风沙跃移运动的粒—床随机碰撞数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对风沙流中混合沙粒-床碰撞开展直接数值模拟研究。首先利用随机方法生成接近自然分布规律的沙床面,进而结合离散单元法(DEM)建立了粒-床碰撞数值模拟系统。在此基础上研究了混合沙粒-床碰撞的起跳特征,并且提出一套统计方法对碰撞结果进行统计处理。从而进一步分析了平床面上粒径尺度对粒-床碰撞起跳特征的影响,给出各粒径尺寸下的入射与起跳物理量之间的关系。最后将平床面碰撞模拟系统推广到倾斜床面,讨论了床面倾斜对粒-床碰撞特征的影响,给出了同时包含粒径尺度和床面倾角参数的粒-床碰撞规律。主要工作如下:
     1、考虑到天然沙漠沙粒径分布具有一定规律这一特点,本文提出了近似自然床面的生成方法,建立了基于混合粒径平床面的粒-床碰撞二维离散动力学(DEM)模拟系统。
     2、由于粒-床碰撞具有高度的随机性,我们提出了一套统计方法对结果进行处理。探讨了床面颗粒数、样本空间大小和碰撞位置等情况下统计结果的稳定性,找到了使其稳定的参数区间。
     3、在上述建立的模拟程序和统计方法基础上,我们针对多粒径、多速度、多角度入射,采用大样本进行碰撞模拟。研究表明,模拟结果与已有单一粒径结果差别明显,混合粒径模拟结果与实验数据更为吻合,得出应以随机混合粒径床面的碰撞规律为基础进行风沙流和沙波纹的模拟。有力的证明了进行多粒径粒-床碰撞模拟实验研究的必要性。
     4、在混合粒床相互作用模拟基础上,对粒-床碰撞过程中不同粒径粒子的运动行为进行了深入细致的研究。首次发现并提出粒子的起跳特征与粒径的依赖关系,给出了包含粒径参数的入射与起跳关系,模拟结果与实验结果吻合良好。
     5、由于沙漠表面是起伏不平且呈近似周期性的波纹分布,我们沿一个波纹不同点处取其切平面,生成具有不同坡度的倾斜床面实施粒-床碰撞模拟实验,从而研究波纹表面不同位置处的起跳特征的异同。研究发现,波纹不同位置处的起跳规律具有较大的差异,随着坡度的变化,某些重要的起跳物理量具有明显的变化规律。本文首次系统的给出了各起跳物理量与入射速度、入射粒径和波纹倾角的变化关系。
This thesis focuses on the key problem in the wind blown-sand transport, the sand particle-bed collision. Firstly, a 2D mixed sand bed is prepared by stochastic method and the direct numerical simulation program is created based on Discrete Element Method (DEM). And then we insight the grain-bed collision on flat mixed size bed using this program and deal with the results by a statistic approach. Secondly, the effect of particle sizes on grain-bed impact is discussed, meanwhile the relationship between incident and lift-off quantities for different particle size are presented. Finally, we extend our program to different slope to estimate the effect of slope angle on grain-bed impact. The relationships of incident and lift-off quantities proposed by this thesis, including impact speed, impact grain size and slope angle, will be significant for windblown sand transport and sand ripple simulation. The main works are concluded as follows:
     1. Considering the Probability Density Function (PDF) of natural sand particle size has unimodal distribution, this thesis presents one approach to propagation an approximate natural sand bed used to target bed. Moreover, a program code is created based on Discrete Element Method (DEM) or Particle Dynamic Method (PDM) in two dimensional to realize the mixed size grain-bed impact process.
     2. Due to grain-bed interactions are stochastic processes, we propose a statistical method to deal with results, and also find the appropriate coefficients of steady state program and statistical method when the number consisted of sand bed, number of sample and impact points vary.
     3. Using the grain-bed impact program and statistical method, to each different incident particle size, different incident speed and angle a lot of samples will be used to simulate impact. We find that there are distinct deviations between mixed grain size and uniform grain size simulation results, and the results of this thesis well agree with the experimental data of the multiple size sand grains, which suggests us that the simulations of windblown saltation and sand ripple should be based on our results. It is also justified the necessary to study mixed grain-bed impact.
     4. Based on the simulation on flat bed, we insight the effect of particle size on the impact processes. For the first time, we argue the relationship between particle size and random physical quantities of lift-off particles. These simulation results well consist with measurements.
     5. The efforts have been done on the flat bed are prepared for us to discuss the grain-bed impact on more natural sand beds which always are undulate in field desert. In order to find the effect of slope on different location of one sand ripple, we simulate the impact processes on a series of slopes. The results demonstrate that the random physical quantities of lift-off particles on different slop have markedly deviations. Some random physical quantities change regularly varying with the angle of slope. For the first time this thesis presents the relationship between incident and lift-off physical quantities of particles effected by incident speed, incident particle size and slope angle.
引文
1. Zheng, X.J., Investigations on several mechanical problems in windblown sand movement, Science Foundation in China, 2006, 2.
    2.郑晓静,周又和.风沙运动研究中的若干关键力学问题.力学与实践,2003,25(2):1-7.
    3.王涛,陈广挺,钱正安,杨根生,屈建军,李栋梁.中国北方沙尘暴现状及对策.中国沙漠,2001,21(4):322-327.
    4. Nalpanis, P., Hunt, J.C.R., and Barrett, C.F.. Saltating particles over flat beds. J.Fluid Mech., 1993, 251: 661-685.
    5.张广兴,李霞.沙尘暴观测及分级标准研究现状.中国沙漠,2003,23(5):586-591.
    6.苏志珠.董光荣.中国土地沙漠化研究现状及问题讨论.水土保持研究.2002,9(3):133-135.
    7. Dooley, E.E., Environmental health perspectives, 2002. 110: A77.
    8.吴正等.《风沙地貌与治沙工程学》.科学出版社,2003.
    9. http://www.duststorm.com.cn/(中国沙尘暴网).
    10.常兆丰,韩富贵,仲生年.民勤沙漠区主要天气现象前期特征的观测研究.甘肃环境研究与检测,1999,12(1):1-4.
    11. http://database.cpst.net.cn/popul/natur/desat/artic/50303/42941.html(什么是土地沙化和土地沙漠化).
    12.《人民日报》,2002年3月24日讯.
    13.高庆先,任陈海.沙尘暴——自然对人类的报复[M].化学工业出版社,2002.
    14. Bagnold, R.A., The Physics of blown sands and desert duns, London: Mathuen & Co. Ltd, 1941.
    15. Chepil, W.S.. Dynamics of wind erosion. I. Nature of movement of soil by wind. Soil Sci., 1945, 60: 305-320.
    16. Chepil, W.S.. The physics of wind erosion and its control. Adren, in Agron., 1963, 15:3-11.
    17. Zingg, A.W.. A study of the movement of surface wind. Aqr. Eng., 1949, 30:11-13.
    18. Zingg, A.W.. wind tunnel studies of the movement of sedimentary materials. 1953, In: Proceedings 5th Hydraulic Conference, Bull. 24, Univ. of Lowa City: 111-135.
    19.董飞,刘大有,贺大良.风沙运动的研究进展和发展趋势.力学进展,1995,25(3):368-391.
    20.H.A.Qykc著,顾震潮等译.《汽溶胶力学》.科学出版社,1960,P338-350.
    21.贺大良,高有广.沙粒跃移运动的高速摄影研究.中国沙漠,1988,8(1):18-27.
    22. Lyles, L. and R. K. Krauss, Threshold velocities and initial particle motion as influenced by air turbulence, Transacitions of the Asae, 1971,563-566.
    23. Hilst, G. R. and Nickola, P. W. On the wind erosion of small particles, Bulletin of the American Meteorological Society, 1959, 40(2): 73-77.
    24. Iversen, J. D., Saltation threshold mechanics. In: Farouk E1-Baz, Hassan, M. H. A. (eds). Physics of Desertification. Dordrecht, Nijhoff, 1986, 344-360
    25. Bisal F, Nielsen K C, Movement of soil particles in saltation, Can. J. Soil. Sci., 1962, 42: 81-86.
    26.杨保,邹学勇,董光荣.风沙流中颗粒跃移研究的某些进展与问题.中国沙漠,1999,19:174-178.
    27. Chepil W.S. Dynamics of wind erosion: Ⅲ. The transport capacity of the wind, Soil Sci., 1945, 60: 475-480.
    28. Chepil W. S., Dynamics of wind erosion: Ⅴ. Cumulative intensity of soil drifting across eroding fields. Soil Sci., 1946. 61: 257-263.
    29.黄宁,风沙带电及风沙电场对风沙跃移运影响的研究,兰州大学博士论文,2002.
    30. Ning Huang, Xiaojing Zheng, Youhe Zhou, and R. S. Van Pelt. The simulation of wind-blown sand movement and probability density function of lift-off velocities of sand particles, Journal of Geophysical Research, 2006, 111, D20201, doi: 10.1029/2005JD006559.
    31. Ning Huang, Xiaojing Zheng, You-He Zhou. A Multi-objective Optimization Method for Probability Density Function of Lift-off Speed of Wind-blown Sand Movement, Advances in Engineering Software. 2006, 37 (1): 32-40.
    32. McEwan I. K. and B. B. Willetts, Numerical model of the saltation cloud, Acta Mechanica(1991) [suppl]1: 53-66.
    33. McEwan, I.K. and Willetts, B.B.. Adaptation of the near-surface wind to the development of sand transport. J. Fluid Mech., 1993, 252:99-115.
    34. McEwan, I.K., Willetts, B.B., and Rice, M.A.. The grain/bed collision in sand transport by wind. Sedimentology, 1992, 39: 971-981.
    35. Z.S. Li, J.R. Ni, C. Mendoza. An analytic expression for wind-velocity profile within the saltation layer. Geomorphology, 2004, 60:359-369.
    36. Andreas C.W. Baas. Evaluation of saltation flux impact responders (Safires) for measuring instantaneous aeolian sand transport intensity. Geomorphology, 2004, 59:99-118.
    37. Xiaoping Liu, Zhibao Dong. Experimental investigation of the concentration profile of a blowing sand cloud. Geomorphology, 2004, 60:371-381.
    38. M. Hubert, H. Kalman. Experimental determination of length-dependent saltation velocity in dilute flows. Powder Technology, 2003, 134:156-166.
    39. Remigius Egwuonwu Okoli. Wind tunnel study on Aeolian saltation dynamics and mass flow. Journal of Arid Environments, 2003, 53:569-538.
    40. Butterfield, G. R.. Grain transport rates in steady and unsteady turbulent airflows. Acta Mechaniea (1991) [Suppl.] 1: 97-122.
    41.邹学勇,朱久江,董光荣,等.风沙流结构中起跃沙粒垂直初速度分布函数(J).科学通报,1992,23:2175-2177.
    42.董飞,刘大有.关于风沙层中颗粒垂向浓度分布规律等的思考.力学与实践,1997,19:42-45.
    43. Sφrensen, M.. Stochastic models of sand transport by wind and two related estimation problems. International Statistical Review, 1993, 61: 245-255.
    44. Xing Mao, Guo Liejin, A modified probability distribution of ejection state of sand grains in equilibrium aeolian sand transport, Physics Letters A, 2004, 332(5-6): 389-397.
    45. Namikas, S.L.. Field measurement and numerical modeling of aeolian mass flux distributions on a sandy beach. Sedimentology, 2003, 50: 303-326.
    46.朱久江,匡震邦,邹学勇,等.风沙两相流中的跃移运动.中国科学(A辑).1998.28(3):266-274.
    47. Zhu JJ, Qi LX, Kuang ZB. Velocity distribution of particle phase in satating layer of wind-bloqn-sand two phase flows. Acta Mechanica Sinica, 2001, 13: 36-45.
    48.孙其诚、王光谦.沙粒起跃的动态模拟(J).中国沙漠,2001,21[sppl.]:17-21。
    49. Shao, Y., Physics and Modeling of Wind Erosion, Springer, New York, 2000.
    50. You-He Zhou, Xiang Guo, and Xiao Jing Zheng, Experimental measurement of wind-sand flux and sand transport for naturally mixed sands, physical review E, 2002, 66, 021305.
    51. Anderson, R.S., and Haff, P.K.. Simulation of eolian saltation. Science, 1988, 241: 820-823.
    52. R.S. Anderson and P. K. Haff, Wind modification and bed response during saltation of sand in air, Acta Meehaniea (1991) [Suppl] 1:21-51
    53. Haff, P.K., Anderson, R.S.. Grain scale simulations of loose sedimentary beds the example of grain-bed impact in aeolian saltation. Sedimentology, 1993, 40: 175-198.
    54. Werner, B. R. and P. K. Haff, The impact process in aeolian saltation: two-dimensional simulations, Sedimentology, 1988, 35:189-196.
    55. Mitha, S., Tran, M.Q., Werner, B.T., and Haff, P.K.. The grain-bed impact in Aeolian saltation. Acta Mechanica, 1986, 62: 268-278.
    56. Werner, B.T.. A physical model of wind-blown sand transport. Ph.D. thesis, California Institute of Technology, Pasadena, 1987.
    57. Youhe Zhou, Wanqing Li, Xiaojing Zheng, PDM simulations of stochastic collisions of sandy grain-bed with mixed size in aeolian sand saltation, Journal of Geophysical Research, 2006, 111, D 15108, doi: 10.1029/2005JD006604.
    58. B. B. Willetts and M. A. Rice, Collisions of quarts grains with a sand bed: The influence of incident angle, Earth Surface Processes and Landforms, 1989,14: 719-730.
    
    59. Rice, M.A., B. B. Willetts and I. K. McEwan, An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed, Sedimentology, 1995,42 :695-706.
    
    60. Rice, M.A., B. B. Willetts and I. K. McEwan, Observations of collisions of saltating grains with a granular bed from high-speed cine-film, Sedimentology, 1996,43: 21-31.
    
    61. Anderson, R.S., and Hallet, B. Sediment transport by wind: toward a general model. Bulletin of Geological Society of America. 1986,97: 523-535
    
    62. Xiaojing Zheng, Lihong He, and Jianjun, Wu, Vertical profiles of mass flux for windblown sand movement at steady state, Journal of Geophysical Research, 2004,109(B01106).
    
    63. Xiao Jing Zheng, Ning Huang, and You-He Zhou, Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement, Journal of Geophysical Research, 2003,108(D10), 4322.
    
    64. Xiaojing Zheng, Lihong He and Youhe Zhou, Theoretical model of the electric field produced by charged particles in windblown sand flux, Journal of Geophysical Research, 2004,109(D15208), 1-9.
    
    65. Zheng Xiaojing, He Lihong, Wu Jianjun, The feature of stratification in the blowing sand cloud,Chinese Science Bulletin 2003, 48(14): 1493-1498.
    
    66. He Q S, Zhou Y H, Zheng X J. Effects of charged sand on electromagnetic wave propagation and its scattering field. Science in China (Series G), 2006, 49(1): 77-87.
    
    67. Feng Shi, Ning Huang. A study on the threshold wind velocity of particles on slope. In: 8th International Conference on Development of Drylands. Beijing, 2006, Feb.
    
    68. Tianli Bo, Xiaohui Lu, Li Xie and Xiaojing Zheng, A Field Measurement of Structure and Saturation of Wind Ripple, Proceeding of International Conference on Science and Technology for Desertification Control, 2006 (in press).
    
    69. Li Xie, Xiaojing Zheng, Impact action of soil particles on crust in wind erosion, Proceeding of International Conference on Science and Technology for Desertification Control, 2006 (in press).
    
    70. Tianli Bo, Shengzhi Wu, Numerical Simulation of Fluid Flow around Porous Fences and Highways, Proceeding of International Conference on Science and Technology for Desertification Control, 2006 (in press).
    
    71. Ning Huang, Yali Zhang, and R.D. Adamo, A model of the trajectories and mid-air collision probabilities of sand particles in a steady-state saltation cloud, Journal of Geophysical Research, 2006 (in press).
    
    72. Shan Ren, Ning Huang, R.S. Van Pelt, and T.M. Zobeck. Wind in Natural Environments and Its Influence on Sand Saltating Trajectories. In: The Second International Symposium on Soil Erosion and Dryland Farming. Yangling, 2006, October.
    73. Jianjun Wu, Lihong He and Guanghu Yah, Distribution function of vertical lift-off velocity of sand particles -a generalized form, Proceeding of International Conference on Science and Technology for Desertiflcation Control, 2006 (in press).
    74. Wanqing Li, Youhe Zhou, A simulation study of mixed grain-size ejecta produced by collisions of saltating grains with a flat bed basing on PDM, Journal of geophysical research, 2006 (in revising).
    75. Yue, G.W., X.J. Zheng. Electric field in wind-blown sand flux with thermal diffusion. J. Geophys. Res., 111, 2006, D16106, dio: 10.1029/2005JD006972.
    76. Zheng, X.J., N. Huang, Y.H. Zhou. The effect of electrostatic force on the evolution of sand saltation cloud, The European Physical Journal E., 2006, 19: 129-138, doi: 10. 1140/epje/e2006-00020-9.
    77. Xiaojing Zheng, Li Xie, Xueyong Zou, Theoretical prediction of liftoff angular velocity distributions of sand particles in wind-blown sand flux. Journal of Geophysical Research, 2006, D11109, doi: 10.1029/2005JD006164.
    78. Li Xie, Yuquan Ling, Xiaojing Zheng, Laboratory measurement of saltating sand particles' angular velocities and simulation of its effect on saltation trajectory, Journal of Geophysical Research, 2006(in revising).
    79. Bo, T.L., L. Xie, X.J., Zheng. Numerica. Approach to Wind Ripple in Desert. Int. J. Nonlinear Sciences and Numerical Simulation, 2006, 7(4) (in press).
    80. Zou, X.Y., Z.L. Wang, Q.Z. Hao, C.L. Zhang, Y.Z. Liu, G.R. Dong, The distribution of velocity and energy of saltating sand grains in a wind tunnel, Geomorphology, 2001,36: 155-165.
    81.凌裕泉,吴正.风沙运动的动态摄影实验.地理学报,1980,35:174-181.
    82. Kobayashi, D.. Contrib. Inst. Low Temp. Studies, 1972, A24, 1.
    83. White, B.R., and Schulz, J.C.. Magnus effect in saltation. J. Fluid Mech., 1977, 81: 497-512.
    84. Werner, B. T.. A steady- state model of wind-blown sand transport. J. Geol., 1990, 98: 1-17.
    85. Willetts, B.B. and Rice, M.A.. Collision in Aeolian saltation. Acta Mechanica, 1986, 63: 255-265.
    86. Willetts, B.B., and Rice, M.A.. Collision in Aeolian transport: the satation/creep link, In: Niekling, W.G. (ed): Aeolian Geomorphology, Boston: Allen and Unwin, 1986, 1-16.
    87.刘贤万.实验风沙物理与风沙工程学[M].科学出版社,1995.
    88. Greeley, R.G., Blumberg, D.G.., and Williams, S.H.. Field measurements of the flux and speed of wind-blown sand. Sedimentology, 1996, 43: 41-52.
    89. Dong Z., Liu X., Li F., Wang H., and Zhao A.. Impact-entrainment relationship in a saltating cloud. Earth Surface Processes and Landforms, 2002, 27:641658.
    90. Dong Z., Wang H., Liu X., Wang X., Li F., and Zhao A.. Experimental investigation of the velocity of a sand cloud blowing over a sandy surface. Earth Surface Processes and Landforms,2004,29: 343358.
    
    91. Tsuchiya, Y., Kawata, Y.. Characteristic models of particle trajectories in turbulent.International Coastal Engineering Conference, 1972, pp.1617-1625.
    
    92. Gillette, D.A., Blifford, I.H. and Fryrear, D.W.. The influence of wind velocity on the size distributions of aerosols generated by the wind erosion of soil. Journal of Geophysical Research, 1974,79: 4068-4075.
    
    93. Jaeger, H.M. and Nagel, S.R.. Physics of the granular state, Science, 1992,20:1523-1531.
    
    94. Jensen, J.L. and S(?)rensen, M.. Estimation of some Aeolian saltation transport parameters: are-analysis of Williams'. Sedimentology, 1986,33: 547-558.
    
    95. Li, L. and Martz, L.W.. Aerodynamic dislodgement of multiple-size sand grains over time. Sedimentology, 1995,42: 683-694.
    
    96. McDonald, R.R., and Anderson, R.S.. Experimental verification of Aeolian saltation and lee side deposition models. Sedimentology, 1995,43: 39-56.
    
    97. MeElwaine, J.N., Maeno, N. and Sugiura, K... The splash function for snow from wind-tunnel. International symposium on snow and avalanches, Davos, Switzerland, 2003, 2-6.
    
    98. Mouzai, L. and Bouhadef, M.. Water drop erosivity: Effect on soil splash. Journal of Hydraulic Research, 2003, 41: 61-68.
    
    99. Spies, P.J., McEwan, I.K., and Butterfield, G.R.. On wind velocity profile measurements taken in wind tunnels with saltating grains. Sedimentology, 1995,42: 515-521.
    
    100. B. Andreotti, P. Claudin, and O. Pouliquen. Aeolian Sand Ripples: Experimental Study of Fully Developed States. Physical Review Letters, 2006, 96, 028001.
    
    101. Wener, B.T.. A steady-state model of wind-blown sand transport. Journel of Geology, 1990,98:1-17.
    
    102. Xie, H., Koshizuka, and OKA, Yoshiaki. Computational analysis of splash occurring in the deposition process in annular-mist flow. International Congress on Advances in Nuclear Power Plants, June, 13-17, Pittsburgh, USA.
    
    103. Scott, W.D., Hopwood, J.M., Summers, K.J.. A mathematical model of suspension with saltation. Acta Mechanica, 1995,108: 1-22.
    
    104. Rumpel, D.A.. Successive Aeolian saltation: studies of idealized collisions. Sedimentology,1985, 32: 267-280.
    
    105. Shao, Y.. A similarity theory for saltation and application to aeolian mass flux,Boundary-Layer Meteorology, 2005,115: 319 - 338.
    
    106. Shao, Y. and M. Mikami, Heterogeneous saltation: Theory, Observation and Comparison, Boundary-Layer Meteorology, 2005,115: 359-379.
    107. Owen, P.R., Saltation of uniform grains in air. J. Fluid Mech., 1964, 20: 225-242.
    108. Werner, B.T., Haff, P.K., Livi, R.P., and Anderson, R.S.. Measurement of eolian ripple cross-sectional shapes. Geology, 1986, 14: 743-745.
    109. Anderson, R.S.. Saltation of sand: a qualitative review with biological analog. Proceedings of Royal Society of Edinburgh, 1989, 96B: 149-165.
    110. Willetts, B.B., McEwan, I.K., and Rice, M.A.. Initiation of motion of quartz sand grain. Acta Meehaniea, 1991, [Suppl.] 1: 123-134.
    111. Shao Y. and Paupach, M.R.. The overshot and equilibration of saltation. Journal of Geophysical Research, 1992, D18: 20559-20564.
    112. Shao Y., Raupach, M.R. and Leys, J.F.. A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Aust. J. Soil Res., 1996, 34: 309-342.
    113. McEwan I. K., Jefcoate B.J., and Willetts B.B.. The grain-fluid interaction as a self-stabilizing mechanism in fluvial bed transport. Sedimentology, 1999, 46:407-416.
    114. Doorschot, J.J.J. and Lehning, M.. Equilibrium saltation: Mass fluxs, aerodynamic entrainment, and dependence on grain properties. Boundary-Layer Meteorology, 2002, 104:111-130.
    115. Gillette, D.A., and Stockton, P.H.. Mass momentum and kinetic energy fluxes of saltating particles. Acta Mechanica, 1986, 62: 35-56.
    116. Hayakawa, H., Nishimori, H., Sasa, S.. and Taguchi, Y.-H.. Dynamics of granular matter. Japanese Journal of Applied Physics, 1995, 34: 397-408.
    117. Herrman, H.. Grains of understanding. Physics World. 1997, 11: 31-34.
    118. Liu Chu-heng and Nagel, S. R.. Sound in a granular material: Disorder and nonlinearity. Physical Review B, 1993, 48: 15646-15650.
    119. Livingstone, I. and Warren, A.. Aeolian Geomorphology: An Introduction. Addison Wesley Lonman Limited, London, 1996, 211.
    120. Marian, M., Surajit, S., and Hurd, A.J.. The propagation and backscattering of soliton-like pulses in a chain of quartz beds and related problems. (Ⅰ). Propagation. Physica A, 1999, 274: 588-606.
    121. Sorensen, M., and McEwan, I. K.. On the effect of mid-air collisions on Aeolian saltation. Sedimentology, 1996, 43: 65-76.
    122. Surajit, S. and Marian, M.. Solitary wave dynamics in generalized Hertz chains: An improved solution of equation of motion. Physical Review E, 2001, 64: (056605) 1-4.
    123. Wang zhenting, Zheng Xiaojing. Theoretical prediction of creep flux in Aeolian sand transport. Powder Technology, 2004, 139: 123-128.
    124. Xie Li, Zheng Xiaojing, and Zhou You-he. A theoretical study of the distribution of the initial velocity of saltating sand particles by collision. Key Engineering Materials, 2003, 243-244: 613-618.
    125.谢莉.风沙流中基于粒—床碰撞的沙粒起跃初速度分布及其击溅过程的理论研究.兰州大学博士论文,2005.
    126. Jeffrey, S.. Simonoff Smoothing Methods in Statistics, Springer-Verlag, 2000.
    127.高惠璇,统计计算[M],北京大学出版社,1995.
    128. Ungar, J.E., and Haff, P.K.. Steady state saltation in air, Sedimentology, 1987, 34: 289-299.
    129. McEwan, I.K. and Willetts, B.B.. Sand transport by wind: a review of the current conceptual model. Form Pye, K.(ed), The dynamics environmental context of Aeolian sedimentary systems. Geological Society Special Publication No.72, 1993, pp.7-16.
    130. Stout, J.E. and Zobeck, T.M.. Intermittent saltation. Sedimentology, 1997, 44: 959-970.
    131. Anderson, R. S.. Eolian ripples as examples of self-organization in geomorphological systems. Earth-Science Reviews, 1990, 29: 77-96.
    132. Shao Y., and Li A.. Numerical modeling of saltation in the atmospheric surface layer. Boundary-Layer Meteorology, 1999, 91: 199-225.
    133. Stam, J.M.T.. Migration and growth of Aeolian bed-forms. Mathematic Geology, 1996, 28: 519-536.
    134. Stam, J.M.T.. On the modeling of two-dimensional Aeolian duns, Sedimentoiogy, 1997, 44: 127-141.
    135. Werner, B.T. and Hallet, B.. Numerical simulation of self-organized stone stripes. Nature, 1993, 361: 142-145.
    136. Kadanoff, L.P.. Built upon sand: Theoretical ideas inspired by granular flows. Reviews of Modem Physics, 1999, 71: 435-444.
    137. Landry, W.L. and Werner, B.T.. Computer simulations of self-organized wind ripple patterns, Physica D, 1994,77: 238-260.
    138. Forrest, S.B. and Haff, P.K.. Mechanics of wind ripple stratigraphy. Science, 1992, 255: 240-243.
    139. Anderson, R.S. and Bounas, K.L.. Grain size segregation and stratigraphy in Aeolian ripple modeled with a cellular automation. Nature, 1993, 365: 740-743.
    140. H. Yizhaq. A simple model ofaeolianmegaripples. Physica A, 2004, 338:211-217.
    141. Liqiang Kang, Liejin Guo. Numerical simulation of aeolian sand ripples. Physics Letters A, 2004, 330:198 - 202.
    142. Hiraku Nishimori and Noriyuki Ouchi. Formation of Ripple Patterns and Dunes Wind-Blown Sand. Physical Review letters, 1993, 71:197-200.
    143. V. Langlois and A. Valance, Formation of Two-Dimensional Sand Ripples under Laminar Shear Flow, Physical Review Letters, 2005, 94: 248001.
    144. Hoyle, R.B. and A.W., Woods. Analytical model of propagating sand ripples, Physical Review E, 1997, 56: 6861-6868.
    145. Anderson, R.S., Sφrensen, M., and Willetts, B.B.. A review of recent progress in our understanding of aeolian sediment transport. Acta Mechanica, 1991, [Suppl] 1: 1-19.
    146. Francois R., Alexandre V., and Daniel B.. Experimental study of the collision process of a grain on a two-dimensional granular bed. Physical Review E, 2000, 62(2): 2450-2459.
    147. Tananka, S. and Kakinuma, S.. Soil motion by the wind. Agriculture Meteorology. 1960, 16(2): 77-79 (in Japanese).
    148. Righetti, M. and Romano, G.P.. Particle-fluid interactions in a plane near-wall turbulent flow. Journal of Fluid Mechanics. 2004, 505: 93-121.
    149. Greeley, R.G. and lversen J.I.. Wind as a geological process. Cambridge University Press: Cambridge, 1985.
    150. Cundall, P.A. and O.D.L. Strack, A discrete numerical model for granular assemblies, Geotechnique. 1979, 29: 47-65.
    151.刘凯欣,高凌天.离散元法研究的评述(J).力学进展,2003,33:483-490.
    152. Sharp, R.P..Wind ripples. Jour. Geology, 1963, 71: 617-636.
    153. Stone, R.O. and H.J. Summers. Study of subaqueous and suberial sand ripple. Final Report: office of Naval Research Contract No. N00014-67-A-0269-002, Arlington, 1972, 274p.
    154. Walker, J.D.. An experimental study of wind ripple, unpublished masters thesis, Massachusetts Institute of Technology, 145p.
    155. G. Williams, Some aspects oft he eolian saltation load, Sedimentology, 1964, 3: 257-287
    156. White, B. R. and H. Tsoar, Slope effect on saltation over a climbing sand dune, Geomorphology, 1998, 22: 159-180.
    157. Sun, D.H., J. Bloemendal, D.K. Rea, J. Vandenberghe, Fuchu Jiang, Zhisheng An, Ruixia Su, Grain-size distribution function of polymodal sediments in hydraulic and Aeolian environments, and numerical partitioning of the sedimentary components, Sedimentary Geology, 2002, 152: 263-277.
    158. Barusseau, J.P., M.B. Diouf, M. de la Bardonnie, N. Elghandour, Methods to simulate textural evolution of mature grain-size distributions in the offshore zone, Oceanoiogica Acta, 1999, 22(2): 179-191.
    159. Raupach, M.R., H. Lu, Representation of land-surface processes in aeolian transport models, Environmental Modelling & Software, 2004, 19:93-112.
    160. X.M. Wang, The blown sand flux over a sandy surface: a wind tunnel investigation on thefetch effect, Geomorphology, 2004, 57: 117-127.
    161. Knuth, D.E., Seminumerical Algorithms, 2nd, Vol. 2 of The Art of Computer Programming, Reading, Mass.: Addison-Wesley, 1981, P. 116,
    162. Poschel, T and Buchholtz, V. Phys. Rev. Lett., 1993, 71: 3963.
    163. T. Elperin, E.Golshtein, Comparison of different models for tangential forces using the particle dynamics method, Physica A, 1997, 242: 332-340.
    164. Walton, O.R., Braun, R.L., Viscosity, Granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disk, Journal of Rheology, 1986, 30: 949-980.
    165. Tsuji, Y., Kawaguchi, T., Tanaka, T., Discrete particle simulation of two-dimensional fluidized bed, Power Technology, 1993, 77: 79-87.
    166. Xu, B.H., Yu, A.B., Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics, Chemical Engineering Science, 1997, 52: 2785-2809.
    167. Mikami, T., Kamiya, H., Horio, M., Nemerical simulation of cohesive powder behavior in a fluidized bed, Chemical Engineering Science, 1998, 53:1927-1940.
    168. Zhou, H.S., Flamant, G. Gauthier, D., DEM-LES of coal combustion in a bubbling fluidized bed. Part Ⅰ: gas-particle turbulent flow structure, Chemical Engineering Science, 2004, 59: 4193-4203.
    169. Gera, D., M. Gautam, Y. Tsuji, T. Kawaguchi, T. Tanaka, Cumputer simulation of bubbles in large-particle fluidized beds, Powder Technology, 1998, 98: 38-47.
    170. Mindlin, R.D., H. Deresiewicz, H., Elastic spheres in contact under varying oblique force, Transactions of the ASME, Journal of Applied Mechanics, 1953, 20: 327-344.
    171. L. Verlet, Computer "experiments" on classical fluids, Ⅰ. Themodynamical properties of Lennard-Jones molecules, Phys. Rev., 1967, 159: 98-103.
    172. R. W. Hoekney and J. W. Eastwood, Computer simulations using particles. Mc-Graw-Hill, New Youk, 1981
    173. D.J. Auerbach, W. Paul, C. Lutz, A. F. Bakker, W. E. Rudge, and F. F. Abraham, A special purpose parallel computer for molecular dynamics: motivation. Design, implementation, and application, J. Phys. Chem., 1987, 91: 4881-4890.
    174.分子模拟——从算法到应用/[荷]弗兰克等(FrenkeI & Smit)著;汪文川等译,化学工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700