风沙流中近地表沙粒运动的实验以及理论预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发生存沙床表面上的风沙运动包括:沙粒的启动、粒-床碰撞的击溅过程等,这些均涉及到沙粒与风场等复杂环境条件下的相互作用,其中沙粒的临界启动风速、沙粒起跳速度分布、冲击速度分布关系到风沙流以及更大尺度风沙运动的发生、发展,并且也是风沙运动数值模拟以及沙尘天气数值预报中的关键输入参数。本论文针对沙粒的临界启动风速、风沙流中跃移沙粒的运动特性以及粒-床碰撞后的击溅过程展开研究,主要工作如下:
     1.针对以往风洞PIV实验的不足,通过改变实验中光路排布,提出一种测量近地表沙粒的新实验方法,并考虑沙床的起伏,实时更新床面信息,有效降低了风洞实验的测量高度,定量分析了测量高度对实验测量结果的影响。
     2.基于上述改进的风洞PIV实验,利用PTV算法分析了沙粒起跃速度、冲击速度、起跳角度和冲击角度随粒径和摩阻风速的变化,并给出了其概率分布函数;首次给出了风沙流中近地表沙粒之间距离的概率分布形式,最终给出了沙粒之间距离与摩阻风速的函数关系。
     3.利用离散单元法(DEM)深入研究了风沙流中沙粒同时冲击床面的粒-床碰撞过程,结果显示空中跃移沙粒的间距是影响跃移沙粒的击溅过程的一个重要因素,而且存风沙流中存在一个临界间距,当跃移沙粒间距小于这一临界间距时需要考虑沙粒同时冲击,反之则不需要考虑。并给出了临界冲击距离与冲击速度之间的关系以及同时冲击床面的击溅函数表征。
     4.建立了临界启动风速的随机模型,推导出含有随机变量(偏心距、偏心角、支持角以及接触角)的临界启动风速的解析表达式。临界启动风速的概率分布取决于偏心距、偏心角、支持角以及接触角概率密度,利用多维随机变量分析方法给出了临界启动风速的概率密度函数以及均值和方差与粒径的关系,其与实验结果吻合较好,充分说明了沙粒不规则形状以及起伏地表对沙粒包裹的随机性是不可忽视的。
     5.将临界启动风速预测引入到风沙流模拟的启动过程中,将跃移沙粒间距影响引入到风沙流模拟的击溅过程,实现了对风沙流演化过程的预测。给山了两种击溅函数下的单宽输沙率随摩阻风速的变化曲线,指出当摩阻风速小于0.4m/s时,两种击溅函数得到的单宽输沙率相对误差小于5%,间距离对输沙率的影响可以忽略不计;当摩阻风速大于0.4m/s时,两种击溅函数得到的单宽输沙率相对误差随摩阻风速的增大逐渐增大,最大值为33%。
The movements of particles in wind-blown sand, such as the initiation and the saltation of sand grains, are related to the interactions between sand grains and complex wind environment. The threshold friction velocity of sand particle motion, the distributions of impact velocity and lift-off velocity are crucial for the occurrence and development of the wind-blown sand, as well as the larger-scale sand movements. And, they also are the key input for sand movement numerical simulation and dust weather numerical forecast. So, this thesis focuses on the threshold friction velocity, the movement characteristics of saltation of sand in the wind-blown sand and the splash process of grain-bed collision. The main works are concluded as follows:
     1. In comparison to previous wind tunnel PIV experiments, we presented a new experimental design by changing the way of the laser sheet casting; and updated the information of sand-bed in time during data process responding to the variation of the sand-bed surface. The improved method effectively reduces the measuring height of wind tunnel experiments, and the effect of height on the measurement information was quantitatively analyzed.
     2. Based on the above the improved experimental method, we analyzed the impact velocity, lift-off velocity, impact angle and lift-off angle of saltating sand particles, and obtained the probability distribution functions of these quantities. We firstly obtained the probability distribution form of the distance between sand particles in wind-blown sand, and the relationship between the distance and friction wind velocity.
     3. Numerical simulation of the grain-bed collision process of particles impacting the sand-bed at the same time was conducted by the discrete element method (DEM). The results illustrate that the distance between sand particles is a key parameter, there exits a critical distance. When the distance is smaller than the critical distance, it is need to consider the sand particles impact sand-bed at same time. On the contrary there is no need to consider. We obtained the function of the critical distance and impact velocity and the splash function of multi-particles impacting the sand-bed simultaneously.
     4. We established the stochastic model of threshold friction velocity, and derived an analytical expression of the threshold friction velocity with random variables (the eccentricity, the eccentricity angle, support angle and contact angle). Based on the probability theory of multi-dimension random variable, the probability distribution of the threshold friction velocity, its mean value and standard deviation are calculated. The mean and standard deviation are fitted as functions of sand particle's diameter. So we can't ignore the effect of the microstructure of soil surface and the irregularity of particle shape.
     5. We introduced the threshold wind velocity prediction into stratup process and introduced the effect of distance into the splash process, and then we can predict the evolution of windblown sand flux. We obtained the sand transport rate varying with friction wind velocity under two kinds of splash function. It shows that when the friction wind velocity is smaller than0.4m/s, the relative error of sand transport rate between two kinds of splash functions is smaller than5%; when the friction wind velocity is larger than0.4m/s, the relative error increases and can be up to about33%.
引文
1. Almeida, M.P., Parteli, E.J.R., Andrade, J.S., and Herrmann, H.J.,2008, Giant saltation on Mars, Proc. Natl. Acad. Sci., USA 105:6222-6226.
    2. Ammi, M., Oger, L., Bleadjine, D., and Alexandre, V.,2009, Three-dimensional analysis of the collision process of a bead on a granular packing, Physical Review E 79,021305 (9).
    3. Andreotti, B.,2004, A two-species model of aeolian sand transport, Journal of Fluid Mechanics,510:47-70.
    4. Anderson, R.S., and Hallet, B.,1986, Sediment transport by wind:toward a general model, Bulletin of Geological Society of America,97:523-535.
    5. Anderson, R.S., and Haff, P.K.,1988, Simulation of eolian saltation, Science,241:820-823.
    6. Anderson, R.S.,1989, Saltation of sand:a qualitative review with biological analog, Proceedings of Royal Society of Edinburgh,96B:149-165.
    7. Anderson, R.S.,1990, Eolian ripples as examples of self-organization in geomorphological systems, Earth-science reviews,29:77-96.
    8. Anderson, R.S., and Haff, P.K.,1991, Wind modification and bed response during saltation of sand in air, Acta Mechanica, [Suppl] 1:21-51.
    9. Bagnold, R.A.,1941, The Physics of blown sands and desert duns, London:Mathuen & Co. Ltd.
    10. Baek, S.J., and Lee, S.J.,1996, A new two-frame particle tracking algorithm using match probability, Experiments in Fluid,22:23-32.
    11. Belly, P.Y.,1964, Sand movement by wind, Tech. Rep.1. US Army Coastal Engineering Research Center, Washington, DC.
    12. Chepil, W.S.,1945, Dynamics of wind erosion. I. Nature of movement of soil by wind, Soil Science,60:305-320.
    13. Chepil, W.S.,1956, Influence of moisture on erodibility of soil by wind, Soil Science Society of America,20:288-292.
    14. Chepil, W.S.,1958, The use of evenly spaced hemispheres to evaluate aerodynamic forces on a soil surface, Transactions American Geophysical Union,39:397-403.
    15. Chepil, W.S.,1959, Equilibrium of soil grains at the threshold of movement by wind, Proceedings of the Soil Science Society of America,23:422-428.
    16. Chepil, W.S.,1961, The use of spheres to measure lift and drag on wind-eroded soil by wind, Proceedings of the Soil Science Society of America,25:343-345.
    17. Chepil, W.S.,1963, The physics of wind erosion and its control, Adren, in Agron.,15:3-11.
    18. Cheng, H., Zou, X.Y., Zhang, C.L., et al.,2009, Fall velocities of saltating sand grains in air and their distribution laws, Powder Technology,192:99-104.
    19. Cheng, H., Zou, X.Y., Zhang, C.L.,2006, Probability distribution functions for the initial liftoff velocities of saltating sand grains in air, Journal of Geophysical Research,111 D22205.
    20. Cornelis, W.M., and Gabriels, D.,2003, The effect of surface moisture on the entrainment of dune sand by wind:an evaluation of selected models, Sedimentology,50:771-79.
    21. Cundall, P.A., and Strack, O.D.L.,1979, A discrete numerical model for granular assemblies, Geotechnique,29:47-65.
    22. Dong, Z.B., Wang, H.T., Liu, X.P. et al.,2002a, Velocity profile of a sand cloud blowing over a gravel surface, Geomorphology,45:277-289
    23. Dong, Z.B., Liu, X.P, Li F., Wang, H.T., and Zhao, A.G.,2002b, Impact-entrainment relationship in a saltating cloud, Earth surface processes and landforms,27:641-658.
    24. Dong, Z.B., Wang, H.T., Liu, X.P., et al.,2004, Experimental investigation of the velocity of a sand cloud blowing over a sandy surface, Earth surface processes and landforms,29:343-358.
    25. Doorschot, J.J.J., and Lehning, M.,2002, Equilibrium saltation:Mass fluxs, aerodynamic entrainment, and dependence on grain properties, Boundary-layer meteorology,104:111-130.
    26. Duan, S.Z., Cheng, N., Xie, L.,2013a, A new statistical model for threshold friction velocity of sand particle motion, CATENA 104,32-38.
    27. Duan, S.Z., Zhu, W., Zheng, X.J.,2013b, Numerical investigation on two-grain-bed collisions in windblown sand transport. Powder Technology 235,431-436.
    28. Fecan, F., Marticoren, B., and Bergametti, G.,1999, Parametrization of the increase of the Aeolian erosion threshold wind friction velocity due to soil moisture for arid and semiarid areas, Annales Geophysicae,17:149-157.
    29. Fletcher, B.,1976, The incipient motion of granular materials, Journal of Physics D (Applied Physics),9:2471-2478.
    30. Francois, R., Alexandre, V., and Daniel, B.,2000, Experimental study of the collision process of a grain on a two-dimensional granular bed, Physical Review E,62(2):2450-2459.
    31. Greeley, R., Williams, S.H., and Marshall, J.R.,1983, Velocities of windblown particles in saltation:preliminary laboratory and field measurements[C]//Brookfield M E, Ahbrandt T S, Eds. Eolian Sediments and Processes. Amesterdam:Elsevier,133-148.
    32. Greeley, R., Iversen, J.D.,1985, Wind as a geological process:On Earth, Mars, Venus, and Titan, Cambridge University Press.
    33. Greeley, R., Blumberg, D.G., and Williams, S.H.,1996, Field measurements of the flux and speed of wind-blown sand, Sedimentology,43(1),41-52, doi:10.1111/j.1365-3091.1996.tb01458.x.
    34. Gregory, J.M., and Darwish, M.M.,1990, Threshold Friction Velocity Prediction Considering Water Content, American Society of Agricultural Engineering.
    35. Greeley, R.G., Blumberg, D.G., and Williams, S.H.,1996, Field measurements of the flux and speed of wind-blown sand, Sedimentology,43:41-52.
    36. Gillette, D.A., and Stockton, P.H.,1986, Mass momentum and kinetic energy fluxes of saltating particles, Acta Mechanica,62:35-56.
    37. Gillette, D.A., Blifford, I.H., and Fryrear, D.W.,1974, The influence of wind velocity on the size distributions of aerosols generated by the wind erosion of soil, Journal of Geophysical Research,79:4068-4075.
    38. Hayakawa, H., Nishimori, H., Sasa, S., and Taguchi, Y.-H.,1995, Dynamics of granular matter, Japanese Journal of Applied Physics,34:397-408.
    39. Haff, P.K., Anderson, R.S.,1993, Grain scale simulations of loose sedimentary beds the example of grain-bed impact in aeolian saltation, Sedimentology,40:175-198.
    40. Herrman, H.,1997, Grains of understanding, Physics world,11:31-34.
    41. He, Q.S., Zheng, X.J., and Zhou, Y.He., Scattering and Attenuation of Electromagnetic Waves by Charged Sands in Sand Storm, Key engineering materials,243-244:577-582.
    42. Hotta, S., Kubota, S., and Katori, S.,1984, Sand transport by wind on wet sand surface, Proceedings of the 19th Coastal Engineering Conference,1263-1281.
    43. Hu, W.W., Xie, L., and Zheng, X.J.,2012a, Contract charging of silica glass particles in a single collision, Applied Physics Letters,101:114107.
    44. Hu, W.W., Xie, L., and Zheng, X.J.,2012b, Simulation of the electrification of wind-blown sand, European Physical Journal E,35:22, doi 10.1140/epje/i2012-12022-1.
    45. Huang, N., and Zheng, X.J.,2003, Theoretical simulation of developing process of wind-blown sand movement, Key engineering materials,243-244.
    46. Iversen, J.D., and White, B.R.,1982, Saltation threshold on Earth, Mars and Venus, Sedimentology,29:111-119.
    47. Jaeger, H.M., and Nagel, S.R.,1992, Physics of the granular state, Science,20:1523-1531.
    48. Jednsen, J.L., and S(?)rensen, M.,1986, Estimation of some Aeolian saltation transport parameters:a re-analysis of Williams, Sedimentology,33:547-558.
    49. Kang, L.Q., Guo, L.J., Gu, Z.M., and Liu, D.Y.,2008, Wind tunnel experimental investigation of sand velocity in aeolian sand transport, Geomorphology,97:438-450.
    50. Kadanoff, L.P.,1999, Built upon sand:Theoretical ideas inspired by granular flows, Reviews of modern physics,71:435-444.
    51. Kok, J.F., and Renno, N.O.,2006, Enhancement of the emission of mineral dust aerosols by electric forces, Geophysical Research Letters,33, doi:10.1029/2006GL0262 84.
    52. Kok, J.F., and Renno, N.O.,2009, A comprehensive numerical model of steady state saltation (COMSALT), Journal of Geophysical Research,114, D17204. doi:10.1029/2009JD011702.
    53. Landry, W.L., and Werner, B.T.,1994, Computer simulations of self-organized wind ripple patterns, Physica D,77:238-260.
    54. Lammel, M.L., Rings, D., Kroy, K.,2012, A two-species continuum model for aeolian sand transport, New Journal of Physics,14,093037.
    55. Li, L., and Martz, L.W.,1995, Aerodynamic dislodgement of multiple-size sand grains over time, Sedimentology,42:683-694.
    56. Livingstone, I., and Warren, A.,1996, Aeolian Geomorphology:An Introduction, Addison Wesley Lonman Limited, London,211.
    57. Liu C.H., and Nagel, S.R.,1993, Sound in a granular material:Disorder and nonlinearity, Physica] Review B,48:15646-15650.
    58. Ling, Y.Q., Wu, Z.,1980, Experiment on the dynamic photography of the movement of sand-driving wind, Acta Geographic Sinica,35(2),174-181.
    59. Lv, X.H., Huang, N., Tong, D.,2012, Wind tunnel experiments on natural snow Drift, Science China (Series E),55(4),927-938.
    60. Ma, G.S., and Zheng, X.J.,2011, The fluctuation property of blown sand particles and the wind-sand flow evolution studied by numerical method, The European Physical Journal E,34, Number 5,54.
    61. Marian, M., Surajit, S., and Hurd, A.J.,1999, The propagation and backscattering of soliton-like pulses in a chain of quartz beds and related problems (Ⅰ), Propagation, Physica A, 274:588-606.
    62. McDonald, R.R., and Anderson, R.S.,1995, Experimental verification of Aeolian saltation and lee side deposition models, Sedimentology,43:39-56.
    63. McEwan, I.K., Jefcoate, B.J., and Willetts, B.B.,1999, The grain-fluid interaction as a self-stabilizing mechanism in fluvial bed transport, Sedimentology,46:407-416.
    64. McEwan, I.K., and Willetts, B.B.,1993, Sand transport by wind:a review of the current conceptual model, Geological society special publication No.72:7-16.
    65. McEwan, I.K., and Willetts, B.B.,1993, Adaptation of the near-surface wind to the development of sand transport, Journal Fluid Mechanics,252:99-115.
    66. Mckenna-Neumann, C., and Nickling, W.G.,1989, A theoretical and wind tunnel investigation of the effect of capillary water on entrainment of sediment by wind, Canadian Journal of Soil Science,69:79-96.
    67. MeElwaine, J.N., Maeno, N., and Sugiura, K.,2003, The splash function for snow from wind-tunnel. International symposium on snow and avalanches, Davos, Switzerland,2-6, June.
    68. Mitha, S., Tran, M.Q., Werner, B.T., and Haff, P.K.,1986, The grain-bed impact in Aeolian saltation, Acta Mechanica,62:268-278.
    69. Mouzai, L., and Bouhadef, M.,2003, Water drop erosivity:Effect on soil splash, Journal of Hydraulic Research,41:61-68.
    70. Nalpanis, P., Hunt, J.C.R., and Barrett, C.F.,1993, Saltating particles over flat beds, Journal of Fluid Mechanics,251:661-685.
    71. Namikas, S.L.,2003, Field measurement and numerical modeling of Aeolian mass flux distributions on a sandy beach, Sedimentology,50(2),303-326.
    72. Owen, P.R.,1964, Saltation of uniform grains in air, Journal Fluid Mechanics,20:225-242.
    73. Pahtz, T., Kok, J.F., and Herrmann, H.J.,2012, The apparent roughness of a sand surface blown by wind from an analytical model of saltation, New Journal of Physics,14,043035.
    74. Phillips, M.,1980, A force balance model for particles entrainment into a fluid stream, Journal of Physics D,13:221-233.
    75. Rice, M.A., Willetts, B.B., and McEwan, I.K.,1996, Observations of collisions of saltating grains with a granular bed from high-speed cine-film, Sedimentology,43:21-31.
    76. Rice, M.A., Willetts, B.B. and McEwan, I.K.,1995, An experimental study of multiple grain-size ejecta produced by collisions of saltating grain with a flat bed, Sedimentology, 42:695-706.
    77. Rumpel, D.A.,1985, Successive Aeolian saltation:studies of idealized collisions, Sedimentology,32:267-280.
    78. Scott, W.D., Hopwood, J.M., and Summers, K.J.,1995, A mathematical model of suspension with saltation, Acta Mechanica,108:1-22.
    79. Schmidt, D.S., and Schmidt, R.A.,1998, Electrostatic force on saltating sand, Journal of Geophysical Research,103:8997-9001.
    80. Shao, Y., and Raupach M.R.,1992, The Overshoot and Equilibration of Saltation, Journal of Geophysical Research, Vil.97,20,559-20,564.
    81. Shao, Y., and Li, A.,1999, Numerical modeling of saltation in the atmospheric surface layer, Boundary-Layer Meteorology,91:199-225.
    82. Shao, Y.P.,2000, Physics and modeling of wind erosion, Boston:Kluwer Academic Publishers.
    83. Shao, Y.P., and Lu, H.,2000, A simple expression for wind erosion threshold friction velocity, Journal of Geophysical Research,105:437-443.
    84. Stitou, A., Riethmuller, M.L.,2002, Progress in PIV-PTV methods:application to concentration measurements,11th International Symposia on Applications of Laser Techniques to Fluid Mechanics, Springer Verlag, Lisbon.
    85. Shao, Y., and Raupach, M.R.,1992, The overshot and equilibration of saltation, Journal of Geophysical Research, D18:20559-20564.
    86. Shao Y., Raupach, M.R., and Leys, J.F.,1996, A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region, Australian Journal of Soil Research, 34:309-342.
    87. S(?)rensen, M., and McEwan,I. K.,1996, On the effect of mid-air collisions on Aeolian saltation, Sedimentology,43:65-76.
    88. Surajit, S., and Marian, M.,2001, Solitary wave dynamics in generalized Hertz chains:An improved solution of equation of motion, Physical Review E,64:(056605) 1-4.
    89. Spies, P.J., McEwan, I.K., and Butterfield, G.R.,1995, On wind velocity profile measurements taken in wind tunnels with saltating grains, Sedimentology,42:515-521.
    90. Stout, J.E., and Zobeck, T.M.,1997, Intermittent saltation, Sedimentology,44:959-970.
    91. Stam, J.M.T.,1996, Migration and growth of Aeolian bed-forms, Mathematic geology, 28:519-536.
    92. Stam, J.M.T.,1997, On the modeling of two-dimensional Aeolian duns, Sedimentology, 44:127-141.
    93. Stebbing, E.P.,1935. The encroaching Sahara:the threat to the West Africa colonies on saltation, Earth Surface Processes and Landforms,23:877-887.
    94. Tsuchiya, Y., Kawata, Y.,1972, Characteristic models of particle trajectories in turbulent, International Coastal Engineering Conference,1617-1625.
    95. Tsuchiya, Y.,1970. Successive saltation of a sand by the wind, Proceedings of the 12th Conference on Coastal Engineering. American Society of Civil Engineering 3,1417-1427.
    96. Ungar, J.E., and Haff, P.K.,1987, Steady state saltation in air, Sedimentology,34:289-299.
    97. White, B.R., and Schulz, J.C.,1977, Magnus effect in saltation, Journal Fluid Mechanics,81: 497-512.
    98. Willetts, B.B., and Rice, M.A.,1986a, Collision in Aeolian saltation, Acta Mechanica, 63:255-265.
    99. Willetts, B.B., and Rice, M.A.,1986, Collision in Aeolian transport:the satation/creep link. In: Nickling, W.G. (ed):Aeolian Geomorphology, Boston:Allen and Unwin,1-16.
    100. Willetts, B.B., and Rice, M.A.,1989, Collisions of quartz grains with a sand bed:the influence incident angle, Earth surface processes and landforms,14:719-730.
    101. Werner, B.T.,1987, A physical model of wind-blown sand transport, Ph.D. thesis, California Institute of Technology, Pasadena.
    102. Wener, B.T.,1990, A steady-state model of wind-blown sand transport, Journal of Geology, 98:1-17.
    103. Werner, B.T., Haff, P.K., Livi, R.P., and Anderson, R.S.,1986, Measurement of eolian ripple cross-sectional shapes, Geology,14:743-745.
    104. Werner, B.T., and Haff, P.K.,1988, The impact process in eolian saltation:two dimensional studies, Sedimentology,35:189-196.
    105. Willetts, B.B., McEwan, I.K., and Rice, M.A.,1991, Initiation of motion of quartz sand grain, Acta Mechanica, [Suppl.] 1:123-134.
    106. Wang Z.T., Zheng X.J.,2004, Theoretical prediction of creep flux in Aeolian sand transport, Powder Technology,139:123-128.
    107. Wang Z.T.,2006, Influence of moisture on the entrainment of sand by wind, Powder Technology,164:89-93.
    108. White, B.R.,1982, Two-phase movement of saltating turbulent boundary layer flow, International Journal of Multiphase Flow,8:459-473.
    109. Werner, B.T., and Hallet, B.,1993, Numerical simulation of self-organized stone stripes, Nature,361:142-145.
    110. Xie, L., Li, X.C., and Zheng, X.J.,2010, Attenuation of an electromagnetic wave by charged dust particles in a sandstorm, Applied Optics (OSA), Vol.49, No.35,6756-6761.
    111. Xie, H., Koshizuka, S., and OKA, Y.,2004, Computational analysis of splash occurring in the deposition process in annular-mist flow, International congress on advances in nuclear power plants, June,13-17, Pittsburgh, USA
    112. Xie, L., Zheng, X.J., and Zhou, Y.H.,2003, A theoretical study of the distribution of the initial velocity of saltating sand particles by collision, Key engineering materials,243-244:613-618.
    113. Yang, P., Dong, Z.B., Qian, G.Q., et al.,2007, Height profile of the mean velocity of an Aeolian saltating cloud:wind tunnel measurement by Particle Image Velocimetry, Geomorphology,89:320-334.
    114. Zheng, X.J.,2009, Mechanics of wind-blown sand movements, Environmental Science and Engineering,1-17,181-207.
    115. Zheng, X.J., Huang, N., Zhou, Y.H.,2003, Laboratory measurement of electrification of wind-blown sands and simulation of its effects on sand saltation movement, Journal Geophysical Research,108(D10):4322.
    116. Zheng, X.J., Huang, N., Zhou, Y.H.,2006, The effect of elect of electrostatic force on the evolution of sand saltation cloud, The European Physical Journal E,19,129-138.
    117. Zheng, X.J.,2009, Mechanics of wind-blown sand movements, Springer, Berlin.
    118. Zheng, X.J., Bo, T.L., and Xie, L.,2008, DPTM simulation of aeolian sand ripple, Science in China Series G:Physics mechanics and astronomy,Volume 51, Number 3,328-336.
    119. Zou, X.Y., Wang, Z.L., et al.,2001, The distribution of velocity and energy of saltating sand grains in a wind tunnel, Geomorphology,36:55-165.
    120.Zhou, Y.H., He, Q.S., Zheng, X.J.,2004, Attenuation of electro-magnetic wave propagating in sand storms with consideration of charged sands, The European Physical Journal E, 17,181-187.
    121. Zhou, Y.H., Guo, X., Zheng, X.J.,2002, Experimental measurement of wind-sand flux and sand transport for naturally mixed sands, Physics Review E,66 021305.
    122. Zhou, Y.H., Li, W.Q., Zheng, X.J.,2006, Particle dynamics method simulations of stochastic collisions of sandy grain bed with mixed size in Aeolian sand saltation, Journal of Geophysical Research,111, D15108, doi:10.1029/2005JD006604.
    123. Zou, X.Y., Zhu, J.J.,1992, The distribution function of vertical lift-off velocity in an Aeolian saltating cloud, Chinese Science Bulletin,23:2175-2177.
    124. Zou, X.Y., Wang, Z.L., Hao, Q.Z., et al.,2001, The distribution of velocity and energy of saltating sand grains in a wind tunnel, Geomorphology,36:155-165.
    125. Zingg, A.W.,1949, A study of the movement of surface wind, Aqr. Eng.,30:11-13.
    126. Zingg, A.W.,1953, wind tunnel studies of the movement of sedimentary materials,In: Proceedings 5th Hydraulic Conference, Bull.24, University of Iowa city:111-135.
    127. Zhang, W., Kang, J.H., Lee, S.J.,2007, Visualization of saltating sand particle movement near a flat ground surface, Journal of Visualization 10:39-46.
    128. Zheng, X.J., He, L.H., and Wu, J.J.,2004a, The vertical profiles of mass flux for windblown sand movement at steady state, Journal of Geology Research,109:B01106, doi:10.1029/2003 JB002656.
    129. Zheng, X.J., He, L.H., Zhou, Y.H.,2004b, Theoretical model of the electric field produced by charged particles in windblown sand flux, Journal of Geophysical Research,109:D15208.
    130. Zhou, Y.H., He, Q.S., and Zheng, X.J.,2005, Attenuation of Electromagnetic Wave Propagation In Sandstorms Incorporating Charged Sand Particles, European Physical of Journal E,17,181-187.
    131. Zheng, X.J., Huang, N., Zhou, Y.H.,2003, Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement, Journal of Geophysical Research, D10, pp.4322.
    132. Zhou, Y.H., Li, W.Q., and Zheng, X.J.,2006, Particle dynamics method simulations of stochastic collisions of sandy grain bed with mixed size in Aeolian sand saltation, Journal Geophysical Ressearch 111, D15108.
    133. Zheng, X.J., Cheng, N., and Xie, L.,2008, A three-dimensional analysis on lift-off velocities of sand grains in wind-blown sand flux, Earth Surface Process and Landforms,33:1824-1838.
    134. Yue, GW., Huang, N., and Zheng, X.J.,2003,Effect of irregular sand grains and electrostatic force on threshold wind speed. Journal of Desert Research 23,621-627 (in Chinese).
    135.嘉澍,2006,国际防治荒漠化年,上海集邮,9:7-8.
    136.国家林业局,2011,中国荒漠化和沙化状况.
    137.高庆先,任陈海.2002,沙尘暴——自然对人类的报复,化学工业出版社.
    138.郑晓静,李兴财,谢莉,2011,沙尘暴中球形沙粒局部带电对电磁波的交叉去极化效应,中国沙漠,第31卷第3期.
    139.凌裕泉,吴正,1980,风沙运动的动态摄影实验,地理学报,35:174-181.
    140.刘贤万,1995,实验风沙物理与风沙工程学,科学出版社.
    141.董志宝,罗万银,钱广强,王洪涛,2010,几种常用风沙颗粒测速方法对比,中国沙漠,Vo1.30,No.4.
    142.钱广强,董志宝,王洪涛,等,2006,粒子图像测速(PIV)技术在风沙环境风洞中的应用,中国沙漠,2(6):890-293.
    143.罗万银,董志宝,钱广强,2007,PIV技术及其在风沙边界层研究中的应用,中国沙漠,27(5):733-737.
    144.刘凯欣,高凌天,2003,离散元法研究的评述,力学进展,33:483-490.
    145.孙其诚,王光谦,2001,沙粒起跃的动态模拟,中国沙漠,21(Suppl),17-21.
    146.高迪AS,等,2002,沙漠沙丘沙的形状,中国沙漠,22(1):6-10.
    147.董治宝,2005,风沙起动形式与起动假说干旱气象.
    148.吴正,1987,风沙地貌学,北京:科学出版社.
    149.杨保,邹学勇,董光荣,1999,风沙流中颗粒跃移研究的某些进展与问题,中国沙漠,19:174-178.
    150.黄宁,2002,风沙带电及风沙电场对风沙跃移运影响的研究,兰州大学博士论文.
    151.谢莉,2005,风沙流中基于粒床碰撞的沙粒起跃初速度分布及其击溅过程的理论研究,兰州大学博士论文.
    152.朱伟,2011,风成沙波纹形成和发展过程研究,兰州大学博士论文.
    153.佟鼎,2012,微地表形态下风沙跃移运动的风洞实验观测与数值模拟,兰州大学博士论文。
    154.吕晓辉,黄宁,佟鼎,2012,天然雪的风洞实验研究,中国科学(E辑),42(5):622-634

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700