天空背景光谱特性建模及仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天空背景光谱辐射特性及其场景仿真是地面对空中目标探测、地对空遥感等领域的研究热点。地对空光学探测系统在工作时,观测系统除了接收到目标自身的辐射和目标对太阳辐射的散射辐射外,还包括大气分子、气溶胶以及云等微粒对太阳辐射的散射辐射、大气自身的热辐射以及太阳的直接辐射等,它们构成了地对空观测时的背景辐射。对于观察系统而言,能否从复杂的背景中区分出目标的关键之一在于目标与背景的光谱辐射亮度之间的对比度,因此天空背景光谱辐射亮度分布是对空监视、空中目标搜索及跟踪等应用必须考虑的基本数据。本文正是针对上述问题,对天空背景光谱辐射特性的计算方法和数值场景生成的方法作了创新性和探索性研究,为探测系统仿真提供了基础依据。
     本文的主要研究内容和结果为:
     1.分析了大气分子和气溶胶微粒的消光参数垂直廓线数据库的构建方法;研究了大气分子、气溶胶等的散射象函数,分析了不同情形下散射象函数的表述形式;
     2.研究了无云大气情形下天空背景辐射亮度的近似计算方法;基于输运理论,研究了辐射传输方程的建立过程;对辐射传输方程的通用解法进行了分析,介绍了求解多层介质辐射传输方程的修正Eddington近似法和离散坐标法,给出了计算实例。计算结果表明:与利用离散坐标法的计算结果相比,利用修正Eddington近似法计算多次散射的贡献具有足够的精度,而且计算速度更快;
     3.研究了典型水云和冰云消光参数的近似计算方法,计算结果表明:利用本文提出的近似法计算值与利用Mie理论计算出的结果符合较好;提出了典型云对天空背景辐射亮度影响的计算方法;
     4.从能量守恒定律出发,建立了朗伯地表对下行辐射的反射作用引起天空背景辐射亮度的解析计算模型。利用射线追踪原理,提出了地表与大气之间单次反射、多次反射影响天空光谱辐射亮度的计算方法。计算结果表明:随着地表反射率的增加,地表反射对天空背景辐射亮度的影响也随之增强,同时在观察方向靠近地平线时,这种影响急剧增加,即存在明显的“临边增亮”效应;
     5.分析了天空背景场景的数值仿真方法,同时利用辐射传输理论和分形理论对云场景仿真方法进行了研究,开发了天空背景辐射亮度计算和场景生成软件以及与目标背景合成场景的接口程序,软件中包括有云状态时的仿真程序。
While a spatial object is observed by a ground detection system,besides thescattered solar radiance by the object oneself and its own thermal radiance,the systemwill receive some undesirable radiance,which includes scattered radiance by theatmospheric molecules and aerosols and cloud particles,atmospheric thermal radiance,direct solar radiance and so on.The radiance mentioned above constitutes total skybackground radiance.The object-background radiance contrast is a key parameter fordistinguishing an object from the sky background,so the spectral radiance and its scenedistribution constitute the basic database for application to some detection system suchas sky monitoring,aerial target searching and tracking.In the thesis,spectral radianceand scene simulation method for sky background are explored and investigated;thisprovides an important reference to the detection system simulation.
     The main contents and results are as follows:
     1.Methods of establishing vertical extinction parameter profile database foratmospheric molecules and aerosols are analyzed.Some scattering phase functions areintroduced for atmospheric molecules and aerosol particles,and their expresses aregiven out under some different conditions.
     2.Detailed research about the stream approximation of computing downwardspectral radiance for the cloudless sky background is also carried out.A process settingup the Radiative Transfer Equation (RTE) is studied in detail based on the transporttheory.And a universal solution to the RTE is obtained.The discrete ordinate method(DISORT) and the modified Eddington approximate method are employed to treat theproblems of the multiple scattering for the multilayer atmosphere.And some calculationexamples are given out.The results show that the modified Eddington approximatemethod has sufficient precision at least for the examples considered,but shortercomputer time,as compared with the DISORT.
     3.Approximate methods for computing extinction parameters of the typical waterclouds and ice clouds are studied.Numerical results show that the calculated values based on the new method is consistent well with the values on Mie theory.A way tocalculate cloud affection to the sky background is investigate.
     4.Based on the energy conservation law and an assumption that the ground is aLambertian reflecting surface,a model is developed to calculate the additional skyradiance due to the ground reflection.According to the ray tracing principle,a newmethod was proposed to compute the effection of the reflection radiance between theearth's albedo surface and the atmosphere.The results show that sky radiance increasesrapidly with the increase of the ground albedo while a viewing zenith angle is close to90°,i.e.,there is a limb-brightening effect for sky radiance.
     5.Methods of numerical scene simulation for sky background are analyzed andstudied,and the radiative transfer theory and fractal geometry algorithms aresimultaneity employed to simulate cloud scene.A software was designed to computegeneral spectral radiance and simulate numerical scene for sky background,whichincludes a primary simulation program for cloudy sky also,and an interface programpackage with the object-background synthesis scene is developed.
引文
[1]吴健,杨春平,刘建斌.大气中的光传输基础.北京邮电大学出版社,2005.
    [2]Van de Hulst H C.Light scattering by small particles.New York:Wiley,1957
    [3]Chandrasekhar S.Radiative transfer.Dove,New York,USA,1960
    [4]Kerker M.The scattering of light and other electromagnetic radiation.New York:Academic,1969,1-3
    [5]Twersky Victor.Interface Effects in Multiple Scattering by Large,Low-Refracting Absorbing Particles.J.Opt.Soc.Am.,1970,60(7):908-914
    [6]Liou K N.Introdcution to Atmospheric Radiation.New York:Academic Press,1980
    [7]Michael A B,and Adarsh D.Retrieval of aerosol size distributions by inversion of simulated aureole data in the presence of multiple scattering.Appl.Opt.,1982,21(9):1376-1382
    [8]Bohren C F and Huffman D R.Absorption and scattering of light by small panicles.New York:Wiley,1983,12-15
    [9]全学成.大气沙尘对10.6μm CO_2激光束的衰减特性.中国激光,1985,12(11):678-682
    [10]Wladyslaw W.Szymanski.Investigation of multiple scattering contribution to transmission of radiation in scale model clouds.SPIE,1992,Vol.1688:62-72
    [11]Kocifaj M and Lukac J.Using the multiple scattering theory for calculation the radiation fluxes from experimental aerosol data.J.Quant.Spectrosc.Radiat.Transfer,1998,60(6):933-941
    [12]Nail A Gumerov and Ramani Duraiswami.Multiple scattering fiom N spheres.IEEE,2002,2(1):90-93
    [13]Chi O Ao and Kong Jin A.Analytical approximations in multiple scattering by aligned dielectric spheroids.J.Opt.Soc.Am.A,2002,19(6):1145-1156
    [14]Michael I M,Larry D T,Andrew A L.Scattering,absorption and emission of light by small particles.London:Cambridge,2002,3-8
    [15]Rosalba S,Maria A 1,Paolo D,et al.Efficient light-scattering calculations for aggregates of large spheres.Appl.Opt.,2003,42(15):2785-2793
    [16]Matthew M W,Adler-Golden S M,Berk A.Status of atmospheric correction using a MODTRAN 4-based algorithm.SPIE,2000,Vol.4049:109-129
    [17]COSPAR.International Reference Atmosphere 1986 PartlII In:Keating G M.Trace Constituent Reference Models.Advance in Space Research.1996.18:10-25
    [18]Hedin A E.MSIS-86 thermospheric model into the middle and lower atmosphere.J.Geophys.Res.,1989.96:1159-1166.
    [19]Penndorf R.Tables of the Refractive Index for Standard Air and the Rayleigh Scattering coefficient for the Spectral Region between 0.2 and 20.0 v and Their Application to Atmospheric Optics.J.Opt.Soc.Am.,1957,47(2):176-182
    [20]Rothman,L S.AFGL atmospheric line parameters compilation:1980 version.Appl.Opt.,1981,20:791-806
    [21]Louis Garand.Parameterization of the Absorption in the Continuum Region J.Atmos.Sci.,1983,40(1):230-243
    [22]Valley,S L.Handbook of geophysics and space environments.New York:McGraw-Hill press,1965
    [23]Burch,D E,Gryvnak D A,Williams D.Total absorption of Carbon Dioxide in the infrared.Appl.opt.,1962,1:759-766
    [24]Berk A,Bernstein L S,Roberston D C.MODTRAN,a moderate resolution model for LOWTRAN 7.Technology Report GL-TR-86-0122,Air Force Geophysics Laboratory,Hanscom Air Force Base,Mass,1994.
    [25]Rothman L S,Rinsland C P,Goldman A.The HITRAN Molecular Spectroscopic Database and HAWKS(HITRAN Atmospheric Workstation):1996 Edition.J.Quant.Spectrosc.Radiat.Transfer,1998,60(5):665-710
    [26]李放.辐射传输LOWTRAN程序气溶胶模式分析评述(一):发展过程.遥感技术与应用,1995,10(4):48-54
    [27]吴北婴,吕达仁.用离散坐标法检验LOWTRAN的辐射传输计算.大气科学,1994,18(2):252-256
    [28]Liang S L,Philip L.A parametric Radiative Transfer Model for Sky Radiance Distribution.J.Quant.Spectrosc.Radiat.Transfer,1996,55(2):181-189
    [29]Chalhoub E S.Discrete-ordinates solution for radiative-transfer problems.J.Quant.Spectrosc.Radiat.Transfer.,2003,76(2):193-206
    [30]Rothman L S,BarbeA,Benner D C,et al.The HITRAN Molecular Spectroscopic Database:Edition of 2000 including Updates through 2001.J.Quant.Spectrosc.Radiat.Transfer.,2003,82(1):5-44
    [31]Rothman L S,Rinsland C P,Goldman A,et al.The HITRAN Molecular Spectroscopic Database and HAKS(HITRAN Atmosphere Workstation)1996 Edition.J.Quant.Spectrosc.Radiat.Transfer.,1998,60(5):665-710
    [32]Berk A,Bernstein L S,Robertson D C.MODTRAN,a moderate resolution model for LOWTRAN 7.GL-TR-89-0122,1989
    [33]R J Isaacs,W C Wang,R.D.Worsham,et al.Multiple Scattecing LOWTRAN and FASCODE Models.Appl.Opt.,1987,26(7):1272-1281
    [34]R G Isaacs,W C Wang,R D Worsham,et al.Multiple Scattering LOWTRAN and FASCODE Models.Appl.Opt.,1987,26:1272-1281
    [35]Berk A,Bernstein L S,Anderson G P,et al.MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS.Remote Sens.Environ.1998,65:367-375
    [36]Beck A,Andecson G P,Acharya P K,et al.MODTRAN 4 User's Manual.Air Force Research Laboratory Report,1999
    [37]Snell H E,Moncet J L,Anderson G P.FASCODE for the Environment(FASE).Proceedings of Atmospheric Propagation and Remote Sensing IV,SPIE,1995,Vol.2471:88-95
    [38]印金桓.Theoretical Analysis of Retrieving Atmospheric Columnar Mie Optical Depth from Downward Total Solar Radiative Flux.Advances in Atmospheric Sciences,1989,1(1):35-39
    [39]印金桓.Two-wavelength Lidar Measurement of Cloud-aerosol Optical Properties.Advances in Atmospheric Sciences,1995,7(2):57:63
    [40]吕达仁,周秀骥,邱金桓.Principle of remote sensing of atmospheric aerosol size distribution combined solar extinction and forward scattering method and numerical experiment.Science in China,Ser.B,1982,7:15-21
    [41]饶瑞中,宋正方.Natural terrain infrared radiation statistics in a windw fieled.红外与毫米波学报,1991,2:41-44
    [42]杨小丽,罗九强,王俊波等.大气气溶胶粒子光吸收系数的测量.强激光与粒子束,2003,15(6):543-546
    [45]吴健,李晓敏.通过尘障后的激光束特征.电子科技大学学报,1992,1:32-25
    [46]吴振森,由金光,杨瑞科.激光在沙尘暴中的衰减特性研究.中国激光,2004,31(9):1075-1080
    [47]David L.Mitchell,Parameterization of the Mie Extinction and Absorption Coefficient for Water Clouds.J.Atmos.Sci.,2000,57(9):1311-1326
    [48]Peter Damiano and Petr Chylek.Shortwave Radiative Properties of Clouds:Numerical Study. J.Atmos.Sci.,1994,51(9):1223-1227
    [49]Slingo A.,H M Schrecker.On the short wave radiative properties of stratiform water clouds.J.Roy.Meteor.Soc.,108:407-426
    [50]汪宏七,赵高祥.水云的短波光学性质参数化研究.科学通报,1998,46(16):1771-1775
    [51]Lindner T H,J Li.Parameterization of the Optical Properties for Water Clouds in the Infrared.J.Clim.,2000,13(10):1797-1805
    [52]Takano Y,Liou K N.Radiative transfer in Cirrus Clouds.Part Ⅲ:Light Scattering by Irregular Ice Crystals.J.Atmos.Sci.,1995,52(7):818-837
    [53]ping Yang and Liou K N.Parameterization of the scattering and absorption properties of individual ice crystals.J.Geophys.Res.,2000,16(D4):4699-4718
    [54]Paul J.Huffman,William R.,Thursby Jr.Light Scattering by Ice Crystals.J.Atmos.Sci.,1969,26(5):1073-1077
    [55]Yang P,Liou K N.Mishchenko MI,et al.Efficient finite-difference time-domain scheme for light scattering by dielectric particles:application to aerosols.Appl.Opt.,2000,39:3727-3737
    [56]Qiang Fu.An Accurate Parameterization of the Solar Radiative Properties of cirrus Clouds for Climate Models.J.Clim.,1996,9(9):2057-2082
    [57]Berlin J F.Light reflection function for simulation of clouds and dusty surface.Computer Graphics,1982,16(2):21-29
    [58]Chaudhuri B B,Sarkar N,Kundu P.An improved fractal geometry based on texture segmentation technique.Proc.IEE Part E,1993,140(5):233-241.
    [59]Keller J M,Chen S,Crownover R M.Texture description and segmentation through fractal geometry.Computer Graphics Image Process,1989,45:150-166.
    [60]James B F.Light Reflection Functions for Simulation of Clouds and Dusty Surfaces.SIGGRAPH,1982,21-29.
    [61]Geoffrey G Y.Visual Simulation of Clouds.SIGGRAPH,1985,297-303.
    [62]Pantelis Elinas.Real-time rendering of 3D clouds.Journal of Graphics Tools,2001,5(4):33-45
    [63]Yoshinori Dobashi,et al.A simple efficient method for realistic animation of clouds.SIGGRAPH,2000,19-28
    [64]Ricchiazzi P,Yang S,Gautier C,et al.SBDART:A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere.Bulletin of the American Meteorological Society.1998,79(10):2101-2114
    [65]Eric Le Narard,Nicole Depradeux.Generation of realistic infrared and visible images.SPIE, 1992,Vol.1687:107-114
    [66]王新炜,白洁,刘健文.SBDART辐射传输模式及其在飞机潜在积冰区反演中的应用.气象科技,2003,31(3):152-155
    [67]原桂彬,孙晓刚,戴景民.An improved algorithm for cloud multiple scattering.Chinese Optics Letters,2006,4(7):425-427
    [68]Davis R.The effect of finite geometry on the three-dimensional transfer of solar irradiance in clouds.J.Atmos.Sci.,1978,35(9):1712-1725
    [69]Wwlch R M.,Wielicki B A.Stratocumlus cloud field reflected fluxes:the effect of cloud shape.J.Atmos.Sci.,1984,41(19):3085-3103
    [70]Liou K N,Ou S C.Infrared radiation transfer in finite cloud layers.J.Atmos.Sci,1979,36(12):1985-1996
    [71]Peter Damiano,Petr Ch(?)lek.Shortwave Radiative Properties of Clouds:Numerical Study.J.Atmos.Sci.,1994,51(9):1223-1233
    [72]Mishchenko M I.Light Scattering by randomly oriented axially symmetric particles.J.Opt.Soc.Am.A.,1991,8:871-882
    [73]Hartmann D L.Global physical climatology.Academic Press,San Deiego CA.411,1994
    [74]Valley S L.Handbook of Geophysics and space Environments.Air Force Cambridges research laboratories,1965
    [75]NASA,NOAA,USAF.U.S.Standard Atmosphere 1976.Washington,D.C.,1976
    [76]中国科学院空间科学与应用研究中心.《宇航空间环境手册》.北京:中共科学技术出版社,2000,406-453
    [77]Andrew A.Lacis,James Hansen.A Parameterization for the Absorption of Solar Radiation in the Earth's Atmosphere.J.Atmos.Sci.,1974,31(1):118-133
    [78]Burch D E,Gryvnak D A,Patty R R,et al.Absorption of infrared radiant energy by CO_2 and H_2O.IV:Shapes of collision Broadened CO_2 lines.J.Opt.Soc.Am.,1969,59:267-280.
    [79]Andreas Giez,Gerhard Ehret,Ronald L,et al.Water Vapor Flux Measurements from Ground-Based Vertically Pointed Water Vapor Differential Absorption and Doppler Lidars.Journal of Atmospheric and Oceanic Technology,1999,16(2):237-250
    [80]Griggs M.Absorption coefficients of ozone in the ultraviolet and visible regions.J.Chem.Phys.1968,49:857-859
    [81]Daree K,Kaiser W.Competition between stimulated Brillouin and Rayleigh scattering in absorbing media.Phys.Rev.Lett.,1971,26:816-819
    [82]石丸A.随机介质中波传播和散射.北京:科学出版社,1986
    [83]麦卡特尼E J.大气光学-分子和粒子散射.科学出版社,1988,186-187
    [84]Kuo-nan Liou,James E.Hansen.Intensity and Polarization for Single Scattering by Polydisperse Spheres:A Comparison of Ray Optics and Mie Theory.J.Atmos.Sci.,1971,28(6):995-1004
    [85]Chervet P,Lavigne C,Roblin A,et al.Effects of aerosol scattering phase function formulation on point-spread-function calculations.Appl.Opt.,2002,41(30):6489-98
    [86]Yang Haoyu,Gordon H R.Retrieval of the Columnar Aerosol Phase Function and Single Scattering Albedo from Sky Radiance over Land:Simulations.Appl.Opt.,1998,37(6):978-997
    [87]Quanhua Liu,Fuzhong Weng.Combined Henyey-Greenstein and Rayleigh phase function.Appl.Opt.,2006,45(28):7475-7479
    [88]Wiscombe W J.The Delta-M Method:Rapid yet accurate Radiative Flux Calculation for Strongly Asymmetric Phase Function.J.Atmos.Sci.,1977,34(9):1408-1422
    [89]王小东,邱荣,吴健等.Mie散射系数的改进算法.光电工程,2006,33(3):24-27
    [90]吴北婴.大气辐射传输实用算法.北京:气象出版社,1999
    [91]杨春平,吴健,万敏,等.辐射传输方程中的平均单次散射反照率的计算.激光杂志,2007,28(4):45-46
    [92]吴健,杨春平.“天空背景光谱辐射建模及仿真”技术总结报告.四川成都,2006
    [93]杨春平,吴健,邱荣等.太阳辐射在地球大气系统中的传输.四川省第五届光电技术学术交流会,2004
    [94]Yang C P,Wu J.On the approximate model of scattering radiance for cloudless sky.SPIE,2007,Vol.679515-1-6
    [95]Yang C P,Wu J,R.Qiu,et al.Approximate model of clear sky radiance distribution.SPIE,2006,Vol.61504J-1-6
    [96]Alexander Ignatov,Larry Stowe.Aerosol Retrievals from Individual AVHRR Channels.Part I:Retrieval Algorithm and Transition from Dave to 6S Radiative Transfer Model.J.Atmos.Sci.,2002,59(3):313-334
    [97]Zdunkowski W,Panhans W G,Trautmann T.Comments on “Four-Stream Spherical Harmonic Expansion Approximation for Solar Radiative Transfer”.J.Atmos.Sci.,1998,55(4):669-672
    [98]Wiscombe W J,G W Grams.The backscttered fraction in two-stream approximations.J.Atmos.Sci.,1976,33(14):2440-2442
    [99]Knut Stamnes,Henri Dale.A new look at the discrete ordinate method for radiative transfer calculations in anisotropically scattering atmospheres.Ⅱ:intensity computions.J.Atmos.Sci.,1981,38(12):2696-2706
    [100]Joseph J H,Wiscombe W.The Delta-Eddington approximation for radiative flux transfer.J.Atmos.Sci.,1976,33(12):2452-2459
    [101]Stamnes K,P Conklin.A new multi-layer discrete ordinate approach to radiative transfer in vertically inhomogeneous atmospheres.J.Quant.Spectrosc.Radiat Transfer,1984,31(3):273-282
    [102]Meador W E and Weaver W R.Two steam approximation to radiative transfer in planetary atmospheres:A unified description of existing methods and a new improvement.J.Atmos.Sci.,1980,37(3):630-643
    [103]Schaler E.A Delta two stream approximation in radiative flux calculations.Atmos.Phys,1979,52:15-26
    [104]Qiu J H.Modified Delta-Eddington Approximation for Solar Reflection,Transmission,and Absorption Calculations.J.Atmos.Sci.,1999,56(16):2955-2961
    [105]Liou K N.大气辐射导论(第2版)(郭彩丽等译).北京:气象出版社,2004.
    [106]Shetter E P,Weinman J A.The transfer of solar irradiance through inhomogeneons turbid atmospheres evaluated by Eddington's approximation.J.Atmos.Sci.,1970,27(7):1047-1055
    [107]Yang C P,Wei L,Wu J,et al.Effect of the reflection of underlying surface on sky radiance distribution.Chinese Optics Letters,2007,5(3):125-127
    [108]Shettle E P,Weiman J A.The transfer of solar irradiance through inhomogenous turbid atmospheres evaluated by Eddtington's approximation.J.Atmos.Sci.,1970,27(10):1047-1055
    [109]Reinersman P N,Carder K L.Hybrid numerical method for solution of the radiative transfer equation in one,two,or three dimensions.Appl.Opt.,2004,43(13):2734-2743
    [110]Stamnes K,Tsay S C,Wiscombe W,et al.Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media.Appl.Opt.,1988,27(12):2502-2509
    [111]F Weng.A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneons,emitting and scattering atmosphere-I:Theory.J.Quant.Spectrosc.Radiat.Transfer,1992,47(1):19-33.
    [112]A.S(?)nchez,T.F.Smith,and W.F.Krajewski.A three-dimensional atmospheric radiative transfer model based on the discrete-ordinates method.Atmos.Res.1994,33:283-308
    [113]Rossow W B,Cairns B.Monitoring changes of clouds.J.Clim.,1995,31:305-342
    [114]Squires P,Twomey S.The relation between cloud droplet spectral and the spectrum of cloud nuclei.Amer.Geophys.Uni.,1960,15:211-219
    [115]Mikhail Ovtchinnikov,Yefim L.Kogan,Alan M.Blyth.An investigation of ice production mechanisms in small cumuliform clouds using a 3D Model with explicit microphysics.Part Ⅱ:Case study of new mexico cumulus clouds.J.Atmos.Sci.,2000,57(18):3004-3020
    [116]Deirmendjian D.Electromagnetic scattering on spherical polydispersions.American Elsevier,New York,1969
    [117]D.Deirmendjian.Scattering and Polarization Properties of Water Clouds and Hazes in the Visible and Infrared.Appl.Opt.,1964,3(1):187-196
    [118]Liou K N.A numerical experiment on Chandrasekhar's discrete-ordinate method for radiative transfer:application to cloudy and hazy atmospheres.J.Atmos.Sci.,1973,30(7):1303-1326
    [119]Ackerman S A,Stephens G L.The absorption of solar radiation by cloud droplet:An application of anomalous diffraction theory.J.Atmos.Sci.,1987,44(12):1574-1587
    [120]Pincus R,Barker H W,Morcrette J J.A fast,flexible,approximate technique for computing radiative transfer in inhomogeneous cloud fields.J.Geophys.Res.,2003,108:4376-4381
    [121]Chen Y.,Liou K N,Gu Y.A efficient diffusion approximation for 3D radiative transfer parameterization:application to cloudy atmospheres.J.Quant.Spectrosc.Radiat.Trans fer,2005,92(2):189-200
    [122]David L,Mitchell.Parameterization of the Mie Extinction and Absorption Coefficient for Water Clouds.J.Atmos.Sci.,2000,57(9):1311-1326
    [123]Steven A.Ackerman,Graeme L.Stephens.The absorption of solar radiation by cloud droplet:An application of anomalous diffraction theory.J.Atmos.Sci.,1987,44(12):1574-1588
    [124]Slingo a.A GCM parameterization for the shortwave radiative properties of water clouds.J.Atmos.Sci.,1989,46(10):1419-1427
    [125]Yang P,Liou K N.Parameterization of the scattering and absorption properties of individual ice crystals.J.Geophys.Res.,2000,16:4696-4717
    [126]Takano Y,Liou K N.Radiative transfer in Cirrus Clouds.Part Ⅲ:Light Scattering by Irregular Ice Crystals..J.Atmos.Sci.,1995,52(7):817-837
    [127]Plass G.N,Kattawar G W.Monte Carlo calculations of light scattering from clouds.Appl.Opt.,1968,7:415-419
    [128]Kokhanovsky A.Optical Properties of terrestrial Clouds.Earth Science Reviews.2004,64:189-241
    [129]Boussaton M P,Coquillat S,Chauzy S,et al.A new videosonde with a particle charge measurement device for In Situ observation of precipitation particles.Journal of Atmospheric and Oceanic Technology,2004,21(10):1519-1531
    [130]Andrew J H,Platt C M A,Heymsfield A J,et al.A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content.J.Atmos.Sci.,1984,41(5):846-856
    [131]Andrew Heymsfield.Cirrus uncinus generating cells and the evolution of cirriform clouds.J.Atmos.Sci.,1975,32(4):799-808
    [132]Jeffrey R,Key,Ping Y,et al,.Parameterization of shortwave ice cloud optical properties for various particle habits.J.Geophys.Res.,2002,107(13):1029-1309
    [133]Benjamin M.Herman,Browning S R,Curran R J.The effect of atmospheric aerosols on scattered sunlight.J.Atmos.Sci.,1971,28(3):419-428
    [134]Zibordi G,Voss K I.Geometrical and spectral distribution of sky radiance comparision between simulations and field measurements.Remote Seus.Environ.,1989,27:343-357
    [135]Boudak V P,Kozelsky A V,Savitsky E N et al.Mathematical model of solar radiation reflection by underlying surface.SPIE,2004,Vol.5396:221-227
    [136]Berk A,Bemstein L S,Roberston D C.MODTRAN,a moderate resolution model for LOWTRAN 7.AFGL-TR-89-0122,1994
    [137]杨春平,吴健,冷杰.朗伯下垫面的漫反射作用对天空亮度的影响.电子科技大学学报,2007,36(4):775-777
    [138]Vladimir P B,Alexis V K,Eugene N S,et al.Mathematical model of solar radiation reflection by underlying surface.SPIE,2004,Vol.5396:221-227
    [139]杨春平,吴健,冷杰.地表反射太阳辐射的参数化计算方法.强激光与粒子束,2007,19(2):215-218
    [140]Max N.The simulation of natural phenomena panel.Computer Graphics.1983,17(3):137-139
    [141]Blinn J F.Light reflection functions for simulation of clouds and dusty surface.Computer Graphics,1982,16(3):21-29
    [142]Kajiya J T,PVon H B.Ray tracing volume densities.Computer Graphics,1984,18(3):165-173
    [143]Mandelbrot B B.The fractal geometry of nature.New York:W H Freeman and company,1983
    [144]Falconer K J.Fractal geometry-mathematical foundation and applications.New York:John Wiley and Sons Inc.,1992
    [145]Su Y.,Wan M.,Hu X Y.,ea tal.Approximate computation model of clear sky spectral luminance.High Power Laser and Particle Beams,2005,17(10):1466-1473
    [146]Yu Gu,Liou K N.Radiation parameterization for three-dimensional inhomogeneous cirrus clouds:application to climate models.J.Clim.,2001,14(11):2443-2457
    [147]K F Evans.The spherical harmonic discrete ordinate method for three dimensional atmospheric radiative transfer.J.Atmos.Sci.,1998,55(3):429-446
    [148]Harshvadhan,Weinman J A.Infrared radiative transfer through a regular array of cuboidal clouds.J.Atmos.Sci.,1982,39(2):431-439
    [149]王琰,宋志刚,苑勋.中点偏移算法构建分形山的病态值分析及解决.小型微型计算机系统,2001,22(6):763-765
    [150]阮鲲,范茵.基于中点偏移算法的云模型设计.解放军理工大学学报,2003,4(1):99-102
    [151]杨春平,吴健.机载激光防撞雷达中激光器的参数设计.激光技术,2004,28(3):246-248
    [152]杨春平,吴健.Properties oflaser scattering from the waved seawater surface.强激光与粒子束,2002,14(7):526-530
    [153]杨春平,吴健.旋转镜鼓式热像仪的光雷达回波特性.强激光与粒子束,2003,15(6):567-569
    [154]杨春,吴健.Properties of laser scattering from the spherical rough surface.SPIE,2007,Vol.67232V-1-6
    [155]Bruce N C,V.Ruiz-Cortes,Dainty I C.Calculations of grazing incidence scattering from random rough surfaces using the Kirchhoff approximation.Opt.Commun.,1994,106:123-126
    [156]Ya-Qiu Jin.Multiple scattering from a randomly rough surface.J.Appl.Phys.,1988,63(5):1286-1292
    [157]刘建斌,吴健.空间目标的光散射研究.宇航学报,2006,27(4):802-805
    [158]Chopping M J,Albert R,Sarah G,et al.Simulation of LWIR polarimetric observations of space objects.IEEE AP,2002,164-170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700