云雷达资料订正及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毫米波雷达由于其较高的时空分辨率,可以用来较精细地研究云结构和云特性。本文利用一部单发双收、兼有多普勒功能的35GHz测云雷达,对几种常见的云型进行观测,在获得一批有代表性资料的基础上,开展了云参数及垂直结构的初步研究。论文的主要内容和结果如下:
     1)根据反射率因子Z与衰减系数k之间的经验关系,采用分级逐库订正的方法,对2010年7月在广东阳江的遥感探测试验期间获得的个例数据(层状云、降水性层状云、对流云及卷云)进行了衰减订正试验,且将订正后的回波强度与X波段雷达探测资料进行对比,得到衰减订正的初步结果:对于回波较弱的非降水云,订正效果较好;对于降水回波,一方面由于云内液水含量较高,另一方面由于降水及传播路径上的水汽对电磁波的衰减严重,所以订正难度较大,层状云降水回波衰减订正值最大可达10dB。
     2)当雷达波长λ确定后,球形粒子的散射情况主要取决于粒子直径d和入射波长λ之比。当d<<兄时,为Rayleigh散射,当d≈λ时称为Mie散射。相对于波长为8.6mm的毫米波,直径1.8mm以上的雨滴属于大粒子,不能用Rayleigh散射公式计算其回波强度。大的雨滴粒子在降落过程中会发生形变,复杂的Mie散射公式才能准确计算,因此本文采用离散偶极子近似法(Discrete Dipole Approximation, DDA)计算任意形状“大雨滴”的散射截面,进而订正回波强度,提高了回波的准确性。
     3)参考国外的毫米波雷达探测与飞机穿云试验得到的公式,利用我校的35GHz地基毫米波测云雷达资料,研究了云内液水含量、冰水含量、云内粒子有效直径,结合外场试验数据,给出了初步反演结果,并根据毫米波雷达的基数据,分析了不同类型云个例的垂直分布情况。
     4)开发了毫米波雷达数据处理系统,该系统可进行云参数的反演、回波强度的衰减订正、大粒子散射订正。另外,考虑到NetCDF格式的雷达数据在欧美地区广泛性,本数据处理系统也增加了将GLC-34雷达数据转换为NetCDF格式的功能。
By providing base data with high spatio-temporal resolution, millimeter wave cloud measurement radar is good research facility for cloud property and structure. A35GHz dopplerized cloud radar with one-transmitter-and-two-polarization-receiver, is used to observe some typical clouds. With the collected cloud echo base data, preliminary works on cloud variable and cloud structure have been implemented. Main works are as following.
     (1) Regarded to the empirical relationship between reflectivity factor Z and attenuation coefficient k, a bin-by-bin correction method was used to complement the attenuation due to different clouds like stratus clouds, precipitating stratus, convective cloud and cirrus. By comparing the radar reflectivity factors collected by both cloud radar and almost same site X-band radar, the attenuation correction was found of importance and acceptable. The results show that, in cases of cirrus and stratues clouds with weak echo, the corrections are minor and these echoes are almost right. And in case of rainfall, both water droplets and rich water vapor along the ray path cause strong attenuation, and the correction is hard to compensate the attenuation. The largest correction value for preicipitating stratus cloud echo can reach to lOdB.
     (2) When the wavelength of incident wave is known, scattering of spherical particles is determined by the ratio of d (the diameter of particle) to λ (wavelength). If d<<λ. it calls Rayleigh scattering, if d≈λ, it calls Mie scattering. Relative to8.6mm wavelength, rain droplet with diameter bigger than1.8mm is considerably large, falls into the Mie scattering regime. Shape of the large droplets will be changed when they are falling down, using Mie theory to calculate scattering cross section would be very complicated. So DDA method is employed here for calculating the difference between the two scatterings for a large droplet. After Mie-to-Rayleigh Scattering correction, the cloud radar data is more reliable.
     (3) Based on empirical relationships from radar and flight experiments, cloud liquid water content and cloud ice water content were retrieved from a35GHz cloud radar measurement, as well as equivalent diameter of cloud droplets. Some results were pointed out. Vertical structure of some different clouds were also analyzed completely based on millimeter wave-cloud radar data.
     (4) A special data processing system was developed. It is capable of retrieving cloud variables, correcting radar reflectivity factor due to attenuation and Mie scattering caused by some large particles. Besides, regarding to NetCDF data format which is popular in Europe and America, data in GLC-34format can be saved in the form corresponding to NetCDF format.
引文
[1]雷恒池,洪延超,赵震,等.近年来云降水物理和人工影响天气研究进展[J].大气科学,2008,32(4):967-974
    [2]Harper, W. G., Cloud detection with a 8.6 millimeter wavelength radar[J], Metereol. Mag.,1964,93:337-346
    [3]Paulson W. H., P. J. Petrochi, G. Mclean, Operational utilization of the AN/TPQ-11 cloud detection radar[R], AFCRL-70-0335, June 1970, Instrumentation Papers, No.166, Office of Aerospace Research, USAF
    [4]Pasqualucci F., Millimeter-wave radar applications in Meteorology. Atmospheric Technology:Recent Progress in Radar Meteorology, National Center for Atmospheric Research,1980, No.13
    [5]Hobbs P. V., N. T. Funk, Cloud and Precipitaion studies with a millimeter-wave radar, A pictorial overvies[J], Weather,1984,39(11):334-339
    [6]Hobbs P. V., N. T. Funk, R. R. Sr. Weiss et al., Evaluation of a 35GHz radar for cloud physics reseach[J], J. Atmos. Oceanic Technol.,1985,2:35-48
    [7]Oltmans, S. J., Water vapor profiles for Washington, DC; Boulder, CO; Palestine, TX; Laramie, WY; and Fairbanks, AK; during the period 1974 to 1985. NOAA Data Rep. ERL-ARL-7,1986
    [8]Oltmans, S. J., Unpublished supplement for 1986 thru 1988 to NOAA Data Rep, ERL-ARL-7,1989
    [9]Pratt, R. W., Review of radiosonde humidity and temperature errors[J], J. Atmos. Oceanic Technol.,1985,2(3):404-407
    [10]Kropfli R. A., B. M. Bartram, S. Y. Matrosov, The upgraded WPL dual-polarization 8mm wavelength Doppler radar for microphysical and climate research.[R], Proceedings of Conf. on Cloud Physics, American Meteorolgical Society, Boston, MA.,1990,341-345
    [11]Lhermitte R. M., A 94GHz Doppler radar for cloud observation[J], J. Atmos. Oceanic Technol.,1987a,4:36-38
    [12]Pazmany A. L., J. B. Mead, R. E. McIntosh, et al.,95GHz polarimetric radar measurements of orographic cap clouds from the Elk Mountain Wyoming observatory[J], J. Atmos. Oceanic Technol.,1945a,11:140-153
    [13]Pazmany A. L., R. E. McIntosh, G Vali, An airborne 95GHz dual polarized radar for cloud studies[J], Trans. Geosci. Remote Sensing,1945b
    [14]Stephens G L., D. G Vane, R. J. Boain, et al. The cloudsat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation[J], Bull. Amer. Meteor. Soc.,2002,83(12):1771-1790
    [15]Hamazu, Hashiguchi, Wakayama, et al. A 35 GHz scanning Doppler radar for fog observations[J], J. Atmos. Oceanic Technol.,2003,20:972-986
    [16]魏重,林海,忻妙新.毫米波气象雷达的测云能力[J].气象学报.1985,43(3):378-383
    [17]刘黎平,仲凌志,江源等.毫米波测云雷达系统及其外场试验结果初步分析[J],气象科技,2009,5(37):567-571
    [18]Haper W. G, Examples of cloud detection with 8.6 millimeter radar (Radar resolution capability for cloud detection)[J], Meteoro Mag.,1966,95:106-112
    [19]Clothiaux E.E, M. A. Miller, B. A. Albrecht, et al. An evaluation of a 94GHz radar for remote sensing of cloud properties[J], J. Atmos. Oceanic Technol.,1995,12:201-229
    [20]Hollars S., Q. Fu, J. Comstock, et al. Comparision of cloud-top height retrievals from ground-based 35 GHz MMCR and GMS-5 satellite observations at ARM TWP Manus site[J], Atmos. Res.,2004,72:169-186
    [21]Wang Z., K. Sassen, Cloud type and macrophysical property retrieval using multiple remote sensors[J], J. Appl. Meteor.,2001,40:1665-1682
    [22]Sansen K, Z. Wang, Level 2 combined radar and lidar cloud scenario classification product process description and interface control document[C], CloudSat Project,2003
    [23]Atlas D, The estimation of cloud parameters by radar[J], J. Meteor.,1954,11:309-317
    [24]Sauvageot H., J. Omar, Radar reflectivity of cumulus clouds[J], Journal of Atmospheric and Oceanic Technology.1987,4:264-272
    [25]Kropfli R. A., R. D. Kelly, Meteorological research applications of millimeter-wave radar[J], Meteor. Atmos. Phys.,1996,59:105-121
    [26]Intrieri J. M., G. L. Stephens, Eberhard W L, et al, A method for determining cirrus cloud particle sizes using lidar and radar backscatter technique[J], J. Appl. Meteor.,1994,32: 1074-1082
    [27]Frisch A. S., C. W. Fairall, J. B. Snider, Measurement of strtus cloud and drizzle parameters in ASTEX with a Ka-band Doppler radar and a microwave radiometer[J], J. Atmos. Sci.,1995,52:2788-2799
    [28]Austin R. T., G. L. Stephens, Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat I:Algorithm for mulation[J], J. Geophys. Res.,2001,106(22):28233-28242
    [29]俞小鼎,姚秀萍,熊廷南,等.多普勒天气雷达原理与业务应用.北京:气象出版社,2006:1:17,19-22
    [30]张培昌,杜秉玉,戴铁丕.雷达气象学[M].北京:气象出版社,2001:24,35-43,81-85,300-303
    [31]仲凌志.毫米波测云雷达系统的定标和探测能力分析及其在反演云微物理参数中的初步研究[D].中国气象研究院,2009:65-66
    [32]张培昌,王振会.大气微波遥感基础[M].北京:北京大学出版社,2003:300-303
    [33]Ray P. S., Broadband complex refractive indices of ice and water[J]. Applied Optics, 1972,11:1836-1844
    [34]Matzler C., Microwave dielectric properties of ice, In Thermal Microwave Radiation: Applications for Remote Sensing, Electromagnetic Waves Series,2006,52:455-462
    [35]向敬成,张明友.毫米波雷达及其应用[M].北京:国防工业出版社,2005:127-131
    [36]张培昌,王振会.天气雷达回波衰减订正算法的研究(Ⅰ):理论分析.高原气象,2001,20(1):1-5
    [37]Lhermitte R, Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation[J], J Atmos Oceanic Tech.1990,7:464-479
    [38]Michael I. M., D. T. Travis, W. M. Daniel. T-matrix computations of light scattering by nonshpherical particles:a review[J], Quant. Spectrosc. Radiat. Transter,1996,55(5): 535-575
    [39]Stephan H., J. B. Anthony, M. E. John.Implementation of T-matrix method on a massively parallel machine: a comparison of hexagonal ice cylinder single-scattering properties using the T-matrix and improved geometric optics methods[J], J. Quant. Spectrosc. Radiat. Transfer,2003:707-720
    [40]Piotr J. F., Scattering by irregular particles in anomalous diffraction and discrete dipole approximation[M], Department of Atmospheric Science,1992:517
    [41]Piotr J.F., A. F. Kirk, W. M. Daniel, Scattering by two spheres in contact:comparisons between discrete dipole approximation and model analysis[J], Appl. Optics,1993,32(18):3302-3305
    [42]Yurkin M. A., V. P. Maltsev, A. G. Hoekstra, The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength[J], J. Quant. Spectrosc. Radiat. Transfer,2007,106:546-557
    [43]Stephens J. J., Radar cross-sections for water and ice spheres[J], J. Meteor, 1961,18:348-359
    [44]Devoe H., Optical properties of molecular aggregates. Ⅱ. Classical theory of the refraction absorption, and optical activity of solution and crystals[J], J. Chem. Phys., 1965,43:3199-3208
    [45]Purcell E M., C. R. Pennypacker, Scattering and absorption of light by nonspherical dielectric grains[J], The Astrophysical Journal,1973,186:705-714
    [46]Draine B.T., P.J. Flatau, Discrete dipole approximation for scattering calculation[J], J. Opt. Soc.Am.A,1994,4(11):1491-1499
    [47]Draine B. T., The discrete dipole approximation and its application to interstellar graphite grains[J], The Astrophysical Journal,1988,333:848-872
    [48]王丽,DDA在粒子散射特性研究中的应用[D],西安:西安电子科技大学硕士学位论文,2009:16
    [49]Draine B. T., J. F. Piotr, User Guide for the Discrete Dipole Approximation Code DDSCAT 7.1
    [50]Raymond W, D. Atlas, Radar reflectivity and attenuation of rain[J], J. Appl. Meteor., 1963,2:276-280
    [51]Marshall J. S., W. M. Palmer, The distribution of raindrops with size[J], J. Meteor.,1948,5:165-166
    [52]Atlas D., Optical extinction by rainfall[J], J. Meteor.,1953,10:486-488
    [53]Matrosov S. Y., Retrievals of vertical profiles of ice cloud microphysics from radar and IR measurements using tuned regressions between reflectivity and cloud parameters[J], J. Geophys.Res.,1999,104(14):16741-16753
    [54]Fox N. I., A. J. Illingworth. The Retrieval of Stratocumulus Cloud Properties by Ground-Based Cloud Radar[J], J. Appl. Meteor.,1997,36:485-492
    [55]Baedi R. J. P., J. J. M. de Wit, H. W. J. Russchenberg, et al, Estimating effective radius and liquid water content from radar and lidar based on the CLARE98 data-set[J], Phys. Chem. Earth(B),2000,25:1057-1062
    [56]Sauvageot H, Small-scale structure of layered clouds during PEP deduced from millimetric wave Doppler radar analysis, Rep. No.29, WMO, Weather Modification Program,1983,59-73
    [57]B.J.梅森.云物理学.北京:科学出版社,1979,98-104
    [58]Zaitsev,V.A, Liquid water content and distribution of drops in cumulus cloud (in Russian). Trudy glav. Geofiz. Obs.1950,13,75
    [59]Griffith K. T., S. K. Cox, R. G. Knollenberg, Infrared radiative properties of tropical cirrus clouds inferred from aircraft measurements[J], J. Atmos. Sci.,1980,37:1077-1087
    [60]Knollenberg, R. G., K. Kelly, J. C. Wilson, Measurements of high number densities of ice crystals in the tops of tropical cumulonimbus[J], J. Geophys. Res.,1993,98(D5): 8639-8664
    [61]Chen J. P., G. M. McFarquhar, A. J. Heymsfield, Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment[J], J. Atmos. Sci.,1996, 53:2401-2423
    [62]Heymsfield A J, Precipitation Development in Stratiform Ice Clouds: A Microphysical and Dynamical Study [J], J. Atmos. Sci.,1977,34:367-381
    [63]Sassen, Ice cloud content from radar reflectivity[J], J. Climate Appl. Meteor.,1987,26: 1050-1053
    [64]Schneider T. L., G. L. Stephens, Theoretical Aspects of Modeling Backscattering by Cirrus Ice Particles at Millimeter Wavelengths[J], J. Atmos. Sci.,1995,52(23):4367-4385
    [65]Liu, A. J. Illingworth, Toward More Accurate Retrievals of Ice Water Content from Radar Measurements of Clouds[J], J. Appl. Meteor.,2000,39:1130-1146
    [66]Protat A., A. J. Heymsfield, Evaluation of Ice Water Content Retrievals from Cloud Radar Reflectivity and Temperature Using a Large Airborne In Situ Microphysical Database[J], J. Appl. Meteor. Climatol.,2007,46:557-572
    [67]David R. Dowling, Lawrence F. Radke, A summary of physical properties of cirrus clouds [J], J. Appl. Meteor.,1990,29:970-978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700