计算机病毒网络传播模型稳定性与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术应用越来越多的渗透到工程、商业和社交活动中,计算机病毒的威胁变成了日益重要的关注问题。了解和控制计算机病毒传播、发展规律,继而可以建立计算机病毒的动力学的数学模型。通过对模型的分析和仿真等操作,可以帮助揭示病毒流行的原因,得到计算机病毒的发展变化的规律,进而找到对病毒预防和控制的策略,对于抵御计算机病毒的侵害、维护良好的网络安全和信息安全对于人们来说是非常必要的。
     本文的主要工作和研究成果如下:
     1.考虑了网络中计算机病毒传播的状态转移过程,在此基础上建立了病毒传播的动力学模型,分析了模型及稳定性问题。为了方便描述病毒的动态特性,引入了“当量日”的概念。通过使用“当量日”的概念,建立起来一个描述计算机病毒的离散时间的数学模型。通过计算,得到建立的数学模型的有病平衡点和无病平衡点。然后,运用Lyapunov第一方法得到无病平衡点稳定性的充分条件,再由圆盘定理得出有病平衡点的充分条件。几个仿真证明了稳定性条件的有效性。
     2.研究了带有免疫的计算机病毒传播模型及稳定性问题。首先,建立数学模型来描述计算机网络中带有免疫的病毒传播模型的动力学特性,由计算得出了模型的无病平衡点和有病平衡点。分别求得无病平衡点和有病平衡点稳定的条件。仿真结果表明了所求条件的有效性。
     3.研究了网络中存在双病毒模型及稳定性问题。首先,建立离散的数学模型来描述计算机网络中双病毒传播模型的动力学特性,得出了模型的无病平衡点和有病平衡点。分别求得无病平衡点和有病平衡点稳定的条件。仿真结果表明了所求条件的有效性。
     4.研究了网络中SEIQR模型及稳定性问题。首先,建立离散的数学模型来描述病毒在网络中动力学特性,得出了模型的无病平衡点和有病平衡点。分别求得无病平衡点和有病平衡点稳定的条件。仿真结果表明了所求条件的有效性。
     5.借鉴了经典的HIV动力学模型,建立了带有时滞的离散病毒数学模型,首先给出了数学模型的无病平衡点和有病平衡点。然后求得了数学模型的无病平衡点的渐近稳定性条件。之后得出了有病平衡点渐近稳定的条件。最后仿真结果表明了得到的稳定性条件的有效性。
     6.将控制项加入离散计算机病毒模型中,利用经典的求解最优控制律问题得到防控计算机病毒的最优控制律,仿真结果显示了提出的最优控制律的有效性。
With the increasing penetration of information technology (IT)applications to engineering, business and social activities, the threat ofcomputer viruses has become an increasingly important concern for people.Understand and control the spread and development of computer viruses, andestablish mathematical model of computer virus. Reveal the reasons for theprevalence of the virus through the analysis and simulation of the model, andthen find the method of prevention and control strategies for the virus. It isimportant for people to resist computer viruses, well-maintained networksecurity and information security.
     The main research results of this paper are as follows:
     1. The state transition of computer virus propagation in networks,stability analysis and establishing mathematical model of computer virus areconsidered. In order to describe the dynamic characteristic of the virus, aconcept of “equivalent day” is presented. By using “equivalent day”, amathematical model of discrete-time computer virus is established. Thedisease-free equilibrium and the disease equilibrium are first derived from themathematical model. Then the sufficient conditions of stability for thedisease-free equilibrium are obtained by the first Lyapunov method. And thesufficient conditions of stability for the disease equilibrium are given by disctheorem. Simulation results demonstrate the effectiveness of the stabilityconditions.
     2. Stability analysis with vaccination of computer virus model innetworks is discussed. Firstly, establish mathematical model of computervirus. The disease-free equilibrium and the disease equilibrium are firstderived from the mathematical model. Then the sufficient conditions ofstability for the disease-free equilibrium and disease equilibrium are given.Simulation results demonstrate the effectiveness of the stability conditions.
     3. Stability analysis of two-type computer viruses model in networks isdiscussed. Firstly, establish discrete-time mathematical model of computervirus. The disease-free equilibrium and the disease equilibrium are firstderived from the mathematical model. Then the sufficient conditions ofstability for the disease-free equilibrium and disease equilibrium are given.Simulation results demonstrate the effectiveness of the stability conditions.
     4. Stability analysis of a discrete-time computer SEIQR model innetworks is discussed. Firstly, establish discrete-time mathematical model ofcomputer virus. The disease-free equilibrium and the disease equilibrium arefirst derived from the mathematical model. Then the sufficient conditions ofstability for the disease-free equilibrium and disease equilibrium are given.Simulation results demonstrate the effectiveness of the stability conditions
     5. Discrete-time mathematical model of logic bomb computer virus withdelay is established by using HIV dynamic model for reference. Thedisease-free equilibrium and the disease equilibrium are first derived from themathematical model. Then the sufficient conditions of stability for thedisease-free equilibrium and disease equilibrium are given. Simulation resultsdemonstrate the effectiveness of the stability conditions.
     6. Control item is added to discrete-time mathematical model ofcomputer virus. The optimal control law of controlling computer virus usingclassical optimal control law is presented. Simulation results demonstrate theeffectiveness of optimal control law.
引文
[1] Mishra B K, Jha N. SEIQRS model for the transmission of malicious objects incomputer network[J]. Applied Mathematical Modelling,2010,34(3):710-715.
    [2] Mishra B K, Saini D K. SEIRS epidemic model with delay for transmission ofmalicious objects in computer network[J]. Applied Mathematics and Computation,2007,188(2):1476-1482.
    [3] Mishra B K, Pandey S K. Dynamic model of worms with vertical transmission incomputer network[J]. Applied Mathematics and Computation,2011,217(21):8438-8446.
    [4] Piqueira J R C, Araujo V O. A modified epidemiological model for computerviruses[J]. Applied Mathematics and Computation,2009,213(2):355-360.
    [5] Eminagaoglu M, U ar E, Eren S. The positive outcomes of information securityawareness training in companies–A case study[J]. Information Security TechnicalReport,2009,14(4):223-229.
    [6] Da Veiga A, Eloff J H P. A framework and assessment instrument for informationsecurity culture[J]. Computers&Security,2010,29(2):196-207.
    [7] Yuan H, Chen G. Network virus-epidemic model with the point-to-group informationpropagation[J]. Applied Mathematics and Computation,2008,206(1):357-367.
    [8] Yuan H, Chen G, Wu J, et al. Towards controlling virus propagation in informationsystems with point-to-group information sharing[J]. Decision Support Systems,2009,48(1):57-68.
    [9] Bloem M, Alpcan T, Basar T. Optimal and robust epidemic response for multiplenetworks[J]. Control Engineering Practice,2009,17(5):525-533.
    [10]Jung E, Lenhart S, Feng Z. Optimal control of treatments in a two-strain tuberculosismodel[J]. Discrete and Continuous Dynamical Systems Series B,2002,2(4):473-482.
    [11]Zaman G, Kang Y H, Jung I H. Optimal treatment of an SIR epidemic model withtime delay[J]. BioSystems,2009,98(1):43-50.
    [12]Ren J, Yang X, Zhu Q, et al. A novel computer virus model and its dynamics[J].Nonlinear Analysis: Real World Applications,2012,13(1):376-384.
    [13]Su F, Lin Z W, Ma Y. Modeling and analysis of Internet worm propagation[J]. TheJournal of China Universities of Posts and Telecommunications,2010,17(4):63-68.
    [14]Yuan J, Yang Z. Global dynamics of an SEI model with acute and chronic stages[J].Journal of Computational and Applied Mathematics,2008,213(2):465-476.
    [15]Muroya Y, Enatsu Y, Kuniya T. Global stability for a multi-group SIRS epidemicmodel with varying population sizes[J]. Nonlinear Analysis: Real World Applications,2013,14(3):1693-1704.
    [16]Khan H, Mohapatra R N, Vajravelu K, et al. The explicit series solution of SIR andSIS epidemic models[J]. Applied Mathematics and Computation,2009,215(2):653-669.
    [17]Sun C, Yang W. Global results for an SIRS model with vaccination and isolation[J].Nonlinear Analysis: Real World Applications,2010,11(5):4223-4237.
    [18]Li G, Jin Z. Global stability of a SEIR epidemic model with infectious force in latent,infected and immune period[J]. Chaos, Solitons&Fractals,2005,25(5):1177-1184.
    [19]De la Sen M, Ibeas A, Alonso-Quesada S. On vaccination controls for the SEIRepidemic model[J]. Communications in Nonlinear Science and Numerical Simulation,2012,17(6):2637-2658.
    [20]Sun C, Hsieh Y H. Global analysis of an SEIR model with varying population sizeand vaccination[J]. Applied Mathematical Modelling,2010,34(10):2685-2697.
    [21]Wang L, Li J. Global stability of an epidemic model with nonlinear incidence rate anddifferential infectivity[J]. Applied mathematics and computation,2005,161(3):769-778.
    [22]Wu C, Weng P. Stability analysis of a stage structured SIS model with generalincidence rate[J]. Nonlinear Analysis: Real World Applications,2010,11(3):1826-1834.
    [23]Peng R, Liu S. Global stability of the steady states of an SIS epidemicreaction–diffusion model[J]. Nonlinear Analysis: Theory, Methods&Applications,2009,71(1):239-247.
    [24]Kuniya T, Inaba H. Endemic threshold results for an age-structured SIS epidemicmodel with periodic parameters[J]. Journal of Mathematical Analysis andApplications,2013, In Press, Corrected Proof.
    [25]Jacob C, Viet A F. Epidemiological modeling in a branching population.: Particularcase of a general SIS model with two age classes[J]. Mathematical biosciences,2003,182(1):93-111.
    [26]Enatsu Y, Nakata Y, Muroya Y. Lyapunov functional techniques for the global stabilityanalysis of a delayed SIRS epidemic model[J]. Nonlinear Analysis: Real WorldApplications,2012,13(5):2120-2133.
    [27]Zhang F, Li Z, Zhang F. Global stability of an SIR epidemic model with constantinfectious period[J]. Applied Mathematics and Computation,2008,199(1):285-291.
    [28]Song M, Ma W, Takeuchi Y. Permanence of a delayed SIR epidemic model withdensity dependent birth rate[J]. Journal of computational and applied mathematics,2007,201(2):389-394.
    [29]Hu Z, Teng Z, Jiang H. Stability analysis in a class of discrete SIRS epidemicmodels[J]. Nonlinear Analysis: Real World Applications,2012.
    [30]Jiang D, Yu J, Ji C, et al. Asymptotic behavior of global positive solution to astochastic SIR model[J]. Mathematical and Computer Modelling,2011,54(1):221-232.
    [31]Huang S Z. A new SEIR epidemic model with applications to the theory oferadication and control of diseases, and to the calculation of R0[J]. Mathematicalbiosciences,2008,215(1):84-104.
    [32] zalp N, Demirci E. A fractional order SEIR model with vertical transmission[J].Mathematical and Computer Modelling,2011,54(1):1-6.
    [33]Li X Z, Zhou L L. Global stability of an SEIR epidemic model with verticaltransmission and saturating contact rate[J]. Chaos, Solitons&Fractals,2009,40(2):874-884.
    [34]Li G, Jin Z. Global stability of a SEIR epidemic model with infectious force in latent,infected and immune period[J]. Chaos, Solitons&Fractals,2005,25(5):1177-1184.
    [35]Liu X, Takeuchi Y, Iwami S. SVIR epidemic models with vaccination strategies[J].Journal of Theoretical biology,2008,253(1):1-11.
    [36]Kuniya T. Global stability of a multi-group SVIR epidemic model[J]. NonlinearAnalysis: Real World Applications,2013,14(2),1135-1143.
    [37]Pei Y, Liu S, Gao S, et al. A delayed SEIQR epidemic model with pulse vaccinationand the quarantine measure[J]. Computers&Mathematics with Applications,2009,58(1):135-145.
    [38]Wei H, Jiang Y, Song X, et al. Global attractivity and permanence of a SVEIRepidemic model with pulse vaccination and time delay[J]. Journal of Computationaland Applied Mathematics,2009,229(1):302-312.
    [39]Jiang Y, Wei H, Song X, et al. Global attractivity and permanence of a delayed SVEIRepidemic model with pulse vaccination and saturation incidence[J]. AppliedMathematics and Computation,2009,213(2):312-321.
    [40]Zhang T, Teng Z. Global behavior and permanence of SIRS epidemic model with timedelay[J]. Nonlinear Analysis: Real World Applications,2008,9(4):1409-1424.
    [41]Kovács S. Dynamics of an HIV/AIDS model–The effect of time delay[J]. Appliedmathematics and computation,2007,188(2):1597-1609.
    [42]Meng X, Jiao J, Chen L. The dynamics of an age structured predator–prey model withdisturbing pulse and time delays[J]. Nonlinear Analysis: Real World Applications,2008,9(2):547-561.
    [43]Meng X, Chen L. Permanence and global stability in an impulsive Lotka–VolterraN-species competitive system with both discrete delays and continuous delays[J].International Journal of Biomathematics,2008,1(02):179-196.
    [44]Meng X, Chen L, Li Q. The dynamics of an impulsive delay predator–prey modelwith variable coefficients[J]. Applied Mathematics and Computation,2008,198(1):361-374.
    [45]Sun X K, Huo H F, Xiang H. Bifurcation and stability analysis in predator–preymodel with a stage-structure for predator[J]. Nonlinear Dynamics,2009,58(3):497-513.
    [46]Mukandavire Z, Garira W, Chiyaka C. Asymptotic properties of an HIV/AIDS modelwith a time delay[J]. Journal of Mathematical Analysis and Applications,2007,330(2):916-933.
    [47]Martcheva M, Pilyugin S S, Holt R D. Subthreshold and superthreshold coexistenceof pathogen variants: the impact of host age-structure[J]. Mathematical biosciences,2007,207(1):58-77.
    [48]Li J, Ma Z, Zhang F. Stability analysis for an epidemic model with stage structure[J].Nonlinear Analysis: Real World Applications,2008,9(4):1672-1679.
    [49]Korobeinikov A, Wake G C. Lyapunov functions and global stability for SIR, SIRS,and SIS epidemiological models[J]. Applied Mathematics Letters,2002,15(8):955-960.
    [50]Tewa J J, Dimi J L, Bowong S. Lyapunov functions for a dengue disease transmissionmodel[J]. Chaos, Solitons&Fractals,2009,39(2):936-941.
    [51]Iggidr A, Mbang J, Sallet G. Stability analysis of within-host parasite models withdelays[J]. Mathematical biosciences,2007,209(1):51-75.
    [52]Smith H L. A structured population model and a related functional differentialequation: global attractors and uniform persistence[J]. Journal of Dynamics andDifferential Equations,1994,6(1):71-99.
    [53]Smith H L, Thieme H R. Monotone semiflows in scalar non-quasi-monotonefunctional differential equations[J]. Journal of Mathematical Analysis andApplications,1990,150(2):289-306.
    [54]So J W H, Wu J, Zou X. Structured population on two patches: modeling dispersaland delay[J]. Journal of Mathematical Biology,2001,43(1):37-51.
    [55]Cooke K, Van den Driessche P, Zou X. Interaction of maturation delay and nonlinearbirth in population and epidemic models[J]. Journal of Mathematical biology,1999,39(4):332-352.
    [56]Hethcote H W, Van Den Driessche P. Two SIS epidemiologic models with delays[J].Journal of mathematical biology,2000,40(1):3-26.
    [57]Hanon E, Hall S, Taylor G P, et al. Abundant tax protein expression in CD4+T cellsinfected with human T-cell lymphotropic virus type I (HTLV-I) is prevented bycytotoxic T lymphocytes[J]. Blood,2000,95(4):1386-1392.
    [58]Takeuchi Y, Ma W, Beretta E. Global asymptotic properties of a delay SIR epidemicmodel with finite incubation times[J]. Nonlinear Analysis: Theory, Methods&Applications,2000,42(6):931-947.
    [59]Ma W, Takeuchi Y, Hara T, et al. Permanence of an SIR epidemic model withdistributed time delays[J]. Tohoku Mathematical Journal, Second Series,2002,54(4):581-591.
    [60]Yoshida N, Hara T. Global stability of a delayed SIR epidemic model with densitydependent birth and death rates[J]. Journal of computational and applied mathematics,2007,201(2):339-347.
    [61]Zaman G, Han Kang Y, Jung I H. Stability analysis and optimal vaccination of an SIRepidemic model[J]. BioSystems,2008,93(3):240-249.
    [62]Zaman G, Kang Y H, Jung I H. Optimal vaccination and treatment in the SIRepidemic model[J]. Proc. KSIAM,2007,3:31-33.
    [63]Franke J E, Yakubu A A. Disease-induced mortality in density-dependentdiscrete-time SIS epidemic models[J]. Journal of mathematical biology,2008,57(6):755-790.
    [64]Castillo-Chávez C, Yakubu A A. Discrete-time SIS models with simple and complexpopulation dynamics[J]. IMA VOLUMES IN MATHEMATICS AND ITSAPPLICATIONS,2002,125:153-164.
    [65]Zhou Y, Ma Z, Brauer F. A discrete epidemic model for SARS transmission andcontrol in China[J]. Mathematical and Computer Modelling,2004,40(13):1491-1506.
    [66]Sekiguchi M, Ishiwata E. Global dynamics of a discretized SIRS epidemic model withtime delay[J]. Journal of Mathematical Analysis and Applications,2010,371(1):195-202.
    [67]Mickens R E. Discretizations of nonlinear differential equations using explicitnonstandard methods[J]. Journal of Computational and Applied Mathematics,1999,110(1):181-185.
    [68]Jódar L, Villanueva R J, Arenas A J, et al. Nonstandard numerical methods for amathematical model for influenza disease[J]. Mathematics and Computers inSimulation,2008,79(3):622-633.
    [69]Allen L J S, Burgin A M. Comparison of deterministic and stochastic SIS and SIRmodels in discrete time[J]. Mathematical biosciences,2000,163(1):1-34.
    [70]Li J, Ma Z, Brauer F. Global analysis of discrete-time SI and SIS epidemic models[J].Mathematical biosciences and engineering,2007,4(4):699.
    [71]Emmert K E, Allen L J S. Population Extinction In Deterministicand StochasticDiscrete‐time Epidemic Models With Periodic Coefficients with Applications toAmphibian Populations[J]. Natural Resource Modeling,2006,19(2):117-164.
    [72]Li J, Lou J, Lou M. Some discrete SI and SIS epidemic models[J]. AppliedMathematics and Mechanics,2008,29(1):113-119.
    [73]Ramani A, Carstea A S, Willox R, et al. Oscillating epidemics: a discrete-timemodel[J]. Physica A: Statistical Mechanics and its Applications,2004,333:278-292.
    [74]Satsuma J, Willox R, Ramani A, et al. Extending the SIR epidemic model[J]. PhysicaA: Statistical Mechanics and its Applications,2004,336(3):369-375.
    [75]Zhang D C, Shi B. Oscillation and global asymptotic stability in a discrete epidemicmodel[J]. Journal of Mathematical Analysis and Applications,2003,278(1):194-202.
    [76]D’Innocenzo A, Paladini F, Renna L. A numerical investigation of discrete oscillatingepidemic models[J]. Physica A: Statistical Mechanics and its Applications,2006,364:497-512.
    [77]Willox R, Grammaticos B, Carstea A S, et al. Epidemic dynamics: discrete-time andcellular automaton models[J]. Physica A: Statistical Mechanics and its Applications,2003,328(1):13-22.
    [78]Allen L J S, van den Driessche P. The basic reproduction number in somediscrete-time epidemic models[J]. Journal of Difference Equations and Applications,2008,14(10-11):1127-1147.
    [79]Li X, Wang W. A discrete epidemic model with stage structure[J]. Chaos, Solitons&Fractals,2005,26(3):947-958.
    [80]Li L, Sun G Q, Jin Z. Bifurcation and chaos in an epidemic model with nonlinearincidence rates[J]. Applied Mathematics and Computation,2010,216(4):1226-1234.
    [81]Yakubu A A, Franke J E. Discrete-Time SIS EpidemicModel in a SeasonalEnvironment[J]. SIAM Journal on Applied Mathematics,2006,66(5):1563-1587.
    [82]Sekiguchi M. Permanence of a discrete SIRS epidemic model with time delays[J].Applied Mathematics Letters,2010,23(10):1280-1285.
    [83]Muroya Y, Bellen A, Enatsu Y, et al. Global stability for a discrete epidemic model fordisease with immunity and latency spreading in a heterogeneous host population[J].Nonlinear Analysis: Real World Applications,2012,13(1):258-274.
    [84]Muroya Y, Nakata Y, Izzo G, et al. Permanence and global stability of a class ofdiscrete epidemic models[J]. Nonlinear Analysis: Real World Applications,2011,12(4):2105-2117.
    [85]Allen L J S. Some discrete-time SI, SIR, and SIS epidemic models[J]. Mathematicalbiosciences,1994,124(1):83-105.
    [86]Castillo-Chávez C, Yakubu A A. Discrete-time SIS models with simple and complexpopulation dynamics[J]. Ima volumes in mathematics and its applications,2002,125:153-164.
    [87]Castillo-Chavez C, Yakubu A A. Dispersal, disease and life-history evolution[J].Mathematical biosciences,2001,173(1):35-53.
    [88]Méndez V, Fort J. Dynamical evolution of discrete epidemic models[J]. Physica A:Statistical Mechanics and its Applications,2000,284(1):309-317.
    [89]Allen L J S, Thrasher D B. The effects of vaccination in an age-dependent model forvaricella and herpes zoster[J]. Automatic Control, IEEE Transactions on,1998,43(6):779-789.
    [90]Hethcote H W, Van Ark J W. Modeling HIV transmission and AIDS in the UnitedStates[M]. Springer-Verlag,1992.
    [91]Lesnoff M, Lancelot R, Tillard E, et al. A steady-state approach of benefit–costanalysis with a periodic Leslie-matrix model: Presentation and application to theevaluation of a sheep-diseases preventive scheme in Kolda, Senegal[J]. PreventiveVeterinary Medicine,2000,46(2):113-128.
    [92]McCluskey C C. Complete global stability for an SIR epidemic model withdelay—distributed or discrete[J]. Nonlinear Analysis: Real World Applications,2010,11(1):55-59.
    [93]Billings L, Spears W M, Schwartz I B. A unified prediction of computer virus spreadin connected networks[J]. Physics Letters A,2002,297(3):261-266.
    [94]Nachenberg C. Computer virus-coevolution[J]. Communications of the ACM,1997,50(1):46-51.
    [95]Thimbleby H, Anderson S, Cairns P. A framework for modelling trojans and computervirus infection[J]. The Computer Journal,1998,41(7):444-458.
    [96]Wierman J C, Marchette D J. Modeling computer virus prevalence with asusceptible-infected-susceptible model with reintroduction[J]. Computationalstatistics&data analysis,2004,45(1):3-23.
    [97]Bissett A, Shipton G. Some human dimensions of computer virus creation andinfection[J]. International Journal of Human-Computer Studies,2000,52(5):899-913.
    [98]M kinen E. Comment on ‘A framework for modelling Trojans and computer virusinfection’[J]. The Computer Journal,2001,44(4):321-323.
    [99]Sawyer J E, Kernan M C, Conlon D E, et al. Responses to the MichelangeloComputer Virus Threat: The Role of Information Sources and Risk HomeostasisTheory1[J]. Journal of Applied Social Psychology,1999,29(1):23-51.
    [100] Goldberg L A, Goldberg P W, Phillips C A, et al. Constructing computervirus phylogenies[J]. Journal of Algorithms,1998,26(1):188-208.
    [101] Kephart J O, White S R, Chess D M. Computers and epidemiology[J]. Spectrum,IEEE,1993,30(5):20-26.
    [102] Zou C C, Gong W, Towsley D, et al. The monitoring and early detection of internetworms[J]. IEEE-ACM Transactions on Networking,2005,13(5):961-974.
    [103] Piqueira J R C, Navarro B F, Monteiro L H A. Epidemiological models applied toviruses in computer networks[J]. Journal of Computer Science,2005,1(1):31-34.
    [104] Araujo VO. Modelagem Dina mica de V′rus de Computador, under graduateEngineering Thesis, Escola Polite′cnica da USP, Sa oPaulo-Brasil;2004.
    [105] Piqueira J R C, de Vasconcelos A A, Gabriel C E C J, et al. Dynamic models forcomputer viruses[J]. Computers&Security,2008,27(7):355-359.
    [106] Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks[J].Physical review letters,2001,86(14):3200-3203.
    [107] Draief M. Epidemic processes on complex networks[J]. Physica A: StatisticalMechanics and its Applications,2006,363(1):120-131.
    [108] Xia C Y, Liu Z X, Chen Z Q, et al. Spreading behavior of SIS model withnon-uniform transmission on scale-free networks[J]. The Journal of ChinaUniversities of Posts and Telecommunications,2009,16(1):27-31.
    [109] Yang R, Wang B H, Ren J, et al. Epidemic spreading on heterogeneous networkswith identical infectivity[J]. Physics Letters A,2007,364(3):189-193.
    [110] Shi H, Duan Z, Chen G. An SIS model with infective medium on complexnetworks[J]. Physica A: Statistical Mechanics and its Applications,2008,387(8):2133-2144.
    [111] Wang X, Tao Y, Song X. Pulse vaccination on SEIR epidemic model with nonlinearincidence rate[J]. Applied Mathematics and Computation,2009,210(2):398-404.
    [112] Choisy M, Guégan J F, Rohani P. Dynamics of infectious diseases and pulsevaccination: teasing apart the embedded resonance effects[J]. Physica D: NonlinearPhenomena,2006,223(1):26-35.
    [113] Zhang H, Chen L, Nieto J J. A delayed epidemic model with stage-structure andpulses for pest management strategy[J]. Nonlinear Analysis: Real WorldApplications,2008,9(4):1714-1726.
    [114] Yan X, Zou Y. Optimal and sub-optimal quarantine and isolation control in SARSepidemics[J]. Mathematical and Computer Modelling,2008,47(1):235-245.
    [115] Yan X, Zou Y, Li J. Optimal quarantine and isolation strategies in epidemicscontrol[J]. World Journal of Modelling and Simulation,2007,3(3):202-211.
    [116] Mishra B K, Pandey S K. Fuzzy epidemic model for the transmission of worms incomputer network[J]. Nonlinear Analysis: Real World Applications,2010,11(5):4335-4341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700