内循环流化床气固流动数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内循环流化床在城市固体废弃物焚烧领域具有独特的优势。本文采用离散单元法(DEM)数值模拟与台架试验相结合的方法,系统研究了流化床内的气体、颗粒流动特性。基于对颗粒相的离散处理,本文利用气固速度场、颗粒加速度场、压力场、压力波动等特征信息量化分析了流化过程机理。可视化观测、物料分层及其停留时间分布等试验研究则是正确认知流化现象、检验数学模型合理与否的第一手段、合理实施工业应用的依据。
     本课题研究主要包括:流化过程的CCD (Charge Couple Device)可视化观测与DEM数值预报;气体通过床层的流动行为与流量分配、颗粒的微观运动特征;非均匀布风内循环流化床内气泡运动的可视化分析、颗粒流动规律及其动态混合过程的定量评价、物料换热过程的数值模拟;多组分内循环流化床内的分层现象与停留时间分布的试验研究。
     采用CCD可视化试验详细验证了DEM模拟结果。对比分析显示,数值模拟成功预报了气泡的形成、分离、长大、爆炸等过程。颗粒受力分析表明:在扩散气流曳力和压力梯度力作用下,射流点处颗粒被外推,初始气泡空穴形成,并且逐步长大。随着时间的推进,底部颗粒所受压力梯度力方向逐渐由向外扩张转变为向里收缩,颗粒涌入空穴底部;空穴最终以气泡的形式脱离布风板进入床层。模拟所得气泡周期与试验结果十分接近。压力信号频谱快速傅立叶变换(FFT)分析发现,入口射流速度越快,气泡的产生和通过频率也越高;高射流风速下,高频小幅波动也有所增加。
     DEM计算过程中,空隙率直接依赖于当地颗粒密度,尾迹的有无则随气泡的进展而变。因此,模拟所得气泡周围压力分布与文献试验结果更为一致:气泡上下两端等压线并不对称,并且内部存在一定的压力梯度。气相速度场直观表明,气泡为低阻空间,具有短路效应,气泡相和乳化相之间存在强烈的气体交换。DEM模拟直观描述了气泡内外的流线特征;流线基本与等压线呈垂直交叉分布,合理反映了流体选择最小阻力途径行进的本质特征;气体流线整体排布较为规则,床内气体表现为层流流动。
     依据DEM模拟结果,量化考察了床内的流量分配特征。统计显示,在超过临界流化状态的过量气体流量中,可见气泡流量、穿流流量、乳化相中的过量流量分别占7%、36%、57%。穿流作用下,超过临界流化风量的过量流量气流通过气泡捷径导入上部乳化相,而不是生成更多的气泡。流化风速增加,更多的过量气流进入床内乳化相,而两相理论则假定乳化相流量保持在临界流化状不变。可见气泡流动、穿透气流与乳化相气体流动彼此密切相关,将超过临界状态的过量流量完全划归其中某一项则有失恰当。
     利用颗粒速度场、加速度场、可视化观测图片等数据信息,本文还研究了床内的颗粒运动特征。(1)在床层内部,颗粒围绕上升气泡向下运动;它们在气泡底部“迎面”碰撞,颗粒上抛,并保持一定的容积,形成尾迹;另外,气泡下方颗粒受射流作用进入气泡,也是尾涡来源之一。(2)在床层上部空间,气泡携带颗粒行至床面时呈现不同的弹射现象,主要包括:穹弹射、尾涡弹射、射流弹射。穹爆炸为单气泡爆炸的基本特征;此时,曳力约为压差作用的6倍。风速较高时,尾迹离开床层主体,进入自由空间,出现尾迹喷射。射流风速进一步加快,气泡连续生成,形状拉长、穿透床层,出现高频、高能颗粒射流喷射过程。(3) (u-umf)矢量场和流线显示,气泡爆炸前床层上部空间存在两个局部旋流,左侧涡流呈顺时针方向,右侧为逆时针;而在爆炸过程中,自由空间内的局部气体旋流方向出现逆转。上述局部循环的转换周期与气泡相同。
     可视化观测发现,由于床层厚度不均,非均匀布风、倾斜布风板流化床中的气泡在上升过程中还发生一定的横向偏移;DEM颗粒速度矢量场直观表明床内物料存在定向循环流动。分析认为,高风速区为气泡活跃区,气泡在上升过程中将向阻力较小的低风速区运动,许多颗粒被带到低风速区。低风速区的颗粒为填补高风速区的气泡离开后留下的空隙将向下移动。另外,采用倾斜布风板设计,低风速区下部的稠密颗粒相在自重作用下具有更为显著的下移趋势。这样就形成了流化床内颗粒的大尺度横向循环流动。颗粒循环流量统计表明,高风速区风速加快,气泡携带颗粒的作用得到加强,内部循环增强;低风速区风速的影响作用与此相反,合理匹配高低风速具有重要的意义。
     引入Ashton混合指数,并结合示踪颗粒场变化信息,详细讨论了流化床内的微观混合过程。研究发现,床内物料混合过程大致可归纳为快速对流混合、缓慢扩散混合、局部剪切混合三种微观机理。在很大程度上,颗粒循环尺度决定了物料的混合方式。与文献试验对比分析表明,Ashton混合指数评价所得混合时间尺度具有实际意义。
     对于水平布风板、均匀供风流化床,床内气泡携带颗粒上升运动显著,重力作用下颗粒轴向返混强烈,内部颗粒循环沿轴向贯穿整个床层,轴向混合具有明显的对流特征。均匀布风时,径向气泡特性较为均匀,其横向运动受到限制,内部颗粒循环在径向方向限于气泡周围区域,横向区域间的颗粒交换能力较弱,径向混合则以扩散方式为主。相同条件下,轴向混合速度约为径向混合速度的3.5倍。倾斜布风板、非均匀布风时,左右两侧间的时均颗粒流量远高于水平布风板、均匀布风工况。由于大尺度横向颗粒循环流动,左右两侧区域内的物料存在强烈的对流交换,物料横向混合速度显著加快,与轴向混合几乎相同。
     建立了DEM流化床传热模型,其中考虑到了气固对流换热与颗粒碰撞传热过程。均匀布风时,受活动范围限制,颗粒局限于同当地气相进行对流换热,其温度分布在较大程度上受当地风温的影响。内循环流化床内的定向颗粒循环运动,增强了物料的横向扩散能力,颗粒在高低风速区交替换热,温度分布有较强的整体平衡恢复能力。颗粒温度场分布对气体温度场分布的依赖程度显著降低。
     文章最后还针对垃圾成分复杂多变的特点,进行了多组分内循环流化床的混合、分离特性试验研究。分层取样试验结果表明,较大高风速区风速范围内,大块示踪物轴向浓度分布基本保持不变。低风速区风速的增加,该区主体颗粒相运动状态由下移为主转变为流化混合为主,大块物浓度分布发生显著变化。与其他物性相比较而言,大块示踪物密度是影响其轴向浓度分布特性的主要因素。
     大块物料的平均停留时间先是随高风速区流化速度增加而减小、随后显著回升;对于排渣过程而言,存在一个最有利的流化速度梯度的控制范围。增加低风速区的流化速度,局部返混现象明显,示踪物平均停留时间延长。就示踪物物性而言,对于密度较大的示踪物,若其尺寸增大,则它在床内的停留时间变短。对于密度较小的示踪颗粒,若其尺寸增大,相应在床内的停留时间变长。此外,示踪物形状对停留时间分布起到重要的影响作用。示踪物若趋于球形、表面光滑,则其停留时间变短,反之亦然。研究表明,可燃物与不可燃物处于强分离状态,能够保证充分燃烧与迅速排渣。
Internally circulating fluidized beds (ICFB) own their unique advantages in the field of municipal solid waste incineration. Gas-particles flow behaviors in fluidized beds are systemically studied in this dissertation, using discrete element method (DEM) and experimental approaches. Based on the discrete treatment of the particle phase, various kinds of characteristic information are employed to quantitatively analyze fluidization mechanism, including gas-particle velocity fields, particle acceleration fields, pressure fields and pressure fluctuations, and et al. Also, detailed experimental investigations are carried out in this paper, aiming at visual measurements of the bubbles, spatial segregation of the tracer particles, and their residence time distribution (RTD). All these benefit us with more accurate understanding of the fluidization phenomena, provide the first-hand evidence for the mathematical models, and lend bases of favorable industrial applications.
     Present research mainly consists of following sections: (i) visual measurements of fluidization phenomena using CCD camera and DEM simulations; (ii) gas flow behavior through the bed and its division, microscopic characters of particle movement; (iii) visual analysis of the bubble movement in the ICFB with uneven gas feed, and thereof, investigations on particle streaming, quantitative evaluations of the dynamic mixing process, and numerical predictions of the heat transfer concerning materials in the beds; (iv) experimental researches on the segregating phenomena and RTD of tracers in multi-component ICFBs.
     CCD experiments are carried out to validate the numerical predictions of DEM under the same condition. Comparisons indicate that numerical simulations successfully reproduce the complicated bubble phenomena, e.g., the arising, escaping, enlarging and bursting of a bubble, et al. Force analysis show that, at the initial stage of a bubble, drag and pressure gradient forces push particles outward and build a small cave near the jetting point. As the time proceeds on, such caves expand. Meanwhile, the directions of the pressure gradient force, exerted on particles at the root of the cave, shift from outward to inward gradually. Consequently, particles fill the bottom of the cave,which finally escapes from the distributor in the shape of a round bubble. Moreover, the predicted bubbles’periods are nearly identical with the experimental results. Fast Fourier transfer (FFT) analysis of the pressure fluctuations manifest that the faster the jetting velocity at the inlet, the higher the frequency of the bubble. Further more, under the faster air jetting velocities, fluctuations of high frequency and small amplitude increase.
     During DEM calculations, voidage directly counts on local particle densities, and the existence of the wake varies with the bubble development. Therefore, the simulated pressure fields around a bubble agree more with the reported experimental results. Isobars on the top and at the bottom of the bubble are not symmetrical. And, there is pressure gradient within the bubble. In gas velocity fields, it can be vividly found that, being regions of low flow resistance, bubbles serve as a short cut for gas flow, and there is intensive gas exchange between the emulsion phase and the bubble phase. Furthermore, DEM results also give the visual description the patterns of streamlines in the fluidized column. Basically, gas streamlines are normal to isobars, which rationally reflect the flow’s instinct of traveling through paths of the lowest resistance. Also, the regular streamline pictures implicate that fluidizing air embodies laminar flow patterns.
     Using results of DEM simulations, the gas flux division in the fluidized columns is quantitatively investigated. It is found that, within the excess flux, the proportion of the visible flow, the through-flow, and the interstitial flow in emulsion phase is 7%, 36%, 57%, respectively. Under the effect of through-flow, excess gas flows through the bubble into the above emulsion, in stead of in the form of more visible bubbles. The higher fluidizing air velocity, the more proportion of the excess gas flows into the emulsion. Whereas, it is assumed in two-phase theory that emulsion maintains the status of critical fluidizing condition. In fact, there is a close relationship among the visible bubble flow, through-flow and the interstitial flow, and it is inappropriate to attribute excess flow to one of theses three components.
     By the means of particle velocity fields, acceleration fields, and CCD snapshots, particle motions are also discussed in detail in this paper. (i) particles moving downward along the boundary of the rising bubble, and collide against each other and extrude at the bottom of the bubble, forming the wake of certain volume; dragged by the jet flow, particles below the bubble tend to penetrate into it, which partially provide the source of the bubble wake, as well. (ii) when bubbles approaching the bed surface, their explosions result in three kinds of particle ejection, including bulge-burst, wake-spike eruption, and jet-spray mechanism. The most common is the bulge burst mechanism due to single bubble bursts, where the drag force on particles is 6 times of the pressure gradient force. As the gas velocity increases, the wake escape from the bed into the freeboard, which is the so-called wake-spike mechanism. At even higher gas supply, the jet-spray mechanism occurs when the trailing bubble elongates, and entrains the solids in the bulge of the leading bubble up above the bed surface. (iii) Consecutive vector fields and streamline pictures of (u-umf) indicate that there are two local swing circles in the freeboard before the bubble eruption, with the left one clockwise and the right anticlockwise. During the eruption, such local circle streams have the opposite direction. Periods of such switch equal to that of the bubble.
     Visual snapshots of fluidized beds with uneven gas supply and inclined air distributor show that rising bubbles earns lateral displacement, due to different bed depth along the bed width. Particle velocity fields directly illustrate that there are regular granule circulating streams in such beds. With higher gas velocity, the higher velocity side is a bubble active zone, where there is an ascending solids flow carried by the bubbles, consequently. Because of the gradient in particle concentration between the two sides, particles in the right side move to the left. The design of inclined distributor enhances such a descending flow over the distributor as a result of gravity. Hence, an overall convective particle circulation is set up. When gas flow rate in the higher velocity zone increase, the carriage of the bubble are enhanced and results in a more intensive particle circulation. Whereas, change in the lower velocity zone causes reverse effect. The inner circulating flow rate is sensitive to the gas velocities in both zones, suggesting that it is important to configure the ratio of their flux.
     A statistical mixing index, Ashton index, is firstly introduced to assess the mixing process in fluidized beds in detail, with the aid of tracer particle fields. The mixing process mainly involves the three following microscopic mechanism: fast convective mixing, slow diffusive mixing, and local shear mixing. It is concluded that the scale of inner particle circulation is crucial in determining the mixing patterns within the beds. Comparisons with reported experiment prove that the mixing time scale, evaluated with Ashton mixing index, deserves its practical meaning.
     In the case of fluidized beds with horizontal distributor and even gas supply, due to bubbles’pronounced ascending movement and the inherent direction of gravitation, particle circulation penetrates through the whole bed axially, which induces a faster convective blending mode along the bed height. On the other hand, bubbles’lateral motion is restrained by their neighbors, and particle circulations are localized. Therefore, particles’horizontal activities are reduced, then the diffusive mixing is the prominent mode in the lateral direction. Under the same condition, the axial mixing rate is 3.5 times of the lateral. For the case of fluidized beds with uneven gas supply and inclined air distributor, the time averaged particle flow rate between the two lateral part of the bed is far larger than the case of horizontal distributor and even gas injection. For the large scale particle circulating stream in ICFBs, materials in different lateral parts enjoys a rapid convective exchange, and the mixing rate is obviously accelerated, with the magnitude nearly equal to the axial mixing rate.
     DEM heat-transfer models are established for fluidized beds, taking the gas- particle and particle-particle heat exchange into account. Under condition of even gas supply, particles are confined to undergoing convective heat transfer with local gas, and their temperature distribution depends more on the gas phase temperature field in the bed. The regular particle streams improve transverse diffusion performance of the solid phase. As a result, particles are transferred between the high temperature zone and the cold of the gas phase frequently, carrying the heat from the left side to the right. Additionally, turbulent particle flow helps to increase the particle-particle heat transfer. All these benefit the fluidizing system with a better ability to recover homogenous temperature field of particles from external disturbing effects.
     In terms of the changeable physical properties of the municipal solid waste, segregation and mixing characteristics are also experimentally researched in a multi-component ICFB setup.
     Results of layer sampling experiments show that there are no significant variations of the distributions of bulky materials within a wide range of air velocities in the higher gas flow rate zone. On the other hand, the distributions of bulky tracers are closely related to the gas velocity in lower gas flow rate zone, since such increase reduces the particle circulation and enhances local mixing performance. Compared with other physical parameters, density of tracer particles plays an important role in determining their axial segregation.
     The averaged residence time of the bulky materials initially decreases with the increasing flow rate in higher velocity zones, and then gains in value. For the deslagging operations, there is a most favorable lateral velocity gradient configuration of the fluidizing air. The averaged residence time increases positively with the air velocities in the lower gas flow rate zone, due the strengthening recirculation of the particles. With respect to the tracers’physical characters, larger particles of higher density tend to leave the bed quickly. On the other hand, larger particles of lighter materials have a longer stay in the fluidized bed. Additionally, the shape has a prominent effect on the tracers’RTD. Being more spheric and smooth, tracers retain in the bed for a shorter averaged residence time, vice versa. It is found that incombustible materials are relatively separable from the combustible ones and the bed materials, which ensures the complete combustion and desirable deslagging performance.
引文
[1] 王丰春, 田新珊,等. 城市垃圾处理方法综述[J].电力环境保护. 2003, 19 (1):46- 48.
    [2] 王军,刘金华.建设循环型经济社会的最佳选择[J].环境论坛,2002,(5):3 - 4.
    [3] 盛奎川, 林福呈, 闵航.城镇生活垃圾综合处置系统及关键技术的研究进展[J].浙江大学学报(农业与生命科学版),2005,31(2):125-130.
    [4] Thomas Malkow.Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal [J].Waste Management 24 (2004):53-79.
    [5] 卢苇,马一太.垃圾焚烧的发展趋势分析[J]. 太阳能学报,2002,23(6):799-804.
    [6] 王建勇,施耀新,等.上海城市垃圾焚烧和发电技术分析[J].锅炉技术,2002,33(11):29 -32.
    [7] 吕薇,李瑞扬,齐冲. 我国城市生活垃圾焚烧处理的现状和发展趋势[J].节能技术, 2003, 21 (1):38-40.
    [8] 马晓茜,杨泽亮,罗军.几种垃圾焚烧方式的比较[J].重庆环境科学,1998, 20(4):32-34.
    [9] Buchhols B A,Landsberger S. Trace Metal Analysis of Size-Fractioned Municipal Solid Waste Incinerator Fly Ash and Its Leachates [J].Environ. Sci. Health, 1993,A28 (2):423- 443.
    [10] 李水清.固体废物热解制取洁净燃料和化学原料的基础研究[D].浙江大学博士论文,2002, 4.
    [11] 孙燕.几种垃圾焚烧炉及炉排的介绍[J]. 环境卫生工程, 2002, 10 (2):77- 80.
    [12] Jones J L,Radding S B. Thermal Conversion of Solid Waste and Biomass[C]. ACS Symposium Series 130. American Chemical Society Publisher, Washington DC, 1980.
    [13] 巴苏 P,弗雷泽 S A.循环流化床锅炉的设计与运行[M].北京:科学出版社,1994.
    [14] 严建华,沈祥智,李晓东,等.流化床焚烧垃圾的关键问题及预处理措施[J].中国动力工程学报,2005,25(1):1-6.
    [15] 周一工.工业垃圾与煤混烧的内循环流化床锅炉[J]. 节能, 1997,3,21-23.
    [16] Yin Bin, M.C.Zhang, B.L.Dou, Y.B.Song, J.Wu. Discrete particle simulation and visualized research of the gas-solid flow in an internally circulating fluidized bed[J]. Industry & Engineering Chemistry Research. 2003, 42(1), 214-221.
    [17] 彭涛.内循环流化床锅炉解决垃圾焚烧发电的几个问题[J]. 发电设备,1999,6:5-6.
    [18] 王柏懿,盛宏至,戚隆溪,等.废弃物燃烧及流化床焚烧炉冷模实验研究[J].工程热物理学报,1994,15(4): 453-456.
    [19] 杨振良, 方建华等. 涡旋循环流化床垃圾焚烧炉及其应用[C]. 中国工程热物理学会燃烧学术会议论文集. 1999.
    [20] Bouillard J X, Lyczcowski R W.,Gidaspow D. Porosity distributions in a fluidized bed with immersed obstacle [J]. AICHE J. 1989,35 (4),908-922.
    [21] Choi Y T, Kim S D. Bubble characteristics in an internally circulating fluidized bed [J]. Journal of Chemical Engineering of Japan. 1991, 24(2), 195-202.
    [22] Won NK, Guy C; Legros R. Prediction of solids circulation rate in the riser of an Internally Circulating Fluidized Bed (ICFB)[J]. Chemical. Engineering. Communication. 2001, 188 (3), 47-58.
    [23] Merry J M D,Davidson J F.“Gulf stream”circulation in shallow fluidized beds[J].Trans Inst Chem Engrs,1973,51:361-368.
    [24] Garncarek Z, Przybylskil,Botterill S M, et al. A Measure of the Degree of Inhomogeneity in a Distribution and Its Application in Characterising the Particle Circulation in a Fluidized Bed[J]. Powder Technology, 1994, 80.
    [25] Jackson R. The mechanics of fluidized beds [J]. Trans. Inst. Chem. Eng., 1963, 41:13-28.
    [26] Murray J D, On the mathematics of fluidization. Part 2. Steady motion of fully developed bubbles [J]. J. Fluid Mech., 1965, 22: 57-80.
    [27] Anderson T B, Jackson R. A fluid mechanical description of fluidized beds [J]. I & EC Fundamentals, 1967, 6: 527-539.
    [28] Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow [J]. AIChE J, 1990, 36 (4): 523-538.
    [29] Gidaspow D, Syamlal M, Seo Y C. Hydrodynamics of fluidization of single and binary size particles: supercomputer modeling [C], in Fluidization V: Proceedings of the 5th Engineering Foundation Conference on Fluidization. New York: AIChE Engineering Foundation, 1986
    [30] Gidspow D, Bezbaruah R, Ding J. Hydrodynamics of circulating fluidized beds: kinetic theory approach [C]. in Fluidization VII. O. E. Potter and D. J. Nicklin Eds. 1992:75-82
    [31] Gidaspow D, Tsuo Y P, Luo K M. Computed and experimental cluster formation and velocity profiles in circulating fluidized beds [J]. Fluidization VI. 1989: 81-88
    [32] Kuipers J A M, van Swaaij W P M. Simulation of three dimensional riser flow using the kinetic theory of granular flow[C]. Proceedings of the 6th international conference on circulating fluidized beds, Edited by Joachim Werther, Wurzburg, Germany, 1999
    [33] Gidaspow D. Hydrodynamics of fluidization and heat transfer: supercomputer modeling [J]. Appl. Mech. Rev., 1986, 39: 1-23.
    [34] Enwald H, Feirano E, Almstedt A E. Eulerian two-phase flow theory applied to fluidization [J]. Int. J. Multiphase Flow, 1996, 22(Suppl.): 21-66.
    [35] Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory descriptions [M]. San Diego: Academic Press, 1994.
    [36] Jekins J T, Savage S. B.. A theory for the rapid flow of identical, smooth, nearly elastic spherical particles [J]. J. Fluid Mech., 1983, 130: 197-202.
    [37] Ding J, Lyczkowski R W. Three dimensional kinetic theory modeling of hydrodynamics and erosion in fluidized beds[J]. Powder Technology, 1992, 73:127-138.
    [38] R. W. Lyczkowski, D. Gidaspow, C. W. Solbrig, E. C. Hughes. Characteristics and stability analysis of transient one-dimensional two-phase flow equations and their finite difference approximations [J]. Nucl. Sci. Eng, 1978, 66: 378-396.
    [39] Boemer A P, Qi H, Renz U. Eulerian simulation of bubble formation at a jet in a two- dimensional fluidized bed [J]. Int. J. Multiphase Flow, 1997, 23(5):927-944.
    [40] 祁海鹰,李宇红,徐旭常. 稠密气固两相流动数值模拟的最新进展[C]. 中国工程热物理学会燃烧学学术会议, 1998.
    [41] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1):47-65.
    [42] Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe [J]. Powder Technology, 1992, 71: 239-250.
    [43] Tsuji Y, Kawaguchi, T. Discrete particle simulation of two dimensional fluidized bed [J]. Powder Technology, 1993, 77: 79-87.
    [44] 徐泳,孙其诚,张凌,等.颗粒离散元法研究进展[J].力学进展,2003,33(2):251-260.
    [45] 欧阳洁, 李静海. 模拟气固两相流动非均匀结构的颗粒运动分解轨道模型[J].中国科学(B 辑),1999,29(1): 29-38.
    [46] 袁竹林. 用直接数值模拟方法对流化床内颗粒运动区域的研究[J]. 燃料化学学报, 2000, 28(4): 372-375.
    [47] 黎明,谢灼利,张政.应用离散单元法对二维流化床内流态进行数值模拟研究[J].北京化工大学学报,2002,29(2):6-10.
    [48] 刘安源,刘石,姜凡.鼓泡流化床流动特性的欧拉-离散单元方法模拟[J].燃烧科学与技术,2003,9(2):148-152.
    [49] 尹斌,章明川,宋玉宝,吴江. 非均匀布风流化床的 DEM 模拟[J]. 热能动力工程, 2003, 18 (2):163-165.
    [50] 周浩生,陆继东.流化床颗粒燃烧过程的数值模拟[J].中国电机工程学报, 2004, 24(12): 212-217.
    [51] Kafui K D, Thornton C, Adams M J. Discrete particle-continuum fluid modelling of gas–solid fluidised beds[J]. Chemical Engineering Science,2002, 57:2395–2410.
    [52] Kawaguchi T, Sakamoto M, Tanaka T, Tsuji Y. Quasi-three-dimensional numerical simulation of spouted beds in cylinder[J] Powder Technology, 2000, 109: 3-12.
    [53] Xu B H, Yu A B. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics [J]. Chemical Engineering Science, 1997, 52(16): 2785-2809.
    [54] Xu B H, Yu A B, Zulli P. Numerical simulation of the gas–solid flow in a bed with lateral gas blasting[ J].Powder Technology, 2000, 109:13–26.
    [55] Yuu S, Umekage T, Johno Y. Numerical simulation of air and particle motion in bubbling fluidized bed of small paticles[J]. Powder Technology, 2000, 110: 158-168.
    [56] Kawaguchi T, Tanaka T, Tsuji Y. Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two- and three-dimensional models) [J]. Powder Technology, 1998, 96:129–138.
    [57] Ouyang Jie, Li Jinghai. Particle-motion-resolved discrete model for simulating gas-solid fluidization [J]. Chemical Engineering Science, 1999, 54:2077-2083.
    [58] Li J, Kuipers J A M. Gas-particle interactions in dense gas-fluidized beds [J]. Chemical Engineering Science, 2003,58: 711-718.
    [59] Hoomans B P B, Kuipers J A M, Briels W J, et al. Discrete particle simulation of bubble and slug formation in a two dimensional gas fluidized bed: a hard sphere approach [J]. Chemical Engineering Science, 1996, 51(1): 99-118.
    [60] Hoomans B P B, Kuipers J A M, van Swaaij W P M. Granular dynamics simulation of segregation phenomena in bubbling gas-fluidized beds [J]. Powder Technology, 2000, 109:41 -48
    [61] Hoomans B P B, Kuipers J A M, Mohd Salleh, M A, et al. Experimental validation of granular dynamics simulations of gas-fluidized beds with homogenous in-flow conditions using positron emission particle tracking [J].Powder Technology.,2001,116(2-3):166-177.
    [62] Wang X S, Rhodes M J. Determination ofparticle residence time at the walls of gas -fluidized beds by discrete element method simulation [J]. Chemical Engineering Science, 2003, 58: 387 – 395.
    [63] Kuwagi K, Mikami T, Horio M. Numerical simulation of metallic solid bridging particles in a fluidized bed at high temperature [J]. Powder Technology, 2000,109: 27-40.
    [64] Kaneko Y, Shiojima T, Horio M. DEM simulation of fluidized beds for gas-phase olefin polymerization [J]. Chemical Engineering Science, 1999, 54: 5809 -5821.
    [65] Rong D. Dem simulation of hydrodynamics, heat transfer and combustion in fluidized bed [D]. Ph.D. dissertation. Tokyo University of Agriculture and Technology, Japan, 2000.
    [66] 刘安源,刘石,马玉峰,等.流化床锅炉热烟气点火过程的离散颗粒模拟[J].中国电机工程学报,2005,25(3):120-124.
    [67] 陈少强等.可视化技术在物化探找矿中的应用及前景[J].物探与化探,2002,26(1): 60-63.
    [68] Lackermeier U, Rudnick C, Werther J, Bredebusch A, et al. Visualization of flow structures inside a circulating fluidized bed by means of laser sheet and image processing [J]. Powder Technology,2001, 114: 71-83
    [69] 金昊.基于虚拟仪器的计算机视觉系统的研究 [J].电子技术应用,2000(4): 10-12.
    [70] 赵荣椿. 数字图象导论[M].西安:西北工业大学出版社,1995.
    [1] 王泳嘉,邢纪波. 离散单元法及其在岩土力学中的应用[M].沈阳: 东北工学院出版社,1991.
    [2] Campbell C S, Brennen C E. Chute flows of granular material some computer simulation [J]. Trans. ASME: J. Appl. Mech., 1985,52: 172-178.
    [3] Campbell C S, Gong A. The stress tensor in a two-dimensional granular shear flow [J]. J. Fluid Mech., 1986, 164:107-125.
    [4] Walton Q R, Braun R L. Stress calculations for assemblies of inelastic spheres in uniform shear [J]. Acta Mech., 1986, 63: 73-86.
    [5] Walton Q R. Particle-dynamics calculation of shear flow, in Mechanics of Granular Materials: New Models and Constitutive Relations,ed. by Jenkins J T and Satake M [M]. Amsterdam: Elsevier, 327-338, 1983.
    [6] Hopkins M A, Shen H.H. A Monte Carlo simulation of a rapid simple shear flow of granular materials, In Micromechanics of Granular Materials, ed. Satake M, Jenkins J T. Amsterdam: Elservier,pp.349-358,1988
    [7] Hogue C, Newland D. Efficient computer simulation of moving granular particles [J]. Powder Technology, 1994, 78: 51-66.
    [8] Wang Y, Mason M T. Two-dimensional rigid-body collisions with friction [J]. Transactions of ASME Journal of Applied Mechanics,1992, 59:635-642.
    [9] Hoomans B P B, Kuipers J A M, Briels W J, et al. Discrete particle simulation of bubble and slug formation in a two dimensional gas fluidized bed: a hard sphere approach [J]. Chemical Engineering Science, 1996, 51(1): 99-118.
    [10] Allen M P, Tildesley D J. Computer Simulations of Liquids [M]. Oxford: Oxford Science Publications, 1990.
    [11] Tsuji Y, Kawaguchi, T. Discrete particle simulation of two dimensional fluidized bed [J]. Powder Technology, 1993,77: 79-87.
    [12] Tanaka, T, Yonemura, S, Kiribayashi, K and Tsuji, Y. Cluster formation and particle-induced instability in gas-solid flows predicted by the DSMC method [J]. JSME International Journal, 1996, 39 Series B(2): 239-245.
    [13] 张(钅监),由长福,徐旭常.循环床内气固两相流中稠密颗粒间碰撞的数值模拟[J].工程热物理学报, 1998,19(2): 256 - 259.
    [14] Xu B H, Yu A B. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics [J]. Chemical Engineering Science, 1997, 52(16): 2785-2809.
    [15] Ouyang Jie, Li Jinghai. Particle-motion-resolved discrete model for simulating gas-solid fluidization [J]. Chemical Engineering Science, 1999, 54:2077-2083.
    [16] Cartaxo S J M, Rocha S C S. Object-oriented simulation of the fluid-dynamics of gas–solid flow [J]. Powder Technology, 2001, 117: 177-188.
    [17] Douglas Smoot L, David T Pratt. Pulverized- Coal Combustion and Gasification [M]. New York: Plenum Press, 1979, pp113.
    [18] Walton O R. Numerical simulation of inclined chute flows of mono-disperse inelastic, frictional spheres [J]. Mech. Mater., 1993, 16: 239-247.
    [19] Johnson K L. Contact Mechanics, 2nd ed. [M]. New York: Cambridge Univ. Press, 1985.
    [20] Mindlin R D, Deresiewicz H. Elastic spheres in contact under varying oblique forces [J]. ASME J. Appl. Mech., 1953,20: 327–344.
    [21] Thornton C, Randall C W. Applications of theoretical contact mechanics to solid particle system simulation, in Micromechanics of Granular Materials (M. Satake and J. T. Jenkins, Eds.) [M]. Amsterdam: Elsevier Science Publishers, 1988, pp. 133-142.
    [22] Lin X. Numerical Study of Granular Soil Behavior Using Random Arrays of Elastic Ellipsoids [D]. Ph.D. thesis, University of New Mexico, Albuquerque, 1995.
    [23] Walton O R. Numerical simulation of inelastic, frictional particle-particle interactions [M]. Particulate Two-Phase Flow (Roco M C, Ed.), Chap. 25, pp. 884–911, Butterworth- Heinemann, Stonehan, MA, 1993.
    [24] 武锦涛,陈纪忠,阳永荣.模拟颗粒流动的离散元方法及其应用[J].现代化工, 2003,23 (4): 56-58.
    [25] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J] Geotechnique, 1979, 29: 47-65.
    [26] Mishra B K. Ball charge dynamics in a planetary mill [J]. KONA Powder Particle, 1995, 13: 151-158.
    [27] Vu-Quoc L ,Zhang X,Walton O R. [J] . Comput Methods Appl. Mech. Engrg. 2000 187: 483 -528.
    [28] Kafui K D, Thornton C, Adams M J. Discrete particle-continuum fluid modelling of gas–solid fluidised beds[J]. Chemical Engineering Science,2002, 57:2395–2410.
    [29] Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids [C]. Proceedings of the Royal Society of London, 1971, 324 (A): 301–313.
    [30] Tian F G, Yin B, Zhang M C, et al. Numerical simulation of the gas-solid flow in an internally circulating fluidized bed with a DEM-CFD model [C]. Proceedings of the 8th International Conference on Circulating Fluidized Beds, Hangzhou, China, May 10~13, 2005, 379-385.
    [31] Agarwal P K, O’neill B K. Transfer phenomena in multi-particle systems [J]. Chemical Engineering Science, 1988, 43: 2487.
    [32] Wylie J J, Koch D L.. Particle clustering due to hydrodynamic interactions [J]. Physics of Fluids, 2000, 12: 964.
    [33] Helland E, Occelli R, Tadrist L. Numerical study of cluster formation in a gas-particle circulating fluidized bed [J]. Powder Technology, 2000, 110: 210.
    [34] Wen C Y, Yu Y H. [J] Mechanics of fluidization. AIChE series. 1966, 62: 100.
    [35] Felice R D. The voidage function for fluid–particle interaction systems [J]. International Journal of Multiphase Flow, 1994, 20: 153.
    [36] Happel, J. Viscous flow in multi-particle systems: Slow motion of fluids relative to beds of spherical particles [J]. AIChE Journal, 1958, 4: 197.
    [37] Koch D L, Hill, R. J. Inertial e0ects in suspension and porous—media flows [J]. Annual Reviews Fluid Mechanics, 2001, 33: 619.
    [38] Ergun S. Fluid flow through packed columns [J]. Chemical Engineering and Processing, 1952, 48: 89.
    [39] Richardson, J. F. (191). In J. F. Davidson, & D. Harrison (Eds.), Fluidization [M]. New York: Academic Press.
    [40] Morgan J P, Taylor R W, Booth F L. The value of the exponent n in the Richard and Zaki equation, for fine solid fluidized with gases under pressure [J]. Powder Technology, 1970, 4:286.
    [41] Choi H G, Joseph D D. Fluidization by lift of 300 circular particles in plane Poiseuille flow by direct numerical simulation [J]. Journal of Fluid Mechanics, 2001, 438: 101.
    [42] Zhang J, Fan L-S, Zhu C, Pfeffer R, Qi D. Dynamic behavior of collision of elastic spheres in viscous fluids [J]. Powder Technology, 1999, 106: 98.
    [43] Hill R. The e9ects of fluid inertia on flow in porous media [D]. Ph.D. Dissertation, Cornell University, 2001.
    [44] Rong D. Dem simulation of hydrodynamics, heat transfer and combustion in fluidized bed [D]. Ph.D. thesis Tokyo University of Agriculture and Technology, Japan, 2000.
    [45] Li J, Kuipers J A M. Gas-particle interactions in dense gas-fluidized beds [J]. Chemical Engineering Science 58(2003) 711-718.
    [46] Vemuri B C. Efficient and accurate collision detection for granular flow simulation [J]. Graphics Models and Image Processing, 1998, 60: 403-422.
    [47] Vu-Quoc L, Zhang X, Walton O R. A 3-D discrete-element method for dry granular flows of ellipsoidal particles [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 187: 483~528.
    [48] Kholmurodov K, Smith W, Yasuoka K, et al. A highly vectorised “link-cell” FORTRAN code for the DL_POLY molecular dynamics simulation package [J]. Computer Physics Communications, 2000, 125: 167-192.
    [49] Trabado G P, Plata O, Zapata E L. On the parallelization of molecular dynamics codes [J]. Computer Physics Communications, 2002, 147: 711–715.
    [50] Carrión Sch?fer, Benjamin; Steven F. Quigley; et al. Acceleration of the Discrete Element Method (DEM) on a reconfigurable co-processor [J]. Computers and Structures, 2004, 82: 1707–1718.
    [51] Kaneko Y, Shiojima T, Horio M. DEM simulation of fluidized beds for gas-phase olefin polymerization [J]. Chemical Engineering Science, 1999, 54: 5809 -5821.
    [52] 袁竹林. 用直接数值模拟方法对流化床内颗粒运动区域的研究[J]. 燃料化学学报, 2000, 28(4): 372-375.
    [53] Rong G H, Negi S C, Jofrie J C. Simulation of Flow Behaviour of Bulk Solids in Bins. Part 1: Model Development and Validiation [J]. J. Agric. Engng Res., 1995, 62:247-256.
    [54] Yuu S, Umekage T, Johno Y. Numerical simulation of air and particle motion in bubbling fluidized bed of small particles [J]. Powder Technology, 2000, 110: 158-168.
    [1] 戴维森,哈里森.流态化[M].北京:科学出版社,1981.
    [2] 黎强,邱宽嵘,丁玉.流态化原理及其应用[M].徐州:中国矿业大学出版社,1994.
    [3] 朱建新,马增益,池涌,等.图像法用于流化床颗粒运动速度测量的实验研究[J]. 计量学报 2004, 25 (2): 142-145.
    [4] 黄群星,马增益,池涌,等.循环流化床内局部颗粒混合特性的研究[J]. 动力工程, 2004, 24 (1),13-17.
    [5] 滕汜颖, 李永光等. 气固两相流动测量技术的现状与展望, 同济大学学报[J ]. 2002, 18(4): 32 -34.
    [6] Lackermeier U, Rudnick C, et al. Visualization of flow structure inside a circulating fluidized bed by means of laser sheet and image processing [J]. Powder Technology, 2000114: 71-83.
    [7] Horio M, Kuroki H. Three-dimensional flow visualization of dilutely dispersed solids in bubbling and circulating fluidized bed [J]. Chem. Eng. Sci,1994,49(15):2413-2421.
    [8] 尹斌, 章明川, 唐春捷, 吴江, 豆斌林, 王雷. L 型定向风帽流化床中气泡特性的可视化研究[J].上海交通大学学报. 2003, 37 (9) :1488-1491.
    [9] Yin Bin,Zhang Mingchuan,Wu Jiang,et al.Discrete particle simulation and visualized research of the gas-solid flow in fluidized beds with l-type wind caps[J].Proceedings of the CSEE,2003,23(7):183-190.
    [10] 姜峰,赵国华,李修伦.汽-液-固三相循环流化床蒸发器的可视化分析[J].天津大学学报,2006,39(4):418-423.
    [11] 浦世亮,Denis Lebrun,王勤辉,等.激光数码全息测量技术在循环流化床中的应用[J].中国电机工程学报,2005,25(15):111-115.
    [12] 王庆有, 孙学珠. CCD 应用技术[M] . 天津:天津大学出版社,1993.
    [13] 蔡文贵,李永远,许振华. CCD 应用及技术[M] . 北京:电子工业出版社,1993.
    [14] Wen C Y, Yu Y H. Mechanics of fluidization. Chem. Engng Prog. Symp. Ser. 1966, 62 (5), 100-105.
    [15] 刘安源,刘石,姜凡.鼓泡流化床流动特性的欧拉-离散单元方法模拟[J].燃烧科学与技术,2003,9(2):148-152.
    [16] Kawaguchi T, Tanaka T, Tsuji Y. Numerical simulation of two-dimensional fluidized bedsusing the discrete element method (comparison between the two- and three-dimensional models) [J]. Powder Technology, 1998, 96:129–138.
    [17] Geldart D.Types of gas fluidization[J].Powder Technology,1973,7(5):285-290.
    [18] Nicolai R, Reh L. M easurements of Solids Concentration, Velocity and Momentum Distribution in a Cold CFB Unit [C]. Proceedings of the 13th Inter Conf on FBC, ASME, Florida,1995,681-689.
    [19] Johnsson F, Zijerveld R C, Schouten J, van den Bleek C M, et al. Analysis of pressure fluctuations in fluidized beds [J]. International Journal of Multiphase Flow, 2000, 26: 663- 715.
    [20] Kage H, Iwasaki N, Yamaguchi H, Matsuno Y. Frequency analysis of pressure fluctuation in fluidized bed plenum [J]. Journal of Chemical Engineering of Japan, 1991, 24: 76–81.
    [21] 丁玉美,高西全.数字信号处理[M]. 西安: 西安电子科技大学出版社,2002.
    [22] 赵贵兵,陈纪中,阳永荣. 流化床压力脉动信号时间延迟相关性[J].化工学报,2002, 53(12):1281-1287。
    [23] Bai B, Gheorghiu S, van Ommen J R, et al. Characterization of the void size distribution in fluidized beds using statistics of pressure fluctuations [J]. Powder Technology, 2005, 160: 81-92.
    [24] Davidson, J. F., D. Harrison. Fluidization London: Academic Press Inc., 1971.
    [25] Zenz F A. Chem. Engrg.,.81-91,(Dec. 1977)
    [26] Gera D, Gautam M. Tsuji Y. Computer Simulation of Bubbles in Large-Particle Fluidized Beds [J]. Powder Technology, 1998,98: 38-47.
    [27] van Wachem B G M, van der Schaaf J, J Schouten C, et al. Experimental validation of Lagrangian - Eulerian simulations of fluidized beds [J]. Powder Technology, 2001, 116: 155 -165.
    [1] Avedesian M M, Davidson J F. Combustion of carbon particles in a fluidized bed [J]. Trans. Inst. Chem. Engrs., 1973,51:121-131.
    [2] Clift R, Grace J R, Sollazzo V. J. Heat Transfer, 1974, 96: 371-376
    [3] Toomey R D, Johnstone H. F.. Gaseous fluidization of solid particles [J].Chem. Engrg. Prog., 1952, 48(5): 220-226.
    [4] Cranfield R R, Geldart D. Large Particle Fluidization [J]. Chemical Engineering Science, 1974, 26: 935-647.
    [5] Glicksman L R, Lord, W K, Sakagami M. Bubble Properties in Large-Particle Fluidized Beds[J].Chemical Engineering Science, 1987, 42(3): 479-491.
    [6] Lord W K, McAndrews G, Sakagami M, Glicksman L R. Measurements of bubble properties in fluidized beds [C]. Proceedings of the Seventh International Conference on Fluidized Beds, 1982.
    [7] Jones T L, Glicksman L R. An Experimental Investigation of Gas Flow in a Scale Model of a Fluidized Bed Combustor [J]. Powder Technology, 1986, 45: 201-214.
    [8] Pyle D L, Harrison D. An Experimental Investigation of the Two Phase Theory of Fluidization[J]. Chemical Engineering Science, 1967, 22: 1199-1207.
    [9] Godard K, Richardson J F. Distribution of Gas Flow in a Fluidized Bed[J].Chemical Engineering Science, 1969, 23:660.
    [10] Rowe,P.N. and Everet,D.J., Fluidized Bed Bubbles Viewed by X-Rays, Part ,Bubble size and number when munrestrained three dimensional growth occurs[J]. Transactions of the Institute of Chemical Science, 1972, 50: 55-61.
    [11] Rowe,P.N. and Yacono, C.X.R., The Bubbling Behavior of Fine Powder When Fluidized [J]. Chemical Engineering Science, 1976,31: 1179-1192.
    [12] Rowe,P.N.,Santoro L, Yates J G. The division of gas between bubble and interstitial phases in fluidized beds of fine powders [J].Chemical Engineering Science, 1978, 33: 133-140
    [13] Davidson J F, Harrison D. The bubble behavior of a continuously bubbling fluidized bed[J]. Chemical Engineering Science, 1966, 21: 731-738.
    [14] Lockett M J, Davidson J F, Harrison D. Two-phase theory of fluidization [J]. Chemical Engineering Science, 1967, 22: 1059-1065.
    [15] Grace J R, Harrison D. The behavior of freely bubbling fluidized beds [J]. Chemical Engineering Science, 1969, 24: 497-508.
    [16] Bar-Cohen A, Glicksman L R, Hughes R. Theoretical bounding relations for void fraction in bubbling fluidized beds[J]. International Journal of Multiphase flow, 1980, 6: 319-327.
    [17] Grace J R, Clift R. On the Two-phase theory of fluidization [J]. Chemical Engineering Science, 1974, 29: 327-334.
    [18] Zhang Mingchuan Experimental evaluation of flow division between bubbles and emulsion in a gas-particle fluidized bed. MIT Energy Laboratory Working Paper. No. MIT-EL 83-008WP, February, 1983.
    [19] Shen L, Johnsson F, Leckner B. Digital image analysis of hydrodynamics two-dimensional bubbling fluidized beds [J]. Chemical Engineering Science, 2004, 59 : 2607 – 2617.
    [20] Gera D, Gautam M. Effect of bubble coalescence on throughflow velocity in a 2-D fluidized bed [J]. Powder Technology, 1995, 83: 49-53.
    [21] Glicksman L, Lord W, Valenzuela J, et al. A Model of the Fluid Mechanics in Fluidized. Bed Combustors [J]. AIChE Symp. Ser. 1981, 77: 139.
    [22] Farrokhalaee T. Ph.D. dissertation. Cambridge University, 1979.
    [23] Werther J. In “Fluidization Tehnology” ( D. l. Keairns, ed), Vol I, pp. 215-225. Hemisphere Publ. Corp., Washington D. C.
    [24] Davidson J F, Clift R, Harrison D. Fluidised Particles [M]. London: Cambridge, University Press, 1963.
    [25] 国井大藏, 列文斯比尔. 流态化工程 [M]. 华东石油学院, 上海化工设计院, 等译. 北京: 石油化学工业出版社, 1977.
    [26] Levy, E K, Chen H K, Radcliff R, et al. Analysis of Gas Flow Through Eruption Bubbles in. a Gas-Fluidized Bed [J]. Powder Technology, 1988, 54: 45-57.
    [27] Levy, E K, Kocatulum B. Analysis of Gas Motion at The Surface of A Fluidized Bed due to Bubble Eruptions. AIChE Symposium Series, Advances in Fluidization Engineering, 1990, 86 (276) : 78-87.
    [28] Yates J G, Cheesman, D J, Sergeev Y A.,. Experimental observations of voidage distribution. around bubbles in a fluidized bed [J]. Chemical Engineering Science, 1994, 49: 1885-1895.
    [29] Jackson R.. The mechanics of fluidized beds: Part I, Trans. Inst. Chem. Eng., 1963,41: 13-20.
    [30] Bai B, Gheorghiu S, van Ommen J R, et al. Characterization of the void size distribution in fluidized beds using statistics of pressure fluctuations [J]. Powder Technology, 2005, 160: 81-92.
    [31] Davidson, J. F., D. Harrison. Fluidization London: Academic Press Inc., 1971.
    [32] Campos J B L M, Mota O D S, Pinto A M F R. Measurement of Mass Transfer between the Bubble and Dense Phases in a Fluidized Bed Combustor [J]. Combustion and Flame, 1999, 116: 105-119.
    [33] La Nauze R D, Jung K, Kastl J. Chemical Engineering Science, 1984, 39:1623.
    [34] Guedes de Carvalho J R F, Coelho M . N. Chemical Engineering Science, 1986, 41:209.
    [35] Drinkenburg A A H, Rietema K. Chemical Engineering Science, 1973, 28:2 59-273.
    [36] Calderbank P H, Pereira J, Burgess J M. in Fluidisation Technology, Vol. 1, (D. L. Keairns, Ed.), Hemisphere, New York, 1976, p. 115.
    [37] Chavarie C, Grace J R. Chemical Engineering Science, 1976, 31:741.
    [38] Sit S P, Grace J R. Chemical Engineering Science, 1978, 33:1115.
    [39] 岑可法,倪明江,骆仲泱等. 循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,1997.
    [1] Levy Y, Lockwood F C. Doppler measurements of flow in the freeboard of a fluidized bed [J]. AIChE J., 1983, 29: 889–895.
    [2] Hamdullahpur F, MacKay G D M. Two-phase flow behaviour in the freeboard of a gas fluidized bed [J]. AIChE J., 1986 32(12): 2047–2055.
    [3] Lang I. Structure of Flow in the Freeboard Region of Gas Solid Fluidized Bed [D]. PhD thesis, University of Edinburgh, 1986.
    [4] Hamdullahpur F, Pegg M J, MacKay G D M. A laser-fluorescence technique for turbulent two-phase flow measurements [J]. Int. J. Multiphase Flow 3 1987 379–385.
    [5] Horio M, Taki A, Hsieh Y S, et al. Fluidization [M]. Plenum,1980.
    [6] Pemberton S T, Davidson J F. Turbulence in the freeboard of a gas fluidized bed, the significance of ghost bubbles [J]. Chemical Engineering Science, 1984, 39(5): 829–840.
    [7] Yorquez-Ramirez M I, Duursma G R. Insights into the instantaneous freeboard flow above a bubbling fluidised bed [J]. Powder Technology, 2001, 116: 76-84.
    [8] Keane R D, Adrian R J. Optimization of particle image velocimetry: Part 1. Double pulsed systems [J]. Meas. Sci. Technol. 1990, 1: 1202–1215.
    [9] Rix S JL, Glass D H, C. Greated A. Preliminary studies of elutriation from gas-fluidized beds using particle image velocimetry [J]. Chemical Engineering Science, 1996, 51(13): 3479-3489.
    [10] Saxena S C, Mathur A, Ramasamy V, ET AL. Solids Projection from The Surface of A Bubbling Gas Fluidized Bed Combustor [C]. Proceeding of the 1989 International Conference on Fluidized Bed Combustion, San Francisco, California, April, 30-May, 3, 1989,Volume One: 445-450.
    [11] Hartholt G P, Hoffmann A C, Janssen L P B M. Visual observations of individual particle behaviour in gas and liquid. fluidized beds [J]. Powder Technology, 1996, 88: 341-345.
    [12] Shen L, Johnsson F, Leckner B. Digital image analysis of hydrodynamics two-dimensional bubbling fluidized beds [J]. Chemical Engineering Science, 2004, 59 : 2607 – 2617.
    [13] Santana D, Nauri S, Acosta A. Initial particle velocity spatial distribution from 2-D erupting bubbles in fluidized beds [J]. Powder Technology, 2005150: 1- 8.
    [14] Yates J G, Cheesman D J, Lettieri P. X-Ray Analysis of Fluidized Beds and Other Multiphase Systems [J]. KONA, 2002,2:133-143.
    [15] 张志攀, 刘会娥, 罗国华, 等. X 射线投影成像法测量气固流化床中的固含分布--I) 原理及图像处理方法 [J]. 过程工程学报, 2002,2(5): 400-405.
    [16] Weimer A W, Gyure D C, Clough D E. Application of a gamma radiation density gauge for determining hydrodynamic properties of fluidized beds [J]. Powder Technology, 1985,44:179- 194.
    [17] Umekawa H, Ozawa M, Takenaka N.Visualization of bed material movement in a simulated fluidized bed heat exchanger by neutron radiography [J]. Nuclear Instruments and Methods in Physics Research A, 1999, 424: 77-83.
    [18] Gelperin N E, Einstein V G. Heat transfer in fluidized bed[A]. Davidson J F, Hamson D (eds). Fluidization [C]. New York: Academic Press,1971.
    [19] Davidson J F, Clift R, Harrison D. Fluidization, Second Edition [M]. London: Academic Press, 1985.
    [20] Gibilaro L G , Rowe P N. A model for a segregation as fluidized bed [J]. Chemical Engineering Science,1974 ,29 :1403-1412.
    [21] Shen, L H, Zhang, M Y. Effect of particle size on solids mixing in bubbling fluidized beds [J]. Powder Technology, 1998, 97(2): 170-177.
    [22] 周亚明.流化床内床层表面颗粒分布模型[J].现代电力,2001, 18 (4): 32-36.
    [23] George S E, Grace J R. Entrainment of particles from aggregative fluidized beds [J]. AIChE Symp. Ser., 1978, 74: 67-74.
    [24] Saxena S C, Mathur A. On the origin of solids projected from the surface of a gas-fluidized bed [J]. Chemical Engineering Science, 1984, 44: 917-918.
    [25] 岑可法,倪明江, 骆仲泱等. 循环流化床锅炉理论设计与运行[M]. 北京:中国电力出版社,1997.
    [26] Vakhrushew I A, Vladimirov A I, Hoi T T. The Behavior of Bubbles in a Gas Fluidized Bed [J]. Theoretical Fundation of Chemical Engineering, 1980,14: 182-189.
    [27] Levy E K, Dille J C, Caram H S, Single Bubble Eruptions in Gas Fluidized Beds[J]. Powder Technology, 1982, 32: 173-178.
    [28] Peters M H, Fan L S, Sweendy T L. Study of Particle Injection in the Free Board of a Fluidized Bed with an Image Carrying Probe [J]. Chemical Engineering Science, 1983,38:275-282.
    [29] Saxena S C, Mathur A, Sharma G K. Bubble Dynamics and Elutriation Studies in Gas-Fluidized Beds [J]. Chemical Engineering Communication, 1984, 29: 35-61.
    [30] Peters M H, Prybylowski D L. Particle motion above the surface of a fluidized bed: multi-particle effects, 1983, 79: 83-86.
    [31] Demmich J. Mechanism of solids entrainment from fluidized beds [J]. Ger. Chem. Eng. 1984, 7: 386-394.
    [32] Fung A S, Hamdullahpur F. A gas and particle flow model in the freeboard of a fluidized bed based on bubble coalescence [J]. Powder Technology, 1993, 74: 121-133.
    [33] Caram, H, Efes Z, Levy E. Gas and particle motion induced by a bubble eruption at the surface of a gas fluidized bed [J]. AIChE Symposium Series, 1984, 80(234): 106-113.
    [34] Levy E, Chen H, Radcliff R, Caram H. Analysis of gas flow through erupting bubbles in a gas-fluidized bed [J]. Powder technology, 1988.54: 45-57.
    [35] Abramovich G N. The Theory of Turbulent Jets [M]. 2nd edn., MIT Press, Cambridge, MA, 1963.
    [36] Maxworthy T. The structure and stability of vortex rings [J]. J. Fluid. Mech., 1972, 51(1): 15- 32.
    [37] Yorquez-Ramirez M I, Duursma G R. Study of the flow pattern above and erupting bubble in an incipiently fluidised bed using image shifting [J]. Chemical Engineering Science, 2000, 55(11): 2055–2064.
    [1] Merry J M D,Davidson J F.“Gulf stream”circulation in shallow fluidized beds[J].Trans Inst Chem Engrs,1973,51:361-368.
    [2] Garncarek Z, Przybylskil,Botterill S M, et al. A Measure of the Degree of Inhomogeneity in a Distribution and Its Application in Characterising the Particle Circulation in a Fluidized Bed [J].Powder Technology, 1994,80.
    [3] 路春美,许炳松.内循环流化床颗粒动力特性的研究[J].热能动力工程,1997,12(5):335-338 .
    [4] 周亚明,沈湘林.气固流化床内颗粒的内循环特性的研究[J].热能动力工程,2000,15 (1):11-13.
    [5] 田文栋,魏小林,孙满弟等。图像技术在非均匀布风流化床颗粒运动分析中的应用[J] .力学与实践,2001,23(3):35-38.
    [6] 尹斌,章明川,唐春捷,等。内循环流化床气泡运动特性的可视化研究[J].动力工程,2003, 23(1):2143-2145.
    [7] 勾宏图 ,吴玖桓 ,张衍国,等。垃圾炉内大颗粒运动特性的可视化实验研究[J].锅炉制造2005,1:8-10.
    [8] 徐旭, 池涌, 李斌,等。内旋流流化床床内颗粒运动特性的试验研究[J]。中国电机工程学报,2001,21(11):9-13.
    [9] 田凤国,章明川,范浩杰,等.内循环流化床大块物分布特性的试验研究[J].动力工程,2005, 25(6):820-824.
    [10] Rowe P N, Nienow A W. Mimimum Fluidization Velocity of Multi-component Particle Mixtures[J]. Chemical Engineering Science,1975, 30(11): 1365-1369.
    [11] 张立斌,姜凡,潘忠刚,等.非均匀布风条件下布风板上大块物料运动规律的实验研究[J]. 锅炉技术,2000,31(6):7-10.
    [12] Bram A. Saadevandi; Richard Turton. The application of computer-based imaging to the measurements of particle velocity and voidage profiles in a fluidized bed [J]. Powder Technology 1998, 98 (8): 183-189.
    [13] Horio, M,Kuroki H. Three-dimensional flow visualization of dilutely dispersed solids in bubbling and circulating fluidized bed[J]. Chemical Engineering Science, 1994, 49 (6), 2413 -2421.
    [14] Tadrist, T, Van den Moortel. Experimental analysis of the two-phase flow structure in a circulating fluidized bed by image processing [C]. In: M. Kwauk, J. Li (Eds.), Proc. 5th Int. Conf Circulating Fluidized beds. Science Press. Beijing, 1996, pp. 230-235.
    [15] Lackermeier, U.; Rudnick, C.; Werther, J. etc. Visualization of flow structures inside a circulating fluidized bed by laser sheet and image processing [J].Powder Technology, 1999, 114 (1): 71-83.
    [16] 凌祥, 涂善东, 陈嘉南. 计算机图像处理技术用于微粒的定量测量[J]. 南京化工大学学报.1999,21(1):54-57.
    [17] 万振恺. 面矩 CCD 摄像机视频信号数据采集及其图像处理的应用[J]. 电子与自动化. 1998, 7(3),14-19.
    [18] 王煊, 张永泽, 李嘉. 数字图像处理技术在固-液两相流实验中的应用. 水动力学研究与进展[J]. 1999,14(2):210-218.
    [19] Freedman W, et al. Hold up and liquid circulation in bubble columns [J]. Transactions of the Institution of Chemical Engineers, 1969, 47 (3):2512262.
    [20] Nagato S, Kamisada M, Kosugi S, et al. Characteristics of the Internally Circulating Fluidized Bed Boiler [C]. Proceeding of 4th China-Japan Fluidization Science and Technology Symposium. 1991, 56-65
    [21] Ohshita T, Higo T, Kosugi S, et al. Formation of Internally Circulating Flow and Control of Overall Heat-Transfer Coefficient in a Fluidized-Bed Boiler[J]. Heat-Transfer Japanese research, 1994, 23(4): 135-142.
    [1] Szekely J, Evans J W. 气-固反应[M]. 胡道和 译. 北京:中国建筑工业出版社,1986.
    [2] Rasul MG, Rudolph V, Wang F Y. Particles Separation Using Fluidization Techniques [J].International Journal of Mineral Processing. 2000. 60(3-4): 163-179
    [3] Hemati M, Spieker K, et al. Experimental Study of Sawdust and Coal Particle Mixing in Sand or Catalyst Fluidized Beds [J]. The Canadian Journal of Chemical Engineering. 1990, 68(5): 768-772.
    [4] Bilbao B, Lezaun J, et al. Model of Mixing-Segregation for Straw/Sand Mixtures in Fluidized Beds [J].Powder Technology. 1988, 56(3): 149-155.
    [5] Wu W Y, Saxena S C. Mixing Characteristics of Light Paper Pellets in a Sand Fluidized Bed [J].Energy. 1997, 22(6):615-619.
    [6] Lim K S.Mixing of homogeneous solids in bubbling fluidized beds:the-oretical modeling and experimental investigation using digital image analysis [J].Chem Eng Sci,1993,48(12):2251-2265.
    [7] Shen L.Effect of particle size on solids mixing in bubbling fluidized beds [J].Powder Technology,1998,97(2):170-177.
    [8] Sitnai O.Solid mixing in a fluidized bed with horizontal tubes[J].Ind Eng Chem Process Des Dey,1981,20(3):533-538.
    [9] Gibilaro L G, Rowe P N. A Model for a Segregation Gas Fluidized Bed [J].Chemical Engineering Science. 1974, 29(11): 1403-1412.
    [10] Wirsum M, Fett F,et al. Particle Mixing in Bubbling Fluidized Beds of Binary Particle Systems [J].Powder Technology. 2001, 120(1-2):63-69.
    [11] Hoffmann A C, Janssen L P B M, et al. Particle Segregation in Fluidized Binary Mixtures [J].Chemical Engineering Science. 1993, 48(9): 1583-1592.
    [12] Wu S Y, Baeyens J. Segregation by Size Difference in Gas Fluidized Beds [J].Powder Technology. 1998, 98(2): 139-150.
    [13] 唐晋,许光文,李静海.对深化流态化研究的几点看法[J].中国科学基金,1996,2:85-89.
    [14] Hoomans B P B, Kuipers J A M, Briels W J, et al. Discrete particle simulation of bubble and slug formation in a two dimensional gas fluidized bed: a hard sphere approach [J]. Chemical Engineering Science, 1996, 51(1): 99-118.
    [15] Ouyang Jie, Li Jinghai. Particle-motion-resolved discrete model for simulating gas-solid fluidization [J]. Chemical Engineering Science, 1999, 54:2077-2083.
    [16] 刘安源,刘石,姜凡.鼓泡流化床流动特性的欧拉-离散单元方法模拟[J].燃烧科学与技术,2003,9(2):148-152.
    [17] 袁竹林. 用直接数值模拟方法对流化床内颗粒运动区域的研究[J]. 燃料化学学报, 2000, 28(4): 372-375.
    [18] Limtrakul S, Chalermwattanatai A,Unggurawirote K, Tsuji Y. Discrete Particle Simulation of Solids Motion in a Gas-Solid Fluidized Bed [J].Chemical Engineering Science, 2003, 58(3-6): 915-921.
    [19] 李克永等译.实用粉体技术[M]. 北京: 中国建筑工业出版社, 1983.
    [20]Lacey, P M C. Developments in the theory of particle mixing [J]. Journal of Applied Chemistry, 1954, 4: 257.
    [21] 卢寿慈. 粉体加工技术[M].北京:中国轻工业出版社,1999.
    [22] Ashton M D,Valentin F H H.The mixing powders and particles in industrial mixers [J].Transactions of the institution of chemical engineers,1966,44a:166-188.
    [23] 陆厚根.粉体工程学概论[M].上海:同济大学出版社,1987.
    [24] 朱建新,马增益,池涌,等.图像法用于流化床颗粒运动速度测量的实验研究[J].计量学报,2004,25(2):142- 145.
    [25] Daizo Kunii, Octave Levenspiel. Fluidization Engineering. Butterworth-Heinemann. Second Edition. USA. 1997: 359-365
    [26] 田文栋,魏小林,黎军,等.非均匀和均匀布风流化床中颗粒的运动分析[J].工程热物理学报,2001,22(Suppl.):160-163.
    [27] Hunt M L. Discrete element simulations for granular material flows: effective thermal conductivity and self-diffusivity [J]. In. J. Heat Mass Transfer, 1997, 40(13):3059-3068
    [28] Kaneko Y, Shiojima T, Horio M. DEM simulation of fluidized beds for gas-phase olefin polymerization [J]. Chemical Engineering Science, 1999, 54: 5809 -5821.
    [29] Rong D. Dem simulation of hydrodynamics, heat transfer and combustion in fluidized bed [D]. Ph.D. dissertation. Tokyo University of Agriculture and Technology, Japan, 2000.
    [30] Zhou H, Flamant Gilles, Daniel Gauthier. DEM-LES simulation of coal combustion in a bubbling FLuidized bed Part II: coal combustion at the particle level [J]. Chemical Engineering Science,2004,59:4205-4215
    [31] 刘安源,刘石,马玉峰,等.流化床锅炉热烟气点火过程的离散颗粒模拟[J].中国电机工程学报,2005,25(3):120-124.
    [32] Wen C Y, Yu Y H. Mechanics of fluidization. Chem. Engng Prog. Symp. Ser., 1966, 62 (5): 100-105.
    [33] Yagi, Kunii. Studies on effective thermal conductivities in packed beds [J]. AICh. E.Journal, 1957, 3: 373-381.
    [34] Sun J, Chen M M. A theoretical analysis of heat transfer to particle impact [J]. International Journal of Heat and Mass Transfer , 1988, 31 (3): 969–975.
    [35] Wen C Y, Chang T M. Particle-to-particle heat tansfer in-air fluidized beds [C]. Proceedings of International Symposium on Fluidization, edited by Drinkenburg, A. A. H., Eindhoven, 1967, Part 2: 491-506.
    [36] Botterill J S M, Williams J R. The mechanism of heat transfer to gas-fluidized beds [J]. Trans. Instn. Chem. Engers, 1963, 41: 217-230.
    [37] Gabor J. Wall-to-bed heat transfer in fluidized and packed beds. Fluidization fundamentals and application [J]. Chemical Engineering progress Symposium Series, 1970, 66: 16-86
    [38] Delvosalle C, Vanderschuren J. Gas-to-particle and particle-to-particle heat transfer in fluidized beds of large particles [J]. Chemical Engineering Science, 1985, 40 (5): 769-779.
    [39] Visser J. An invited review. van der Waals and other cohesive forces affecting powder fluidization [J]. Powder Technology, 1989, 58: 1-10.
    [40] Ranz W E. Friction and transfer coefficients for single particles and packed beds [J]. Chemical Engineering Progress, 1952, 48:247–253.
    [1] Dong Changqing; Jin Baosheng; Zhong Zhaoping; Lan Jixiang. Tests on co-firing of municipal solid waste and coal in a circulating fluidized bed [J]. Energy Conversion and Management. 2002, 43 (16), 2189-2199.
    [2] Gibilaro L G , Rowe P N. A model for a segregation as fluidized bed [J]. Chemical Engineering Science,1974 ,29 :1403-1412.
    [3] 罗国华,张济宇,张碧江.气固流化床中颗粒分离研究进展[J].化学反应工程与工艺,1995,11(2):107-119.
    [4] Mostoufi, Navid; Chaouki, Jamal. Local solid mixing in gas–solid fluidized beds. Powder Technology. 2001, 114(1-3), 23-31.
    [5] 金涌 等主编. 流态化工程原理[M]. 北京:清华大学出版社,2001
    [6] Xiaodong, Li; Jianhua, Yan; Mingjiang, Ni; Kefa, Cen. Study on mixing performance of municipal solid waste (MSW) in differential density fluidized beds (FBs). Chemical Engineering Journal. 2001, 84 (2), 161-166.
    [7] Davidson J F, and Harrison D. Fluidized Particles[M]. Cambridge: Cambridge University Press,1963.
    [8] Rowe, P.N., and Everett, D.J.. Fluidized bed bubbles viewed by X-ray s [J]. Trans IChemE, , 1972,50, 42-48.
    [9] 尹斌. 引进 410t/h CFB 锅炉流化床冷渣器运行特性试验研究[D]. 重庆大学硕士学位论文,2000,1.
    [10] 唐惠芬. 浅床流化床灰渣冷却器[J]. 能源研究与利用,1990,5:12-14.
    [11] 赵广播,等. 风水式冷渣器及其计算方法[C]. 中国工程热物理学会论文集,1992.
    [12] 施正伦, 骆仲泱, 周劲松等. 流化床垃圾焚烧炉灰渣冷却分选装置分选特性的试验研究[J]. 动力工程,2000,20(4),745-749.
    [13] Chen J L -P, Keairns D L. Particle separation from a fluidized mixture - Simulation of the Westinghouse coal gasification combustor/gasifier operation [J] Industrial and Engineering Chemistry, Process Design and Development, 1978, 17: 135-141.
    [14] 张东亮中国煤气化工艺(技术)的现状与发展 [J].煤化工,2004,111(2):1-5.
    [15] 王辅臣,龚欣,吴韬,等.射流携带床气化炉内宏观混合过程研究(II)停留时间分布[J].化工学报,1997, 48(2): 200 - 207.
    [16] 魏飞,金涌,俞芷青,等.磷光颗粒示踪技术在流化床中的应用[J].化工学报,1994,45 (2):230-235.
    [17] 贠小银,林伟刚,吴少华,曲丰作. 大颗粒物料在双级料腿循环流化床垃圾焚烧炉中停留时间分布的研究 [J]. 中国电机工程学报. 2003, 23(5):156-160.
    [18] Levenspil O. Chemical Reaction Engineering [M]. New York,John Wiley, 1972.
    [19] 陈甘棠 主编.化学反应工程(第二版)[M].北京,化学工业出版社,2004.
    [20] Harris A T, Davidson J F, Thorpe R B. A novel method for measuring the residence time distribution in short time scale particulate systems [J]. Chemical Engineering Journal, 2002, 89: 127-142.
    [21] 杨阿三,王樟茂,陈甘棠.细颗粒进料在粗颗粒流化床中的分散与混合 I:停留时间分布[J] .化学反应工程与工艺,1998,24(6):6-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700