晶粒尺寸更小更均匀的陶瓷,使晶粒定向排列可减小双折射散射的损失,提高非立方晶系陶瓷的透光性能。
     最后,针对复相透明陶瓷的结构特点,以两相陶瓷为研究对象,基于密集分布粒子的散射理论建立散射模型,采用干涉近似法研究了晶相含量和晶粒尺寸变化对陶瓷透光性能的影响。分析结果表明,在制备复相陶瓷时选取两相材料的配比各占50%时的透过率最高,并且只有控制晶粒尺寸在纳米范围,才能在整个波长范围内得到较好的透光性能。
Transparent ceramics have recently attracted appreciable attention of research in optoelectronic material, because of their excellent optical performance and mechanical properties. Nowadays, researches for the optical properties of transparent ceramics are mainly on the experiment and processing technology, the absence of the physical mechanism study limited the development and applications of transparent ceramics.
     The transmission properties of polycrystalline transparent ceramics are influenced by the chemical composition and the microstructure of the material. The fundamental photophysical mechanism of transparent ceramics and the influencing factors on transmission properties were discussed in this paper. Models have been established to describe the effects of microstructure such as pores, grains and grain boundaries on the in-line transmission of transparent ceramics. The aim of this paper is to study correlations between microstructure contents and optical properties of transparent ceramics in order to find the ways leading to high transparency.
     Firstly, the basic scattering theory is illustrated; research has been done on the Mie theory and Discrete Dipole Approximation (DDA) method. The scattering efficiency factors of cuboid, ellipsoid and cylinder particles were calculated by using the DDA method under different size parameters, and compared with the results of the equivalent-volume spheres based on Mie theory. The qualifications of treating the non-spherical particles as sphere obtained as the foundation of analyzing the scattering in transparent ceramics.
     Secondly, the characteristics of transparent ceramics with cubic crystal structure were analyzed. Models have been established on the scattering of pores and grain boundaries. Effects of pores on transmission were studied using the Mie theory. The in-line transmissions were calculated as a function of pore size, width of distribution and porosity. Porosity has great impact as the transmission decreases with the increasing of porosity. The minimum of the transmissions were observed when the pore size close to the optical wavelength. The effects of grain boundary were evaluated by core-shell model. The results show that the grain boundary which has grain boundary phase causes scattering. The higher the difference between the refractive indexes of the grain and grain boundary is, the lower the transmission. The transmission is affected strongly by the amount of the grain boundary in the visible range. We can conclude that the elimination of residual pores and the preparation of grains with uniform size are essential to improve transparency of ceramics. Meanwhile, keep the compositions of both the grain and grain boundary same and reduce the amount of grain boundary phase are desired to eliminate the scattering of grain boundary in cubic ceramics.
     Thirdly, the characteristics of transparent ceramics with non-cubic crystal structure were analyzed. A light scattering model has been established for the birefringence of uniaxial crystal ceramic. Effects of grain size and size distribution on transmission were studied using the Mie theory. Then, the effect of orientation was discussed by the developed Rayleigh-Gans-Debye approximation. The results show that the transparency of non-cubic ceramics depends not only the maximum grain size but also on the preferential orientation of their texture.
     Finally, the characteristics of transparent composite ceramics were analyzed. A model has been established for the ceramics with two phase based on the scattering theory with high particle concentrations. Effects of phase fraction and grain size on transmission were studied using Interference Approximation. The results show that the transmission reaches the maximum with a phase volume ratio of 50:50. Furthermore, the composite ceramics exhibit excellent transmission in both the visible part and infrared part of spectrum only when controlling the grain size in nanometer range.
引文
[1]Coble R.L. Transparent Alumina and Method of Preparation[P]. US Patent 3026210,1962.
    [2]De Groot J J, Van Vliet J A. The High-Pressure Sodium Lamp[M]. London:Macmillan Education, 1986:290-291.
    [3]Chen I Wei, Wang X H. Sintering dense nanocrystalline ceramics without final-stage grain growth [J]. Nature,2000,404(6774):168-171.
    [4]Chen P L, Chen I W. Sintering of fine Oxide Powders:Ⅱ, Sintering Mechanisms[J]. J. Am. Ceram. Soc.,1997,80(3):637-645.
    [5]O.Y.T, Koo J B, Hong K J. Effects of heating rate on microstructure and transparency of spark-plasma-sintered alumina[J]. Mater. Sci. Eng. A,2004(374):191-195.
    [6]Watanade Saeko, Yoshida Hidehiro, Taketo Sakuma. Densification Behavior and Grain Boundary Diffusivity in Cation-Doped Alumina[J]. Key Engineering Materials,2003,247:67-70.
    [7]Pradhan A K, Zhang Kai, Loutts G B. Synthesis of neodymium-doped yttrium aluminum garnet (YAG) nanocrystalline powders leading to transparent ceramics[J]. Materials Research Bulletin, 2004,39(9):1291-1298.
    [8]Niihara K. New design concept for structuralceramics:ceramic nanocomposites[J]. J. Ceram. Soc. Japan,1991,99(1154):974-982.
    [9]Ikesue A, Kamata K. Role of SiON Nd Soild Solution of YAG Ceramics[J]. J. Ceram. Soc. Japan, 1995,103(5):489-493.
    [10]Rabinovitch Y., Bogicevic C., Karolak F., et al. Frezz-dried nanometric neodymiumdoped YAG powders for transparent ceramics[J]. J. Mater. Process. Technol.,2008,199(3):314-320.
    [11]Iskandar F. Nanoparticle processing for optical applications - A review[J]. Advanced Powder Technology,2009,20(4):283-292.
    [12]Chaim R., Marder R., Estournes C. Optically transparent ceramics by spark plasma sintering of oxide nanoparticles[J]. Scripta Materialia,2010,63:211-214.
    [13]Teresa H., Jean G., Alicia C. Spark plasma sintering as a useful technique to the nanostructuration of piezo-ferroelectric materials[J]. Advanced Engineering Materials,2009, 11(8):615-632.
    [14]Ikesue A, Furusato I, Kamata K. Fabrication of Polycrystal line, Transparent YAG Ceramics by a Solid-State Reaction Method[J]. J. Ceram. Soc. Japan,1995,78(1):225-228.
    [15]Ikesue A, Kamata K. Microstructure and Optical Properties of Hot Isostatically Pressed Nd:YAG Ceramics[J]. J. Ceram. Soc. Japan,1996,79(7):1927-1933.
    [16]Casolco S. R., Xu J, Garay J. E. Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors[J]. Scripta Mater.,2008,58(6):516-519.
    [17]Belyakov A V, Lemeshev D O, Lukin E S, et al. Optically transparent ceramics based on yttrium oxide using carbonate and alkoxy precursors[J]. Glass and Ceramics,2006,63(7):262-264.
    [18]Villalobos G R, Sanghera J S, Aggarwal I D. Degradation of Magnesium Aluminum Spinel by Lithium Fluoride Sintering Aid[J]. Materials Science and Technology, NRL review,2005, 171-172.
    [19]Tsukuma Koji. Transparent MgAl2O4 Spinel Ceramics Produced by HIP Post-Sintering[J]. J. Ceram. Soc. Japan,2006,114(10):802-806.
    [20]Xue Junming, Liu Qian, Gui Linhua. Lower-Temperature Hot-Pressed Dy-α-Sialon Ceramics with LiF Additive[J]. J. Am. Ceram. Soc.,2007,90(5):1623-1625.
    [21]Cheng Jiping, Agrawal D, Zhang Yunjin, et al. Microwave reactive sintering to fully transparent aluminum oxynitride (AlON) ceramics[J]. Journal of Materials Science Letters,2001,20(1): 77-79.
    [22]Goldman Lee M, Hartnett Thomas M, Wahl Joseph M. Recent advances in aluminum oxynitride (AlON) optical ceramic[J]. Proc. SPIE,2001,4375:71-78.
    [23]Buckner Bean A, Hafner Harold C, Kreidl Norbert J. Hot-Pressing Magnesium Fluoride[J]. J. Am. Ceram. Soc.,2006,45(9):435-438.
    [24]Zhu S Z, Hongli M A, Jean R, et al. Preparation and hot pressing of ZnS nano powders for producing transparent ceramics[J]. Optoelctronics and Advanced Materials Rapid Communications.2007,1(12):667-670.
    [25]Ikesue A, Kinoshita T, Kamata K, et al. Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers[J]. J. Am. Ceram. Soc.,1995,78(4): 1033-1040.
    [26]J. Lu, H. Yagi, K. Takaichi, et al. Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies[C],2004, paper CTuT1.
    [27]Lu J, Yagi H, Takaichi K, et al.110 W ceramic Nd3+:Y3Al5O12 laser[J]. Appl. Phys.B,2004, 79(1):25-28.
    [28]Lawrence Livermore National Laboratory report[R]. Transparent Ceramics Spark Laser Advances, S& TR,2006:10-17.
    [29]Quehl G, Grunert J, Elman V, et al. Optimizing the production of metastable calcium atoms in a magneto-optical trap[J]. Optics Communications,2001,190(1-6):302-307.
    [30]Shen D Y, Sahu J K, Clarkson W A. Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm[J]. Opt. Lett.,2006,31(6):754-756.
    [31]Huang YiHua, Jiang Dongliang, Zhang Jingxian, et al. Fabrication of lanthanum doped yttria transparent ceramics[J]. Chinese Sciences Bulletin.,2009,54(12):2143-2146.
    [32]李会利,刘学建,黄莉萍.固相反应法制备Ce:LuAG透明陶瓷[J].无机材料学报,2006,21(5):1161-1166.
    [33]Nikl Martin, Mares Jiri A, Solovieva. Scintillation characteristics of Lu3Al5O12:Ce optical ceramics[J]. J. Appl. Phys.,2007,101(3):033515-1-5.
    [34]Takahashi H, Yanagida T, Kasama D, et al. The temperature dependence of gamma-ray responses of YAG:Ce ceramic scintillators[J]. IEEE Transactions on Nuclear Science,2006,53(4): 2404-2408.
    [35]Zhang G J, Ando M, Yang J F, et al. Boron carbide and nitride as reactants for in situ synthesis of boride-containing ceramic composites[J]. J. Euro. Ceram. Soc.,2004,24(2):171-178.
    [36]Orlovskaya Nina, Lugovy Mykola, Subbotin Vladimir, et al. Robust design and manufacturing of ceramic laminates with controlled thermal residual stresses for enhanced toughness[J]. Mater. Sci.,2005,40(20):5483-5490.
    [37]Krell A, Blank P, Ma H, et al. Cfi/Ber DKG[P],2007,84:E50-E56.
    [38]Kim Byung-Nam, Hiraga Keijiro, Morita Koji, et al. Micro structure and optical properties of transparent alumina[J]. Acta Materialia,2009,57(5):1319-1326.
    [39]Kim Byung-Nam, Hiraga Keijiro, Morita Koji, et al. Spark plasma sintering of transparent alumina[J]. Scripta Mater.,2007,57(7):607-610.
    [40]Mao Xiaojian, Wang Shiwei, Shimai Shunzo, et al. Transparent Polycrystalline Alumina Ceramics with Orient-ated[J]. J. Am. Ceram. Soc.,2008,91(10):3431-3433.
    [41]B. S. B. Karunaratne, R. J. Lumby, M. H. Lewis. Rare-earth doped a-Sialon Ceramics with Novel Optical Properties[J]. J. Mater. Res.1996,11(11):2790-2794.
    [42]Hasan Mandal. New Developments in a-SiAlON Ceramics[J]. J. Euro Ceram. Soc.,1999,19: 2949-2957.
    [43]M. I. Jones, H. Hyuga, and K. Hirao. Optical and Mechanical Properties of α/β Composite Sialons[J]. J. Am. Ceram. Soc.2003,86 (3):520~522
    [44]T.M.Harnett, S.D.Bernstein,et al. Optical properties of AlON(aluminum oxynitride) [J]. Infrared Physics and Technology,1998,39:203-211.
    [45]M.A.Illarramendi, I.Aramburu. Characterization of light scattering in translucent ceramics [J]. J.Opt.Soc.Am.B,2007,24(1):43-48.
    [46]R. Apetz, Michel P.B. Transparent Alumina:A Light-Scattering Model[J]. J.Am.Ceram.Soc,2003, 86(3):480-486.
    [47]Carlos P., Gustavo M.O., et al. On the transparency of nanostructured alumina:Rayleigh-Gans model for anisotropic spheres[J]. Optics Express,2009,17(8):6899-6912.
    [48]江东亮.透明陶瓷——无机材料研究与发展重要方向之一[J].无机材料学报,2009,24(5):874-881.
    [49]Ishimaru A. Wave Propagation and Scattering in Random Media[J]. JOSA,1985,2(12): 2066-2067.
    [50]Andreas K, Thomas H, Jen K. Transmission physics and consequences for materials selection, manufacturing, and applications[J]. Journal of the European Ceramic Society,2009,29:207-221.
    [51]Boulesteix R., Maitre A., Baumard J., et al. Mechanism of the liquid-phase sintering for Nd:YAG ceramics[J]. Opt. Mater.,2009,31(5):711-715.
    [52]王学荣,米晓云,卢歆.透明陶瓷的研究进展[J].硅酸盐学报.2007,35(12):1671-1674.
    [53]P. Alexander, J. Piermarini. Fabrication of transparent silicon nitride from nano-size particles[J]. J. Am. Ceram. Soc.,1992,75(2):3258-3288.
    [54]K. Andreas, H. Thomas, K. Jens. Transmission physics and consequences for materials selection, manufacturing, and applications[J]. J. European. Cram. Soc.,2009,29:207-221.
    [55]A. Krell, P.Blank, H. Ma, et al. Transparent sinterd corundum with high hardness and strength[J]. J. Am. Ceram. Soc.,2003,86:12-18.
    [56]A. Krell, P.Blank, H. Ma, et al. Processing of high-density submicrometer Al2O3 for new applications[J].2003,86:546-553.
    [57]A. Krell, J. Klimke, T. Hutzler. Transparent compact ceramics:Inherent physical issues[J]. Optical Materials,2009,31:1144-1150.
    [58]J. G. J. Peelen, R. Metselaar. Light scattering by pores in polycrystalline materials:transmission properties of alumina[J]. Journal of Applied Physics,1974,45(1):216-220.
    [59]C. Greskovich, S. Duclos. GE Research and Development Technical Report[R],1996.
    [60]Jiang, Haochuan. U. S. Pat. No.6498828[P],2002.
    [61]李长青,张明福,左洪波.影响透明陶瓷透光性能的因素[J].兵器材料科学与工程,2006,(3):26-30.
    [62]许绍祖.大气物理学基础[M].北京:气象出版社,1993.
    [63]Born M, Wolf E. Principles of Optics,7th edition[M]. Cambridge:Cambridge Press,1999.
    [64]R. G. Newton. Scattering theory of wave and particles[M]. New York:Springer-Verlag,1982.
    [65]M Kerker. The Scattering of Light and Other Electromagnetic Radiation[M]. New York: Academic Press,1969.
    [66]H. C. Van De Hulst. Light scattering by small particles[M]. New York:Wiely,1957.
    [67]C. F. Bohren, R. Huffman. Absorption and scattering of light by small particles[M]. New York Wiely,1983.
    [68]W. J. Wiscombe. Improved Mie scattering algorithms[J]. Appl. Opt.,1980,19(9):1505-1509.
    [69]P. Chylek. Narrow resonance structure in the Mie scattering characteristics[J]. Appl. Opt.,1978, 17(19):3019-3020.
    [70]J.Q. Zhao, G. Y. Shi, H. Z. Che et al. Approximations of the scattering phase functions of particles[J]. Advances in Atmospheric Sciences,2006,23(5):802-808.
    [71]A. Battaglia, K. Muinoen, T.Nousiainen et al. Light Scattering by aussian Particles: Rayleigh-ellipsoid Approximation[J]. Journal of Quantitative pectroscopy & Radiative Transfer, 1999, (63):277-303.
    [72]K. Muinonen, T. Nousiainen, P. Fast et al. Light scattering by Gaussian Random Particles:Ray Optics Approximation[J]. J. Quant. Spectrosc. Radiat. Transfer,1996,55(5):577-601.
    [73]B. T. Draine, P. J. Flatau. Discrete-dipole approximation for calculations[J]. Opt. Soc. Am.,1994, All:1491-1499.
    [74]Yang P, K. N. Liou. Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space[J]. J. Opt. Soc. Am. A,1996,13:2072-2085.
    [75]M. I. Mishchenko. Light scattering by randomly oriented axially symmetric particles[J]. J. Opt. Soc. Am. A,1991,8:871-882.
    [76]M. I. Mishchenko, J. W. Hovenier, L. D. Travis. Light scattering by nonspherical particles[M]. New York:Academic Press,2000,3-27.
    [77]A. G. Ramm. Numerically Efficient Version of the T-matrix Method[J]. Applicable Analysis, 2002,80(3):385-393.
    [78]Y. M. Wang, W. C. Chew. A Recursive T-matrix Approach for the Solution of Electromagnetic Scattering by Many Spheres[J]. IEEE Trans AP,1993,41(12):1633-1639.
    [79]苏宇,安毓英,林晓春,严绍辉.计算轴对称粒子光散射问题的简化T矩阵方法[J].激光杂志,2005,26(2):54-56.
    [80]韩一平,杜云刚.非球形大气粒子对任意波束的电磁散射特性[J].光学学报,2006,26(4):630-633.
    [81]E.M. Purcell, C.R. Pennypacker, Scattering and absorption of light by nonspherical dielectric grains[J]. Astrophysical Journal,1973,186:705-714.
    [82]B. T. Draine, The discrete-dipole approximation and its application to interstellar graphite grains, [J]. Astrophysical Journal,1988,333:848-872.
    [83]B. T. Draine, P.J. Flatau, Discrete-dipole approximation for scattering calculations[J]. Journal of the Optical Society of America A,1994,11(4):1491-1496.
    [84]B. T. Draine, P.J. Flatau, Discrete-dipole approximation for periodic targets:theory and tests[J]. Journal of the Optical Society of America A.2008,25:2693-2703.
    [85]商青琳MgAlON透明陶瓷的制备研究[D].硕士学位论文,武汉:武汉理工大学,2010.
    [86]G. Gary, P. Parimal, P. Philip. Evaluation of Hot Pressing and Hot Isostastic Pressing Parameters on the Optical Properties of Spinel[J]. J. Am. Ceram. Soc.,2005,88(10):2747-2751.
    [87]I. Yamashita, H. Nagayama, K. Tsukuma. Transmission Properties of Translucent Polycrystalline Alumina[J]. J. Am. Ceram. Soc.,2008,91(8),2611-2616.
    [88]A. T. Umbetro, N. W. Joseph, A. M. Zuhair. Transparent Nanometric Cubic and Tetragonal Zirconia Obtained by High-Pressure Pulsed Electric Current Sintering[J]. Adv. Func.t Mater., 2007,17:3267-3273.
    [89]T. C. Lu, X. H. Chang, J. Q. Qi et al. Low-temperature high-pressure preparation of transparent nanocrystalline MgAl2O4 ceramics[J]. Appl. Phys. Lett.,2006,88:213120.
    [90]J.Zhang et al. Related mechanism of transparency in MgAl2O4 nano-ceramics prepared by sintering under high pressure and low temperature[J]. J. Phys. D:Appl. Phys.,2009,42:052002.
    [91]C. Rachman, S. Zhijian, N. Mats. Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering[J]. J. Mater. Res.,2004,19(9):2527-2531.
    [92]V. V. Srdic, M. Winterer, H. Hahn. Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis[J]. J. Am. Ceram. Soc.,2000,83:729-736.
    [93]R. Boulesteix, A. Maitre, J. F. Baumard et al. Light scattering by pores in transparent Nd:YAG ceramics for lasers:correlations between microstructure and optical properties[J]. Optics Express, 2010,18(14):14992-15002.
    [94]A. F. Dericioglu, Y. Kagawa. Effect of grain boundary microcracking on the light transmittance of sintered transparent MgAl2O4[J]. J. Euro. Ceram. Soc.23 (2003) 951-959.
    [95]T. M. Hartnett, S. D. Bernstein et al. Optical properties of AlON(aluminum oxynitride) [J]. Infrared Phys. Techn.1998,39(4):203-211.
    [96]A. Ikesue, Y. L. Aung, T. Taira et al. Progress in ceramic laser[J]. Annu. Rev. Mater. Res.2006,36: 397-429.
    [97]C. Q. Li, H. B. Zuo, M. F. Zhang et al. Fabrication of transparent YAG ceramics by traditional solid-state-reaction method[J]. Trans. Nonferrous Met. Soc. China,2007,17(1):148-153.
    [98]M. Liu, S. W. Wang, D. Y. Tang et al. Fabrication and Microstructures of YAG Transparent Ceramics[J]. Science of sintering,2008,40:311-317.
    [99]D. Hreniak, W. Strek, P. Gluchowski et al. The concentration dependence of luminescence of Nd:Y3Al5O12 nanoceramics[J]. J. Alloys Compd.2008,451(1):549-552.
    [100]R. A. Heindl, M. E. Duffy. High Intensity Discharge Lamps Assembling Method e.g. for Ceramic Metal Halide High Intensity Discharge Lamp[P]. US patent, US5879215-A. 1999.03.09.
    [101]Sakka Y, Suzuki T S. Textured development of feeble magnetic ceramics by colloidal processing under high magnetic field[J]. Journal of the Ceramic Society of Japan,2005,113(1313):26-36.
    [102]C. Pecharroman, F. Gracia et al. Determination of texture by infrared spectroscopy in titanium oxide-anatase thin films[J]. J. Appl. Phys.2003,93:4634-4645.
    [103]Y. Xiong, Z. Y. Fu, H. Wang et al. Microstructure and properties of translucent Mg-sialon ceramics prepared by spark plasma sintering[J]. Materials Science and Engineering A,2008, 488:475-481.
    [104]F. Ye, C. F. Liu et al. Optical properties of in situ toughened Sclu-a-sialon[J]. Scripta Materialia. 2009,61:982-984.
    [105]Z. F. Yang, H. Wang, X. M. Min et al. Translucent Li-a-sialon ceramics prepared by spark plasma sintering[J]. J. Am. Ceram. Soc.,2010,93(11):3549-3551.
    [106]J. W. Wang, D. Y. Chen et al. Infrared transparent Y2O3-MgO nanocomposites using sol-gel combustion synthesized powder[J]. J. Am. Ceram. Soc.,2010,93(11):3535-3538.
    [107]D. T. Jiang, A. K. Mukherjee. Spark plasma sintering of an infrared transparent Y2O3-MgO nanocomposite[J]. J. Am. Ceram. Soc.,2010,93(3):769-773.
    [108]Tsang L, Kong J A, Shin R. Theory of microwave remote sensing[M]. New York:John Wiley, 1985,425-563.
    [109]Jin Y Q. Electromagnetic scattering for quantitative remote sensing. Singapore:World Scientific, 1994.259-287.
    [110]A. Vrij, E. A. Nieuwenhuis, H. M. Fijnaut et al. Application of modern concepts in liquid-state theory to concentrated particle dispersions[J]. Faraday Discussions 1978,65:101-113.
    [111]V. P. Dik, A. P. Ivanov. Limits of applicability of the interference approximation for description of extinction of light in disperse media with high concentration of particles[J]. Optics and Spectroscopy 1999,86(6):909-913.
    [112]J. K. Percus, G. J. Yevick. Analysis of classical statistical mechanics by means of collective coordinates[J]. Phys. Rev.1958,110(1):1-13.
    [113]V. P. Dick, A. P. Ivanov. Extinction of light in dispersive media with high particle concentrations:applicability limits of the interference approximation[J]. J. Opt. Soc. Am. A. 1999,16(5):1034-1039.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700