环形燃烧室两相燃烧流场与燃烧性能数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在任意曲线坐标系下,发展了一套可选用不同数学模型的环形燃烧室三维两相化学反应流场的可视化计算程序。使用该程序分别对双级径向涡流器环形燃烧室火焰筒冷态流场,双圆筒头部火焰筒以及带扩压器、涡流杯、火焰筒和内外环冷却通道的回流环形燃烧室等两相燃烧流场与燃烧性能进行计算。采用型线定点与TTM相结合的方法对上述三种计算对象生成三维贴体网格,供燃烧室流场计算用。气相采用Euler方法处理,并分别用标准k-ε、RNG k-ε和代数应力(ASM)等三种紊流模型模拟紊流流动;用EBU-Arrhenius、二阶矩-EBU紊流燃烧(SOM-EBU)与扩展EBU-Arrhenius等三种紊流燃烧模型计算紊流燃烧速率;采用六通量法与离散坐标(DO)等两种辐射模型模拟燃烧室辐射传热过程。液相采用Lagrange法处理,分别用颗粒群轨道和随机颗粒轨道等两种两相流动模型描述油珠群运动轨迹及其变化历程。本文按简化四步反应与污染物生成模型预估燃烧室内污染物生成速率,并提出以回流区平均温度变化率为判断依据的燃油推进法来估算燃烧室的贫油熄火极限。
     本文导出在三维非正交曲线坐标系下代数应力紊流模型(ASM)以及离散坐标(DO)辐射模型的表达式。在非交错网格体系下,分别用混合差分与QUICK差分格式对气相控制方程进行离散,两相之间的耦合采用PSIC算法处理,并用SIMPLE与PISO两种算法对离散方程进行求解。最终将上述各种数学模型与数值方法集成到环形燃烧室两相反应流场数值模拟可视化计算程序。
     本文数值分析不同数学模型对环形燃烧室三维两相化学反应流场的影响,并把所得计算结果与实验数据进行比较。研究结果表明:虽然本文所用的各种数学模型都可用来预估燃烧室两相燃烧流场,但是不同的模型所得的燃烧室流场不全相同。其中RNG k-ε模型与ASM模型相比,虽然计算精度稍低些,但计算简单,工作量较小,故RNG k-ε模型更适合工程应用。扩展EBU-Arrhenius模型因考虑了紊流与反应尺度对化学反应速率的影响,更适合模拟两相反应流动。而SOM-EBU模型虽考虑脉动参数对反应速率的影响,但该模型计算工作量要比扩展EBU-Arrhenius模型稍大些。与热通量辐射模型相比,DO辐射模型可以考虑各种不同离散方向以及散射对辐射热交换的影响,故该模型可以更合理地估算辐射对燃烧室壁温和气流温度分布的影响。
     为了验证数学模型和计算方法,本文还采用激光多普勒测速仪(LDV)对双级径向涡流器直流环形燃烧室火焰筒冷态流场进行测量,并把所得的实验数据与用不同紊流模型所得的计算结果进行比较。此外,还把双圆筒头部火焰筒以及回流环形燃烧室的出口温度分布与熄火特性的计算值与实验数据进行对比,结果表明本文所用的数学模型与计算方法合理,编制相应的计算机程序可靠,可为环形燃烧室的研制和优化设计提供有用依据
In this paper, a computer code with various mathematical models is developed to simulate three-dimensional two-phase reacting flowfield as well as combustion performance for three different annual combustors, including two-stage radial swirler annual combustor, two cylindrical head annual combustor and reverse-flow annual combustor with a diffuser, swirler cup, annular linner and two cooling passages and transition duct in arbitrary curvilinear coordinates. The integrated grids of combustor are generated by the method of TTM with the grid obstacle method for the complex geometric configuration. In order to model the complicated interactions between the gas and liquid phase, a Lagrangian-Eulerian two-phase flow prediction algorithm is adopted in which the gas phase is calculated in an Eulerian frame of reference whilst a separate calculation is performed for the liquid phase in a Lagrangian frame of reference. In this code, the k-ε, RNG k-εand ASM turbulent models are respectively used for turbulence modeling, EBU-Arrhenius, SOM-EBU and extended EBU-Arrhenius turbulent combustion models are adopted to determine the rate of reaction. The six-flux and discrete-ordinate (DO) radiation models are used to predict the radiant heat transfer in combustion chambers. The particle trajectory model and stochastic particle trajectory model are applied to simulation the droplet trajectories,size and temperature history. Four-step chemical reaction mechanisms combined with pollution formation models are used to estimate pollutant emission.
     In arbitrary curvilinear coordinates, the expressions of ASM turbulent model and DO radiation model are derivated here. A extended EBU-Arrhenius model,considering influence of the reaction scale and the turbulence scale on the reaction rate,is presented for more accurate calculation gas temperature distributions. Base temperature variation rate of recirculation zone, the fuel step-by-step method is presented to estimate the lean blowout of annular combustors.
     The Hybrid or QUICK difference schemes over the control volume are used to obtain the finite difference equaeions. On the non-staggered grid system, the discretization equations are solved with SIMPLE or PISO algorithm, and the couple of the gas and the liquid phase is carried out by the PSIC method. Above models and methods are integrated in the visualization program for researching reverse flow type conbustor.
     The influences of various mathematical models on two-phase combustion integrated flow fields in annular combustors are predicted. Predictions are in reasonable agreement with the measurements and it indicates that the k-εand RNG k-εturbulent models are more appropriate to engneering applications. Extended EBU-Arrhenius turbulent combustion model is more reasonable for modeling turbulent reacting flows. SOM-EBU combustion model taking account of the enflence of fluctuation parameters on the reaction rate,is better than EBU-Arrhenius model,and computing time and storge of SOM-EBU model is more than it. DO radiation models,which may be predicted the effect of the dicretion direction and scattering phase on the radiative transfer,is better than Six-flux model and is more applicable for two-phase reacting flows of the annual combustors.
     The cold flow fields in a sector annual combustor with dual-stage radial swirler are measured by Laser Doppler Velocimeter (LDV). The measured and calculated axial velocity profiles are in general agreement.
     The performance of the reverse-flow annual combustor is studied with numerical models to consider the distribution of the pollution production. Comparing with experiment data of profiles of outlet gas temperature and lean blowout limit for two cylindrical head annual combustor and the reverse-flow annual combustor,predictions are reasonable. So, it reveals that the numerical procedures are reliable and useable in the design of the annual combustor.
引文
1,Spalding D B, A General Computer Program for Fluid Flow, Heat Transfer and Chemical Processes, Imperial College Report, 1981,HT5/81/10.
    2,Robert M, Stubbs, Nan-Suey Liu, Preview of the National Combustion Code, AIAA 1997-3114, 1997.
    3,Raju, M S, Numerical Investigation of Various Atomization Models in the Modeling of a Spray Flame, AIAA 2006-176, 2006.
    4,Michael C Cline , Computaion of the flow field in an annular gas turbine combustor, AIAA 93-2074,1993.
    5,Mongia H C, Combining Lefevvre’s Correlations with Combustor CFD, AIAA 2004 -3544,2004.
    6, Crocker D S , Smith C E , Numerical investigation of angled dilutionjets in reverse flow gas turbine combustors, AIAA 94-2771,1994.
    7, Paskin M D, Compliant metal enhanced convection cooled reverse-flow annular combustor, AIAA 94-2710,1994.
    8, Crocker D S, Smith C E, Numerical investigation of enhanced dilution zone mixing in a reverse flow gas turbine combustor, J. of Engineering for Gas Turbines and Power, 1995, 117(2):272-281.
    9,Hassa P, Voigt B, Lehmann R, Schodl et al, Flow Field Mixing Characteristics of an Aero-Engine combustor Part I: Experimental Results, AIAA 2001-3709,2001.
    10,Noll B, Kessler R, Theisen P, et al., Flow Field Mixing Characteristics of an Aero-Engine combustor Part II: Numerical Simulation , AIAA 2001-3708,2001.
    11,Adel Mansour, Michael Benjamin, A New Hybrid Air Blast Nozzle for Advanced Gas Turbine Combustors, 2000-GT-0117,2001.
    12,Mongia H C, Hsiao G and Burrus D, Combustor Diffuser Modeling Part I: Inlet Profiles&2D Calculations, AIAA 2004-4168,2001.
    13,Mongia H C, Hsiao G and Burrus D, Combustor Diffuser Modeling Part II: Inlet Profiles&3D Calculations, AIAA 2004-4169,2004.
    14,Mongia H C, Hsiao G and Burrus D, Combustor Diffuser Modeling Part III: Validation with Typical Separating Single Passage Diffusers Combustor Diffuser Modeling, AIAA2004-4170,2004.
    15,Mongia H C, Hsiao G and Burrus D, Combustor Diffuser Modeling Part IV: Effect of Cowling Geometry, Mixer Size and Nozzle Blockage, AIAA 2004-4171,2004.
    16,Mongia H C, Hsiao G and Burrus D, Combustor Diffuser Modeling Part V: Validation with a Three Passage Diffuser Rig Data, AIAA 2004-4172,2004.
    17,Mongia H C, Hsiao G and Burrus D, Combustor Diffuser Modeling Part VI: Validation with a Four Passage Diffuser Rig Data, AIAA 2004-4174,2004.
    18,张兆顺,崔桂香,许春晓,湍流理论与模拟,北京,清华大学出版社,2005。
    19,Kim J, Moin P, Moser R, Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number, J. Fluid Mech., 1987, 177(1): 133-166.
    20.徐进,葛满初,用谱方法数值模拟槽道内的气固两相流动,工程热物理学报,1999,97(2):233-237。
    21. Le H,Moin P and Kim P,Direct numerical simulation of turbulent flow over a back-facing step. J.Fluid Mech.1997,330:349-374.
    22. Klein M, Sadiki A, Janicka J, Investigation of the influence of the Reynolds number on a plane jet using direct numerical simulation, Heat and fluid flow, 2003, 24:785-794..
    23,Deardorff J W, A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers, Journal of Fluid Mechanics, 1970, 41(2):452-480.
    24,Medic G, Templeton J A, Kalitzin, G, Towards LES of Complex Flows at High Reynolds Numbers, AIAA 2006-1101,2006.
    25,Fureby C, A Comparison of Flamelet LES Models for Premixed Turbulent Combustion, AIAA 2006-155,2006.
    26,Peng S H, Algebraic Hybrid RANS-LES Modelling Applied to Incompressible and Compressible Turbulent Flows, AIAA 2006-3910,2006.
    27,Wang S, Yang V,Modeling of Gas Turbine Swirl Cup Dynamics Part V:Large Eddy Simulation of Cold Flow,AIAA 2003-485,2003.
    28,颜应文,赵坚行,三维贴体坐标系下燃烧室热态流场的大涡模拟,推进技术,2005,26(3):219-222,2005.
    29,Moin P, Apte S, Large Eddy Simulation of Realistic Gas Turbine Combustors,AIAA 2004-330,2004.
    30,Menon S and Stone C,Multi-scale Modeling for LES of Engineering Designs of Large–scale Combustors,AIAA 2004-0157,2004.
    31,Kobayashi T, Large Eddy Simulation for Engineering Applications,Fluid Dynamics Research,2006,38(2):84-107.
    32,Du Tao, Wu Zi-Niu, Mixed Analytical/Numerical Method Applied to the High Reynolds Number k–e Turbulence Model,Computers&Fluids, 2005,34(1):97-119.
    33, Noll B, Kessler R, Theisen P, et al, Flow Field Mixing Characteristics of an Aero-Engine combustor Part II: Numerical Simulation, AIAA 2002-3708,2002.
    34. Li G, Gutmark E.J., Flow Field Measurements of Triple Swirler Spray Combustor, AIAA 2002-4010,2002.
    35,Mongia H C, GE Aircraft Engines, Cincinnati,U.S.A; Perspective of Combustion Modeling for Gas Turbine Combustors, AIAA 2004-0156,2004.
    36,雷雨冰,谭辉平,赵坚行,数值模拟环形燃烧室两相反应流场,燃烧科学与技术,2000,5(3):222-225。
    37,雷雨冰,胡好生,赵坚行,环形回流燃烧室两相反应流场的数值研究,航空动力学报,2001,16(4):350-354。
    38,蔡文祥,胡好生,赵坚行,涡流器燃烧室头部两相反应流数值模拟,航空动力学报,2006,21(5):837-842。
    39,雷雨冰,赵坚行,三级涡流器环形燃烧室化学反应流场的数值研究,推进技术,2005, 26(3):215-218。
    40,雷雨冰,赵坚行,环形燃烧室性能计算,工程热物理学报2002,23(5):645-648。
    41,Yakhot, V, and Orszag, S A, Renormalization Group Analysis of Turbulence-Basic Theory, J. Scientific Computing, 1986,1(3):39-51.
    42,赵坚行,燃烧的数值模拟,北京,科学技术出版社,2000。
    43,Rodi W , A New Algebraic Relation for Calculating the Reynolds Stresses, Z. Angew. Math. Mech. ,1976. 5:219-221.
    44,Launder B E, Reece G J , Rodi W, Progress in the Development of a Reynolds-Stress Turbulence Closure, J. Fluid Mech.,1975,68(3):537-566.
    45, Shih T H, Zhu J, Liou W, Modeling of Turbulent Swirling Flows, NASA TM 113112,1997.
    46,Spalding D B, Basic Equations of Fluid Mechanics, HTS/76/6, Part.10 , 1976.
    47,Saravelou Q F and Wild P N, Prediction of NO emissions from a swirling coal flame,
    3th Int. Conference on Comb.Technologies for A Clean Environment, Lisbon Portugal,1995, 20.2.
    48,蔡文祥,赵坚行,张靖周,带圆筒头部火焰筒两相燃烧流场及性能计算,推进技术,2007,28(2):122-126。
    49,周力行,多相湍流反应流体力学,国防工业出版社,2002年。
    50,朱祚金,陈义良,加力室液雾燃烧的模型与应用,1997,航空动力学报,12(1):345-350。
    51,Pratt D T. Mixing and chemical reaction in continuouscombustion. Progress in Energy and Combustion Science, 1976(1):73~86.
    52,周力行,湍流燃烧的新二阶矩模型,工程热物理学报,1996,17(3):353~356。
    53,Chen X L ,Zhou L X and Zhang J, Numerical Simulation of Methane-Air Turbulent JetFlame Using a New-Second-Order Moment, Acta Mechanica Sinica(English Series), 2000,16(1):41-47.
    54,李志强,燃烧过程辐射换热离散坐标模型的应用,航空动力学报,2006,21(2):320-325。
    55,Jamaluddin A S, Discrete-ordinates solution of radiative transfer equation in nonaxisymmetric cylindrical enclosures, Journal of Thermophysics and Heat Transfer, 1992, 6(2):242-245.
    56,Rizk N K, Mongia H C, Lean Low NOx Combustion Concept Evaluation, 23rd Symposium(Int.) on Combustion,1990, 1063-1070.
    57,Rizk N K, Mongia H C, Three-dimensional analysis of gas turbine combustors, J. Propulsion and Power ,1991, 7(3):445-451.
    58,Mongia H C, Combining Lefebvre’s Correlations with combustor CFD, AIAA 2004-3544.
    59,Mahias O, Bastin F, Ravet F, et al., Lean Premixed Combustor Emissions Performance Modeling Using 3D CFD Codes, AIAA 2000-3199.
    60,赵仕厂,高占斌,周建辉等,燃烧室燃烧过程中NOx生成的数值模拟,集美大学学报,2004,9(1):59-62。
    61,李武奇,张均勇,张宝诚等,航空发动机主燃烧室稳定工作范围研究,航空发动机,2006,32(2):38-42。
    62,吕文菊,张宝诚等,某型发动机燃烧室工作稳定性的数值模拟,沈阳航空工业学报,2006,23(2):1-5。
    63,Deardorff J W, A Numerical Study of Three-Dimensional Turbulent Channel Flow atLarge Reynolds Numbers, Journal of Fluid Mechanics, 1970, 41(2):452-480.
    64,Deardorff J W, A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers, Journal of Fluid Mechanics, 1970, 41(2):452-480.
    65,Fureby C, A Comparison of Flamelet LES Models for Premixed Turbulent Combustion, AIAA 2006-155,2006.
    66,Mahias O, Bastin F, Ravet F, et al., Lean Premixed Combustor Emissions Performance Modeling Using 3D CFD Codes, AIAA 2000-3199,2000.
    67, Martino P D , Cinque G , Colantuoni S, Cirillo etal., Experimental and computational results from an advanced reverse-flow gas turbine combustor, AIAA 95-2999,1995.
    68,Schluter J U, Shankaran S, Kim S, Pitsch H, Integration of RANS and LES Flow solvers for simultaneous flow computations, AIAA 2003-85,2003.
    69,严传俊,模型燃气轮机燃烧室中三元两相反应流的数值计算,工程热物理学报,1990,11(1):91-97。
    70,赵坚行,伍艳玲,周琳,先进燃烧室涡流杯流场计算,工程热物理学报,2000,21(1):110-114。
    71,Crowe, C T, The Particle-Source-in-Cell Model for Gas-Droplet Flow[R], ASME 75-WA/ H7-25,1975.
    72,邹葆华,胡春波,张百灵,喷嘴和旋流器数目对短环形燃烧室燃烧性能的影响,航空发动机,2006,32(3):27-30。
    73,颜应文,赵坚行,张靖周等,环形燃烧室两相喷雾燃烧的大涡模拟,航空动力学报,2006,21(5):824-830。
    74,Thompson J F, Grid Generation Techniques in Computational Fluid Dynamics, AIAA Journal, 1984, 22(11):1505-1523.
    75,Thompson J F, Warsi Z U A, Mastin C W, Numerical Grid Generation, Elsevier Science Publishing Co., 1985.
    76,Mastin, C W, Thompson J F, Transformation of Three-Dimension Regions into Rectangular Regions by Elliptic Systems, Numerical Mathematic, 1978, 29:397-407
    77,Winslow, A M , Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh, J. Comput. Phys., 1967 (2):47-172.
    78,Thompson J F , Thames F C,Mastin C W , Automatic Numerical Generation of Body–Fitted Curvilinear Coordinate System for Field Containing Any Number of ArbitraryTwo-Dimensional Bodies, J. Comput. Phys., 1974(15):299-319.
    79,Mastin, C W, Thompson, J F, Elliptic Systems and Numerical Transformations , J. Math. , Anal. Application, 1978, 62(1):52-62.
    80,Thompson , F F, Warsi Z U A and Mastin, C W, Boundary-Fitted Coordinate Systems for Numerical Solution of Partial Differential Equation-A Review, J. Comput. Phys., 1982, 47(1):1-108.
    81,雷雨冰,数值模拟环形燃烧室整体流场,南京航空航天大学博士学位论文,2000
    82,Kwan, Y K, Calculation of a Strongly Swirling Turbulent Round Jet with Recirculaion by an Algebric Stress Model, Int. Heat and Fluid Flow, 1988,9(1):62-68.
    83,Naxayan, J R, Turbulent Reacting Flow Compulation Including Turbulence Chemistry Interactions, AIAA 92-0342.
    84,王海峰,陈义良,采用考虑详细化学反应机理的火焰面模型模拟湍流扩散火焰,燃烧科学与技术,2004,10(1):77-81。
    85,Gerlinger P, Bruggemann D, An implicit numerical scheme for turbulent combustion using an assumed PDF approach, AIAA 99-3775,1999.
    86,Lia C , Liu,Z and Zheng X, NOx prediction in 3-D turbulent diffusion flames by using implicit multgrid methods, Combust. Sci. and Tech., 1996,119:219-260.
    87,Klimenko A Y, Bilger R W, Conditional moment closure for turbulent combustion , Prog Energy Combust Sci., 1999,25:595—687.
    88,Spalding D B, Mixing and Chemical Reaction in Steady Confined turbulent Flames, 13th Symposium(Int.) on Combustion , pp:649-657, 1971.
    89,赵坚行,易勇,紊流燃烧模型数值研究,推进技术,1993,3(1):8-15。
    90,Mason, H B, and Spalding D B, Prediction of Reaction Rates in Turbulent Premixed Boundary Layer Flows ,1973, Proc. European Symp. on Combustion, Sheffield, England,1973:601-606.
    91,Chen X L , Zhou L X, and Zhang J, Numerical Simulation of Methane-Air Turbulent Flame Using A New-Second-Order Moment Model , Acta Mechanica Sinica(English Series), 2000, 16(1): 41 - 47.
    92,蔡文祥,赵坚行,张靖周,二阶矩-EBU模型用于两相反应流场的数值模拟,南京航空航天大学学报2006,38(5):572-576。
    93,Borghi R, Etude therique de l’evlution residuelle de produits pollutants dansles jets de turboreacteurs, AGARD Meeting CP ,1974:125-136.
    94,Khalil E E, Flow and combustion in axisymmetric furnaces, London University, 1976.
    95,Mingchun Dong, David G Lilley, Prediction of Turbulent Swirling Reacting Flows, AIAA 1995-285,1995.
    96,Gosman A D , Ioannides E, Aspects of Computer Simulation of Liquid-Fuelled Combustors, AIAA 81-0323,1981
    97,Hallmann M, Scheurlen M and Wittig S, Computation of Turbulent Evaporating Sprays:Eulerian Versus Lagrangian Approach, J. of Engineering for Gas Turbine and Power, 1995, 117(1):112–119.
    98,Sabins J S, and Dejong J S, Calculation of the Two-Phase Flow in an Evaporating Spray Using an Eulerian-Lagrangian Analysis, AIAA 90-0447,1990.
    99,Wei H, Chen Y S and Shang H M, The Study of Liquid Surface Evaporation or Spray Combustion Applications, AIAA 97-0800,1997.
    100,帕坦卡S V,传热与流体流动的数值计算,张政译,北京:科学出版社,1984。
    101,陶文铨,计算传热学的近代进展,北京,科学出版社,2000。
    102,Amano R S, Development of a Turbulence Near Wall Model and its Application to Separated and Reattached Flows, Numer. Heat Transfer, 1984, 7(1):59-75.
    103,Chandrasekhar S, Radiative Transfer. New York: Dover Publications Inc, 1960.
    104,Carlson B G, Lathrop K D, Computing Methods in Reactor Physics, New York: Gordon & Breach, 1968.
    105,Carlson B G, Lathrop K D, Transport Theory-The method of discrete ordinates in computing methods in reactor physics, Computing methods in reactor physics, New York: Gordon & Breach, 1968:165-266.
    106,Chai J C, Lee H S, Patankar S V, Improved Treatment of Scattering Using the Discrete-Ordinates Method. ASME Journal of Heat Transfer, 1994, 116(1):260~263.
    107,Jamaluddin A S, Smith P J, Predicting Radiative transfer in Rectangular Enclosures Using the Discrete Ordinates Method, Combust. Sci. and tech. 1988, 59(2):321-340.
    108,Chai J C, Patankar S V and Lee H S, Evaluation of Spatial Differencing Practices for the Discrete Ordinate Method, Journal of Themophysis and Heat Transfer, 1994, 8(1): 140 - 144.
    109,Coelho P J, Goncalves J M, Carvalho M G, Trivic D N, Modelling of Radiative HeatTransfer in Enclosures with Obstacles, Int. J. Heat Mass Transfer, 1998, 41(4):745-756.
    110,Mongia H C and Smith K F, An Empirical/Analytical Design Methodology for Gas Turbine Combustor, AIAA 78 -998, 1978.
    111,Zhao J X, An analytical design methodology for an annular combustor, Comp. Fluid Dyn., 1995, 5(3):231-243.
    112,Takagi T, Fang C Y and Kamimoto, T, Numerical simulation of evaporation ,ignition and combustion of transient sprays, Combust. Sci. and Tech., 1991, 75(1):1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700