迭代表面离散化边界方程法及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于现有的表面离散化边界方程(OS-DBE)法提出迭代表面离散化边界方程(IT-OS-DBE)法,并将该方法用于二维理想导体散射问题、三维静电问题及三维理想导体散射问题的分析。
     对二维导体散射问题,原始OS-DBE方法以分域基函数和场点(或匹配点)仅覆盖导体表面部分区域的方式独立求解表面任意点的电流,非常适合并行计算。其内存消耗量低,矩阵阶数小于矩量法的相应矩阵阶数,且二者之比随着散射体电尺寸的增大而减小。该方法还可与快速多极子方法(FMA)或多层快速多极子方法(MLFMA)相结合,以进一步降低矩阵方程求解的计算复杂度。原始OS-DBE方法计算效率的瓶颈在于:对每个电流计算点均求解一次矩阵方程。本文提出的IT-OS-DBE由一系列交替进行的OS-DBE求解过程和修正过程构成。IT-OS-DBE的OS-DBE求解过程中的矩阵阶数可比原始OS-DBE低1至2个数量级。并且,对于二维导体散射问题和三维静电问题,IT-OS-DBE的OS-DBE求解过程可采用所谓的“一点求逆”技术:对二维导体散射问题,将导体表面某点的切向散射磁场与相关场点的切向入射电场之间的耦合系数向量用于整个散射体表面电流分布的计算;对三维静电问题,将导体或介质表面某点的相应的耦合系数向量用于整个表面电荷或极化电荷分布的计算,从而使OS-DBE矩阵方程的求解次数降低至仅一次,最大限度地降低了OS-DBE求解过程的时间消耗。IT-OS-DBE的修正过程可采用FMA或MLFMA,以降低计算复杂度。IT-OS-DBE具有可与所求解问题的尺度无关的快速收敛特点,迭代次数可控制在数次以内。鉴于IT-OS-DBE迭代次数少,其修正过程与FMA/MLFMA相结合时,可有多种不同的内存使用方案供选择。
     本文对原始OS-DBE方法提出一种新的空域扫描计算技术,并将其应用于二维导体散射问题的分析,即将导体表面某点的切向散射磁场与相关场点的切向入射电场之间的耦合系数向量用于该点附近区域的电流分布计算,以减少原始OSDBE中矩阵方程的求解次数。扫描计算采用复频率跳变技术来实现自适应控制。与已有的空域渐近波形估计扫描计算技术相比,本文的空域扫描计算技术具有更小的计算复杂度、更大的扫描计算范围、方便与FMA/MLFMA相结合以及对不同的入射场不必重复计算耦合系数向量等优点。该方法保留了原始OS-DBE低内存消耗且非常适合并行计算的特点。
     本文还对二维散射问题传统的FMA/MLFMA作精度和效率上的改进。精度上,提出远场作用的高阶解析近似,并对TE波入射时的电场积分方程及组合场积分方程的远场作用采用一种更节省内存的计算方式。效率上,主要是在转移矩阵元素计算时引入傅立叶变换及其逆变换,大幅降低了转移矩阵的计算时间以及其占总计算时间的比例。这些改进措施使得与FMA/MLFMA相结合的矩量法、OS-DBE及IT-OS-DBE具有更高的计算精度和效率。
Based on the existing on-surface discretized boundary equation (OS-DBE) method, an approach, called iterative OS-DBE (IT-OS-DBE), is proposed and applied to the analysis of two-dimensional (2D) and three-dimensional (3D) problems of scattering by perfect electric conducting (PEC) objects and3D electrostatic problems.
     For the above2D problems, the original OS-DBE method allows independent determination of the electric surface current at arbitrary given point on the scatterer surface with subdomain basis functions and field points (matching points) covering just a part of the entire cylinder surface and centering around that given point. Hence, the method is very suitable for parallel computing. Furthermore, it has low memory requirement because a matrix of smaller order than that in the method of moments is used and the larger the problem is, the smaller the matrix order ratio is. The fast multipole algorithm (FMA) or the multilevel FMA (MLFMA) can be incorporated into the method to diminish the computational complexity. However, a matrix equation is solved repeatedly at each current calculation point in order to generate the whole current distribution and this is the efficiency bottleneck of the method. The present IT-OS-DBE method comprises a series of alternate OS-DBE solution and revision processes. Formally, an OS-DBE solution process seems to be the same as the original OS-DBE method. Within the present iterative scheme, however, it significantly decreases the OS-DBE matrix order by one to two orders of magnitude. The solution count of the matrix equation in obtaining the whole current distribution in the OS-DBE solution process can be reduced to just one for2D scattering problems and3D electrostatic problems using the proposed one matrix inversion technique, such that the computational burden for the OS-DBE solution process can be diminished to a minimum degree. For the2D problem of scattering by a PEC cylinder, the one matrix inversion technique utilizes the vector composed of coupling coefficients between the scattered tangential magnetic field at a rather arbitrarily chosen point on the cylinder surface and the incident tangential electric fields at the related field points all around the surface to produce the whole current distribution as if it were location independent. For3D electrostatic problems, the corresponding coupling coefficient vector obtained at one point on the surface of a conductor or dielectric can also be employed to determine the whole surface charge or surface bound charge density. The FMA/MLFMA can be implemented into the revision processes of the present IT-OS-DBE method as well to reduce the computational cost for concerned matrix vector multiplications. As the present method may converge fast and complete the solution in just a few iterations, independent of the problem scale, there are several optional forms regarding the memory usage in connection with the FMA/MLFMA adopted in the revision processes.
     A new spatial sweep technique for the original OS-DBE is also proposed in this dissertation and applied to the analysis of scattering by2D PEC cylinders. It uses the aforementioned coupling coefficient vector generated at a given point to calculate the current distribution in its nearby area to reduce the solution count of the matrix equation in the original OS-DBE. The complex frequency hopping is employed for the automatic control of sweep calculations. Compared with the available spatial sweep technique based on the asymptotic waveform evaluation, the new technique has the advantages of lower computational complexity, wider sweep range, easier implementation of the FMA/MLFMA, and no necessity of recalculating coupling coefficient vectors when incident waves or exciting sources alter. The method has low memory requirement and is very suitable for parallel computing as the original OS-DBE method.
     For2D scattering problems.efforts have also been made in this dissertation to improve the traditional FMA/MLFMA in both accuracy and efficiency. The higher order analytical approximations to far interactions in the FMA/MLFMA are derived. In addition.a scheme with more efficient memory usage is proposed for computing the far interactions related to the electric field integral equation and the combined field integral equation for the case of a TE wave incidence. The filling time of translation matrices and its portion within the total computation time are significantly diminished by the discrete Fourier transform and its inverse. These enhancements benefit the method of moments, the OS-DBE method.and the IT-OS-DBE method all in conjunction with the FMA/MLFMA in both accuracy and efficiency.
引文
[1]M. H. Al Sharkawy, V. Demir, and A. Z. Elsherbeni, "Plane wave scattering from three dimensional multiple objects using the iterative multiregion technique based on the FDFD method," IEEE Trans. Antennas Propag., vol.54, no.2, pp.666-673, Feb.2006.
    [2]E. Alkan, V. Demir. A. Z. Elsherbeni. and E. Arvas. "Dual-grid finite-difference frequency-domain method for modeling chiral medium," IEEE Trans. Antennas Propag., vol.58, no.3, pp.817-823, Mar.2010.
    [3]K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., vol.14, no.3, pp.302-307, May.1966.
    [4]A. Taflove and S. C. Hagness, Computational Electrodynamics:the Finite-Difference Time-Domain Method,3rd ed.. Boston:Artech House,2005.
    [5]I. Ahmed, E. K. Chua, E. P. Li, and Z. Chen, "Development of the three-dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antennas Propag., vol.56, no.11, pp.3596-3600, Nov.2008.
    [6]H.-X. Zheng and K. W. Leung, "FDTD implementation and application of high order impedance boundary condition using rational functions," IEEE Trans. Antennas Propag., vol.57, no.8, pp.2397-2408, Aug.2009.
    [7]T. M. Millington and N. J. Cassidy, "Improving the accuracy of FDTD approximations to tangential components of the coupled electric and magnetic fields at a material interface," IEEE Trans. Antennas Propag., vol.59, no.8, pp.2924-2932, Aug.2011.
    [8]A. C. M. Austin, M. J. Neve, G. B. Rowe, and R. J. Pirkl, "Modeling the effects of nearby buildings on inter-floor radio-wave propagation," IEEE Trans. Antennas Propag., vol.57, no.7, pp.2155-2161, Jul.2009.
    [9]D. Isleifson, I. Jeffrey, L. Shafai, J. Lovetri, and D. G. Barber, "An efficient scattered-field formulation for objects in layered media using the FVTD method," IEEE Trans. Antennas Propag., vol.59, no.11, pp.4162-4170, Nov.2011.
    [10]J. L. Volakis. A. Chatterjee, and L. C. Kempel. Finite Element Method for Electromagnetics:Antennas, Microwave Circuits, and Scattering Applications. New York:Wiley.1998.
    [11]J.-M. Jin, The Finite Element Method in Electromagnetics,2nd ed.. New York: Wiley,2002.
    [12]J. Zhu, R. S. Chen, Z. H. Fan, D. X. Wang, and E. K. N. Yung, "Efficient preconditioner for the finite-element boundary integral analysis of electromagnetic scattering in the half space," IET Microw. Antenna Propag., vol.4, no.3, pp.374-380, Mar.2010.
    [13]M. M. Ilic, A. Z. Ilic, and B. M. Notaros, "Continuously inhomogeneous higher order finite elements for 3-d electromagnetic analysis," IEEE Trans. Antennas Propag., vol.57, no.9, pp.2798-2803, Sep.2009.
    [14]O. Tuncer, C. Lu, N. V. Nair, B. Shanker, and L. C. Kempel, "Further development of vector generalized finite element method and its hybridization, with boundary integrals," IEEE Trans. Antennas Propag., vol.58, no.3, pp.887-899, Mar.2010.
    [15]J. M. Jin, Z. Lou, Y. J. Li, N. W. Riley, and D. J. Riley, "Finite element analysis of complex antennas and arrays," IEEE Trans. Antennas Propag., vol.56, no.8, pp.2222-2240, Aug.2008.
    [16]J.-F. Lee, R. Lee, and A. Cangellaris, "Time-domain finite-element methods," IEEE Trans. Antennas Propag., vol.45, no.3, pp.430-442, Mar.1997.
    [17]A. E. Yilmaz, Z. Lou, E. Michielssen, and J.-M. Jin, "A single-boundary implicit and FFT-accelerated time-domain finite element-boundary integral solver," IEEE Trans. Antennas Propag., vol.55, no.5, pp.1382-1397, May. 2007.
    [18]N. Marais and D. B. Davidson, "Numerical evaluation of high-order finite element time domain formulations in electromagnetics," IEEE Trans. Antennas Propag, vol.56, no.12, pp.3743-3751, Dec.2008.
    [19]M. L. Stowell, B. J. Fasenfest, and D. A. White, "Investigation of radar propagation in buildings:A 10-billion element cartesian-mesh FETD simulation," IEEE Trans. Antennas Propag., vol.56, no.8, pp.2241-2250, Aug.2008.
    [20]D. J. Riley and J. M. Jin, "Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures," IEEE Trans. Antennas Propag., vol.56. no.11, pp.3501-3509, Nov.2008.
    [21]R. P. Peterson and J. M. Jin, "A three-dimensional time-domain finite-element formulation for periodic structures," IEEE Trans. Antennas Propag.. vol.54. no. Lpp.12-19, Jan.2006.
    [22]J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., vol.114, pp.185-200, Oct.1994.
    [23]T. Rylander and J. M. Jin, "Perfectly matched layer in three dimensions for the time-domain finite element method applied to radiation problems," IEEE Trans. Antennas Propag., vol.53, no.4, pp.1489-1499, Apr.2005.
    [24]O. Ozgun and M. Kuzuoglu, "Locally-conformal perfectly matched layer implementation for finite element mesh truncation," Microw. Opt. Technol. Lett, vol.48, no.9, pp.1836-1839, Sep.2006.
    [25]O. Ozgun and M. Kuzuoglu, "Non-Maxwellian locally-conformal PML absorbers for finite element mesh truncation," IEEE Trans. Antennas Propag., vol.55, no.3, pp.931-937, Mar.2007.
    [26]B. Donderici and F. L. Teixeira, "Conformal perfectly matched layer for the mixed finite element time-domain method," IEEE Trans. Antennas Propag., vol.56, no.4, pp.1017-1026, Apr.2008.
    [27]S. D. Gedney and B. Zhao, "An auxiliary differential equation formulation for the complex-frequency shifted PML," IEEE Trans, Antennas Propag., vol.58, no.3, pp.838-847, Mar.2010.
    [28]Y. B. Zhai, X. W. Ping, and T. J. Cui, "Scattering from complex bodies of revolution using a high-order mixed finite element method and locally-conformal perfectly matched layer," IEEE Trans. Antennas Propag., vol.59, no.5, pp.1761-1764, May.2011.
    [29]M. L. Yang, X. Q. Sheng, X. M. Pan, and W. C. Pi, "A concave FE-BI-MLFMA for scattering by a large body with nonuniform deep cavities," IEEE Trans Magn., vol.48, no.2, pp.687-690, Feb.2012.
    [30]N. Morita, N. Kumagai, and J. R. Mautz, Integral Equation Methods for Electromagnetics. Artech House,1990.
    [31]A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics. New York:IEEE Press,1998.
    [32]R. F. Harrington, Field Computation by Moment Methods. New York:IEEE Press,1993.
    [33]S. M. Rao. "Electromagnetic scattering and radiation of arbitrarily-shaped surfaces by triangular patch modeling," Ph.D. dissertation, University of Mississippi.1980.
    [34]S. M. Rao, D. R. Wilton, and A. W. Glisson, "Electromagnetic Scattering by surfaces of arbitrary shape,'" IEEE Trans. Antennas Propag., vol.30, no.3, pp.409-418, May 1982.
    [35]R. D. Graglia, "On the numerical integration of the linear shape function times the 3-D Green's function or its gradient on a plane triangle," IEEE Trans. Antennas Propag., vol.41, no.10. pp.1448-1455, Oct.1993.
    [36]J.-T. Kuo and K.-Y. Su, "Analytical evaluation of the MoM matrix elements for the capacitance of a charged plate," IEEE Trans. Microw. Theory Tech., vol.50, no.5, pp.1435-1436, May 2002.
    [37]S. Jiang and V. Rokhlin, "Second kind integral equations for the classical potential theory on open surfaces I:analytical apparatus," J. Comput. Phys, vol.191, pp.40-74,2003.
    [38]K. Y. Zhu, Y. Huang, J. Jiang, and J. Wang, "Integral moment method for radiative transfer in nonlinear scattering medium," J. Infrared Millim. Waves, vol.30, no.6, pp.537-540, Dec.2011.
    [39]S. Makal and A. Kizilay, "Computation of the scattered fields from a dielectric object buried in a medium with a periodic surface by a decomposition method," IET Microw. Antenna Propag., vol.5, no.14, pp.1703-1709, Nov.2011.
    [40]X. Q. Deng, C. Q. Gu, and Y. G. Zhou, "Electromagnetic scattering by arbitrary shaped three-dimensional conducting objects covered with electromagnetic anisotropic materials," Appl. Comput. Electrom., vol.26, no.11, pp.886-892, Nov.2011.
    [41]F. Vipiana, G. Vecchi, and D. R. Wilton, "A multi-resolution moment method for wire-surface objects," IEEE Trans. Antennas Propag., vol.58, no.5, pp.1807-1813, May.2010.
    [42]Y. Zhang, R. A. van de Geijn, M. C. Taylor, and T. K. Sarkar, "Parallel mom using higher-order basis functions and PLAPACK in-core and out-of-core solvers for challenging EM simulations," IEEE Antenn. Propag. Mag., vol.51, no.5, pp.42-60, Oct.2009.
    [43]M. M. Bibby. A. E. Peterson, and C. M. Coldwell, "High order representations for singular currents at corners," IEEE Trans. Antennas Propag., vol.56. no.8. pp.2277-2287, Aug.2008.
    [44]E. Demaldent. D. P. Levadoux. and G. Cohen. "Spectral elements for the integral equations of time-harmonic maxwell problems," IEEE Trans. Antennas Propag, vol.56, no.9, pp.3001-3010, Sep.2008.
    [45]J. C. Young and S. D. Gedney, "A locally corrected nystrom formulation for the magnetostatic volume integral equation," IEEE Trans. Magn., vol.47, no.9, pp.2163-2170, Sep.2011.
    [46]L. M. Zhang, A. Deng, and M. H. Wang, "Study of the monopolar RWG and monopolar n x RWG basis functions for electromagnetic scattering analysis,' Eng. Anal. Bound Elem., vol.35, no.5, pp.768-775, May 2011.
    [47]A. Freni, P. De Vita, P. Pirinoli, L. Matekovits, and G. Vecchi, "Fast-factorization acceleration of mom compressive domain-decomposition," IEEE Trans. Antennas Propag., vol.59, no.12, pp.4588-4599, Dec.2011.
    [48]J. Lacik, "Acceleration of marching on in time method for TD-EFIE by equivalent dipole moment method and its analysis," Radio Eng., vol.20, no.3, pp.569-574, Sep.2011.
    [49]Q. Q. Wang, C. Yan, Y. F. Shi, D. Z. Ding, and R. S. Chen, "Transient analysis of electromagnetic scattering using marching-on-in-order time-domain integral equation method with curvilinear RWG basis functions," Appl. Comput. Electrom., vol.26, no.5, pp.429-436, May 2011.
    [50]D. R. Wilton and J. E. Wheeler III, "Comparison of convergence rates of the conjugate gradient method applied to various integral equation formulations," Progress in Electromagn. Res., vol.5, pp.131-158,1991.
    [51]A. F. Peterson and R. Mittra, "Convergence of the conjugate gradient method when applied to matrix equations representing electromagnetic scattering problems," IEEE Trans. Antennas Propag., vol.34, no.12, pp.1447-1454, Dec.1986.
    [52]L. Greengard and V. Rokhlin, "A Fast Algorithm for Particle Simulations,' J. Comput. Phys., vol.73, pp.325-348, Dec.1987.
    [53]V. Rokhlin, "Rapid solution of integral equations of classical potential theory,' J. Comput. Phys., vol.60, pp.187-207,1983.
    [54]L. Greengard and V. Rokhlin, "The rapid evaluation of potential fields in three dimensions," in Lecture Notes in Mathematics 1360. Berlin:Springer-Verlag. pp.121-141,1987.
    [55]V. Rokhlin, "Rapid solution of integral equations of scattering theory in two dimensions,"J. Comput. Phys., vol.86, no.2. pp.414-439. Feb.1990.
    [56]N. Engheta, W. D. Murphy. V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMA) for electromagnetic scattering problems," IEEE Trans. Antennas Propag., vol.40, no.6, pp.634-642, Jun.1992.
    [57]C. C. Lu and W. C. Chew, "Fast algorithm for solving hybrid integral-equations," IEE Proc.-H, vol.140, no.6, pp.455-460, Dec.1993.
    [58]W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "Acceleration methods for the iterative solution of electromagnetic scattering problems," Radio Sci., vol.28. no. l,pp.1-12, Jan-Feb.1993.
    [59]R. Coifman, V. Rokhlin, and S. Wandzra, "The fast multipole method for the wave equation:a pedestrian prescription," IEEE Antennas Propag. Mag., vol.35, no.3, pp.7-12, June 1993.
    [60]L. Greengard and V. Rokhlin, "A new version of the fast multipole method for the Laplace equation in three dimensions," Research Report 1115, Yale University, Sep.1996.
    [61]W. C. Chew, S. Koc, J. M. Song, C. C. Lu, and E. Michielssen, "A succinct way to diagonalize the translation matrix in three dimensions," Microw. Opt. Technol. Lett, vol.15, no.3, pp.144-147, Jun.1997.
    [62]T. Hrycak and V. Rokhlin, "An Improved Fast Multipole Algorithm for Potential Fields," SIAM J. Set Comput., vol.19, no.6, pp.1804-1826, Nov.1998.
    [63]C. C. Lu and W. C. Chew, "A multilevel algorithm for solving a boundary integral-equation of wave scattering," Microw. Opt. Technol. Lett., vol.7, no.10, pp.466-470, Jul.1994.
    [64]R. L. Wagner and W. C. Chew, "A ray-propagation fast multipole algorithm," Microw. Opt. Technol. Lett., vol.7, no.10, pp.435-438, Jul.1994.
    [65]W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics. Artech House,2001.
    [66]W. B. Lu, T. J. Cui, and H. Zhao, "Acceleration of fast multipole method for large-scale periodic structures with finite sizes using sub-entire-domain basis functions," IEEE Trans. Antennas Propag., vol.55, no.2, pp.414-421, Feb.2007.
    [67]W.-D. Li. W. Hong, and H.-X. Zhou. "An IE-ODDM-MLFMA scheme with DILU preconditioner for analysis of electromagnetic scattering from large complex objects,'" IEEE Trans. Antennas Propag., vol.56. no.5, pp.1368-1380, May 2008.
    [68]O. Ergul and L. Gurel, "Iterative solutions of hybrid integral equations for coexisting open and closed surfaces," IEEE Trans. Antennas Propag., vol.57, no.6, pp.1751-1758, Jun.2009.
    [69]Z. Nie, W. Ma, Y. Ren, Y. Zhao, J. Hu, and Z. Zhao, "A wideband electromagnetic scattering analysis using MLFMA with higher order hierarchical vector basis functions." IEEE Trans. Antennas Propag., vol.57, no.10, pp.3169-3178, Oct.2009.
    [70]M. S. Tong and W. C. Chew, "Multilevel fast multipole acceleration in the Nystrom discretization of surface electromagnetic integral equations for composite objects," IEEE Trans. Antennas Propag., vol.58, no.10, pp.3411-3416, Oct.2010.
    [71]Y.-S. Xu and K. Wang, "Discretized boundary equation method for two-dimensional scattering problems," IEEE Trans. Antennas Propag., vol.55, no.12, pp.3550-3564, Dec.2007.
    [72]K. Wang and Y.-S. Xu, "Application of asymptotic waveform evaluation technique in the on-surface discretized boundary equation method," Microw. Opt. Technol. Lett, vol.51, no.1, pp.67-70, Jan.2009.
    [73]J. Gong and J. L. Volakis, "AWE implementation for electromagnetic FEM analysis," Electron Lett, vol.32, no.24, pp.2216-2217, Nov.1996.
    [74]E. Chiprout and M. S. Nakhla, "Analysis of interconnect networks using complex frequency hopping (CFH)," IEEE Trans. Computer-Aided Design, vol.14, no.2, pp.186-200, Feb.1995.
    [1]A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics. New York:IEEE Press,1998.
    [2]R. F. Harrington, Field Computation by Moment Methods. New York:IEEE Press,1993.
    [3]D. R. Wilton and J. E. Wheeler III, "Comparison of convergence rates of the conjugate gradient method applied to various integral equation formulations.' Progress in Electromagn. Res., vol.5, pp.131-158,1991.
    [4]V. Rokhlin. "Rapid solution of integral equations of scattering theory in two dimensions,"J.Comput. Phys., vol.86, no.2, pp.414-439, Feb.1990.
    '[5] W. C. Chew. J.-M. Jin, E. Michielssen. and.J. Song, Fast and Efficient Algorithms in Computational Electromagnetics. Artech House,2001.
    [6]W. B. Lu, T. J. Cui, and H. Zhao, "Acceleration of fast multipole method for large-scale periodic structures with finite sizes using sub-entire-domain basis functions," IEEE Trans. Antennas Propag., vol.55, no.2, pp.414-421, Feb. 2007.
    [7]W.-D. Li, W. Hong, and H.-X. Zhou, "An IE-ODDM-MLFMA scheme with DILU preconditioner for analysis of electromagnetic scattering from large complex objects," IEEE Trans. Antennas Propag., vol.56, no.5, pp.1368-1380, May 2008.
    [8]O. Ergul and L. Gurel, "Iterative solutions of hybrid integral equations for coexisting open and closed surfaces," IEEE Trans. Antennas Propag., vol.57, no.6, pp.1751-1758, Jun.2009.
    [9]Z. Nie, W. Ma, Y. Ren, Y. Zhao, J. Hu, and Z. Zhao, "A wideband electromagnetic scattering analysis using MLFMA with higher order hierarchical vector basis functions," IEEE Trans. Antennas Propag., vol.57, no.10, pp.3169-3178, Oct.2009.
    [10]M. S. Tong and W. C. Chew, "Multilevel fast multipole acceleration in the Nystrom discretization of surface electromagnetic integral equations for composite objects," IEEE Trans, Antennas Propag., vol.58, no.10, pp.3411-3416, Oct.2010.
    [11]J. M. Rius, R. Pous, and A. Cardama, "Integral formulation of the measured equation of invariance:A novel sparse matrix boundary element method," IEEE Trans. Magn., vol.32, no.3, pp.962-967, May 1996.
    [12]J. M. Rius, J. Parron, E. Ubeda, and J. R. Mosig, "Integral equation MEI applied to three-dimensional arbitrary surface," Electron. Lett., vol.33, no.24, pp.2029-2031, Nov.1997.
    [13]Y.-S. Xu and K. Wang, "Discretized boundary equation method for two-dimensional scattering problems," IEEE Trans. Antennas Propag., vol.55, no.12, pp.3550-3564, Dec.2007.
    [14]G. Wang, Y. Wei, and S. Qiao, Generalized Inverses; Theory and Computations. Beijing:Science Press,2004.
    [15]Z. Lou, M.-Y. Gu, and Y.-S. Xu. "Measured equation of invariance with non-uniformly distributed line sources as metrons," IEE Proc.-Microwave Antennas Propagat., vol.152, no.3. pp.183-188,June 2005.
    [16]K. Wang and Y.-S. Xu, "Application of asymptotic waveform evaluation technique in the on-surface discretized boundary equation method," Microw. Opt. Technol. Lett, vol.51, no.1, pp.67-70, Jan.2009.
    [17]J. Gong and J. L. Volakis, "AWE implementation for electromagnetic FEM analysis," Electron Lett., vol.32, no.24, pp.2216-2217, Nov.1996.
    [18]E. Chiprout and M. S. Nakhla, "Analysis of interconnect networks using complex frequency hopping (CFH)," IEEE Trans. Computer-Aided Design, vol.14, no.2, pp.186-200, Feb.1995.
    [19]Y.-S. Xu, F.-S. Tang, K. Wang, and K.-H. Song, "Effects of higher order analytical evaluation of integrals on the accuracy of the on-surface discretized boundary equation method for two-dimensional scattering problems," Int. Conf. Microw. Technol. Compul. Electromagn., Beijing, China, Nov.2009.
    [20]M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York:Dover Publications, 1972.
    [21]N. Morita, N. Kumagai, and J. R. Mautz, Integral Equation Methods for Electromagnetics. Artech House,1990.
    [22]Y.-S. Xu and K. Wang, "Moment method solution of the EFIE for TE-wave scattering by conducting cylinders using basis and testing functions lacking in sufficient degrees of differentiability," 3rd IEEE Int. Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Beijing, China, Oct.2009.
    [23]D. Sundararajan, The Discrete Fourier Transform:Theory, Algorithm and Applications. World Scientific Publishing Company,2001.
    [24]C. M., Rader, "Discrete Fourier Transforms when the number of data samples is prime," Proceedings of the IEEE, vol.56, Issue 6, pp.1107-1108, Jun,1968.
    [25]I. Bogaert, D. Pissoort, and F. Olyslager, "A normalized plane-wave method for 2D Helmholtz problems," Microw. Opt. Technol. Lett., vol.48, no.2, pp.237-243, Feb.2006.
    [26]J. M. Taboada, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,"'Progress in Electromagn. Res., vol.105. pp.15-30.2010.
    [27]T. E. Michels, "The backward recurrence method for computing the regular Bessel function," NASA Technical Note. D-2141. National Aeronautics and Space Administration,1964.
    [1]Y.-S. Xu and K. Wang, "Discretized boundary equation method for two-dimensional scattering problems," IEEE Trans. Antennas Propag., vol.55, no.12, pp.3550-3564. Dec.2007.
    [2]R. F. Harrington, Field Compulation by Moment Methods. New York:IEEE Press.1993.
    [3]A. F. Peterson. S. L. Ray. and R. Mittra. Computational Methods for Electromagnetics. New York:IEEE Press.1998.
    [4]K. Wang and Y.-S. Xu. "Application of asymptotic waveform evaluation technique in the on-surface discretized boundary equation method," Microw. Opt. Technol. Lett., vol.51, no.1, pp.67-70, Jan.2009.
    [5]J. Gong and J. L. Volakis, "AWE implementation for electromagnetic FEM analysis," Electron Lett., vol.32, no.24, pp.2216-2217, Nov.1996.
    [6]E. Chiprout and M. S. Nakhla. "Analysis of interconnect networks using complex frequency hopping (CFH)," IEEE Trans. Computer-Aided Design, vol.14, no.2, pp.186-200, Feb.1995.
    [7]F.-S. Tang and Y.-S. Xu, "Iterative on-surface discretized boundary equation method for two-dimensional scattering problems," IEEE Trans. Antennas Propag., 已录用.
    [8]V. Rokhlin, "Rapid solution of integral equations of scattering theory in two dimensions," J. Comput. Phys., vol.86, no.2, pp.414-439, Feb.1990.
    [9]W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics. Artech House,2001.
    [10]W. B. Lu, T. J. Cui, and H. Zhao, "Acceleration of fast multipole method for large-scale periodic structures with finite sizes using sub-entire-domain basis functions," IEEE Trans. Antennas Propag., vol.55, no.2, pp.414-421, Feb. 2007.
    [11]W.-D. Li, W. Hong, and H.-X. Zhou, "An IE-ODDM-MLFMA scheme with DILU preconditioner for analysis of electromagnetic scattering from large complex objects," IEEE Trans. Antennas Propag., vol.56, no.5, pp.1368-1380, May 2008.
    [12]O. Ergul and L. Gurel, "Iterative solutions of hybrid integral equations for coexisting open and closed surfaces," IEEE Trans. Antennas Propag., vol.57, no.6, pp.1751-1758, Jun.2009.
    [13]Z. Nie, W. Ma, Y. Ren, Y. Zhao, J. Hu, and Z. Zhao, "A wideband electromagnetic scattering analysis using MLFMA with higher order hierarchical vector basis functions," IEEE Trans. Antennas Propag., vol.57, no.10, pp.3169-3178, Oct.2009.
    [14]M. S. Tong and W. C. Chew, "Multilevel fast multipole acceleration in the Nystrom discretization of surface electromagnetic integral equations for composite objects," IEEE Trans. Antennas Propag., vol.58, no.10. pp.3411-3416. Oct.2010.
    [15]Z. Lou, M.-Y. Gu, and Y.-S. Xu, "Measured equation of invariance with non-uniformly distributed line sources as metrons," 1EE Proc.-Microwave Antennas Propagat., vol.152, no.3, pp.183-188, June 2005.
    [16]Y.-S. Xu, F.-S. Tang, K. Wang, and K.-H. Song, "Effects of higher order analytical evaluation of integrals on the accuracy of the on-surface discretized boundary equation method for two-dimensional scattering problems," Int. Conf Microw. Technol. Comput. Electromagn., Beijing, China, Nov.2009.
    [17]D. R. Wilton and J. E. Wheeler Ill, "Comparison of convergence rates of the conjugate gradient method applied to various integral equation formulations," Progress in Electromagn. Res., vol.5, pp.131-158,1991.
    [1]Y.-S. Xu and K. Wang, "Discretized boundary equation method for two-dimensional scattering problems," IEEE Trans. Antennas Propag., vol.55, no.12, pp.3550-3564, Dec.2007.
    [2]R. F. Harrington, Field Computation by Moment Methods. New York:IEEE Press,1993.
    [3]J. Gong and J. L. Volakis, "AWE implementation for electromagnetic FEM analysis," Electron Lett., vol.32, no.24, pp.2216-2217, Nov.1996.
    [4]E. Chiprout and M. S. Nakhla, "Analysis of interconnect networks using complex frequency hopping (CFH)," IEEE Trans. Computer-Aided Design, vol.14, no.2, pp.186-200, Feb.1995.
    [5]J.-P. Zhang and J.-M. Jin, "Preliminary study of AWE method for FEM analysis of scattering problems," Microw. Opt. Technol. Lett., vol 17, no 1, pp.7-12, Jan.1998.
    [6]K. Wang and Y.-S. Xu, "Application of asymptotic waveform evaluation technique in the on-surface discretized boundary equation method," Microw. Opt. Technol. Lett., vol.51, no.1, pp.67-70, Jan.2009.
    [7]V. Rokhlin, "Rapid solution of integral equations of scattering theory in two dimensions," J. Comput. Phys., vol.86, no.2, pp.414-439, Feb.1990.
    [8]W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics. Boston:Artech House,2001.
    [9]M. S. Tong and W. C. Chew. "Multilevel Fast Multipole Acceleration in the Nystrom Discretization of Surface Electromagnetic Integral Equations for Composite Objects." IEEE Trans. Antennas Propag., vol.58. no.10. pp.3411-3416. Oct.2010.
    [10]Y. E. Erdemli, J. Gong, C. J. Reddy. and J. L. Volakis, "Fast RCS pattern fill using AWE technique," IEEE Trans. Antennas Propag,. vol.46, no.11, pp.1752-1753, Nov.1998.
    [11]K. Wang, Y.-S. Xu and F.-S. Tang, "On-surface discretized boundary equation method based on field expressions in terms of magnetic currents." 3rd IEEE Int. Symposium on Microwave. Antenna, Propagation and EMC Technologies for Wireless Communications, Oct.2009.
    [12]Z. Lou, M.-Y. Gu, and Y.-S. Xu, "Measured equation of invariance with non-uniformly distributed line sources as metrons," IEE Proc.-Microwave Antennas Propagat., vol.152, no.3, pp.183-188, June 2005.
    [13]Y.-S. Xu, F.-S. Tang, K. Wang, and K.-H. Song, "Effects of higher order analytical evaluation of integrals on the accuracy of the on-surface discretized boundary equation method for two-dimensional scattering problems." Int. Conf. Microw. Technol Comput. Electromagn., Beijing, China, Nov.2009.
    [1]王侃,离散化边界方程法及其应用,中国科学技术大学博士学位论文,中国安徽合肥,2007年。
    [2]N. Morita, N. Kumagai, and J. R. Mautz, Integral Equation Methods for Electromagnetics. Artech House,1990.
    [3]R. F. Harrington, Field Computation by Moment Methods. New York:IEEE Press,1993.
    [4]V. Rokhlin, "Rapid solution of integral equations of classical potential theory,' J. Comput. Phys., vol.60, pp.187-207,1983.
    [5]L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations,' J. Comput. Phys., vol.73, pp.325-348, Dec.1987.
    [6]L. Greengard and V. Rokhlin, "The rapid evaluation of potential fields in three dimensions. in Vortex Methods." Lecture Notes in Mathematics 1360. pp.121-141, Springer-Verlag,1988.
    [7]L. Greengard and V. Rokhlin. "A new version of the fast multipole method for the Laplace equation in three dimensions." Research Report 1115, Yale University, Sep.1996.
    [8]T. Hrycak and V. Rokhlin, "An improved fast multipole algorithm for potential fields," SIAMJ. Sci. Comput., vol.19, no.6, pp.1804-1826, Nov.1998.
    [9]W. C. Chew, S. Koc, J. M. Song, C. C. Lu, and E. Michielssen, "A succinct way to diagonalize the translation matrix in three dimensions." Microw. Opt. Technol. Lett., vol.15, no.3. pp.144-147, Jun.1997.
    [10]W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics. Artech House,2001.
    [1]S. M. Rao, "Electromagnetic scattering and radiation of arbitrarily-shaped surfaces by triangular patch modeling," Ph.D. dissertation, University of Mississippi,1980.
    [2]A. W. Glisson, "On the development of numerical techniques for treating arbitrarily-shaped surfaces," Ph.D. dissertation, University of Mississippi, 1978.
    [3]S. M. Rao. D. R. Wilton, and A. W. Glisson, "Electromagnetic Scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propug.. vol.30, no.3, pp.409-418. May 1982.
    [4]D. R. Wilton. S. M. Rao, and A. W. Glisson. "Electromagnetic Scattering by surfaces of arbitrary shape," Interaction Notes, Note 388, Sep.1979.
    [5]A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics. New York:IEEE Press,1998.
    [6]R. F. Harrington, Field Computation by Moment Methods. New York:IEEE Press,1993.
    [7]N. Engheta, W. D. Murphy, V. Rokhlin. and M. S. Vassilious, "The fast multipole method (FMA) for electromagnetic scattering problems," IEEE Trans. Antennas Propag., vol.40, no.6, pp.634-641, June 1992.
    [8]R. Coifman, V. Rokhlin, and S. Wandzra, "The fast multipole method for the wave equation:A pedestrian prescription," IEEE Antennas Propag. Mag., vol.35, no.3, pp.7-12, June 1993.
    [9]R. L. Wagner and W. C. Chew, "A ray-propagation fast multipole algorithm," Microw. Opt. Technol. Lett, vol.7, no.10, pp.435-438,1994.
    [10]W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics. Artech House,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700