碳纳米管吸附CO分子和1,8-辛二硫醇—金电极分子结点断裂机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术被认为是人类自电力发明以来最伟大的技术,几乎涉及现代科技各个领域,如纳米材料学、纳米电子学、纳米生物学、纳米化学等学科。伴随着微电子学实验技术不断发展,利用单分子构建电子器件已成为纳米领域的一个热门课题,其中金属-分子-金属结构的分子结点是最基本,研究最广泛的分子器件单元,具有奇特的力学和电子输运性质,得到实验和理论上的广泛关注。另一方面,自从1991年碳纳米管被日本NEC公司Iijima博士发现以来,就以其特有的物理、化学性质及其新颖的结构和在未来高科技领域的许多潜在应用价值,迅速在世界范围内掀起了碳纳米管的研究热潮。然而实验证明,完美碳纳米管的应用是有限的,实际的碳纳米管总是不可避免地存在着各种拓扑缺陷。这些缺陷会改变碳纳米管的性质,影响碳纳米管的应用。
     本文中,采用基于能量密度泛函理论(Density functional theory, DFT)的从头计算和基于该原理的SIESTA软件,一方面利用1,8-辛二硫醇-金电极耦合模型进行分子结点断裂机理的理论性研究;另一方面研究含有单原子空位缺陷的碳纳米管吸附CO气体分子后的电子结构变化,取得了一些有价值的结果。
     本论文共分为四个部分:
     第一章首先介绍了分子结点的背景知识,包括分子结点的类型,实验方法,以及研究现状和存在的问题。然后介绍了碳纳米管的基本知识,包括碳元素及其同素异形体的基本情况、碳纳米管的发展、几何结构、分类、性质,并简单介绍了含有缺陷的碳纳米管的研究现状和存在的问题。最后简要介绍了本论文的研究内容。
     第二章介绍了本研究所运用的理论方法。首先介绍了模拟计算所使用的量子力学第一性原理,包括Born-Oppenheimer近似,单电子近似。其次重点介绍了关于密度泛函理论的基本知识,如Hohenberg-Kohn定理、局域密度近似、广义梯度近似等。随后介绍了数值计算的方法,包括离散法和线性标度计算法。最后简要介绍了自洽场计算和SIESTA软件。
     第三章对1,8-辛二硫醇-金电极耦合模型进行了分子结点断裂的理论性研究。我们模拟了五种类型的1,8-辛二硫醇-金电极单分子结点被压缩和拉伸的过程,计算了分子结点总能和分子结断裂的平均力的变化,并通过对电子结构的动态分析,讨论了结点的几何结构变化的原因。研究发现辛二硫醇末端巯基上的氢原子在分子结点结构变化中扮演着关键的角色,每种分子结点模型都具有特定的断裂几何构型和断裂力。通过本课题的研究和实验研究的比较,推断出氢-金键有可能是巯基-金电极构成的分子结点断裂最主要的机制。
     在论文的第四章,我们系统地研究了小气体分子(CO分子)在碳纳米管表面的吸附,对沿含单原子空位缺陷碳纳米管的不同方向移动CO分子的运动过程进行了理论研究。我们以(5,5)型和(7,0)型两种碳纳米管为例,主要讨论了CO分子在碳纳米管的单原子空位缺陷以及无缺陷区域的吸附,模拟沿缺陷碳纳米管不同方向移动CO的运动过程,对每种碳纳米管我们考虑了三种运动过程,分析了吸附能、态密度以及投影态密度的变化规律。研究发现吸附CO分子对(5,5)管和(7,0)管的影响大致相同。CO分子吸附于缺陷上方时,CO与碳纳米管之间产生相互作用,吸附为化学吸附;当CO分子距离缺陷位置较远时,产生的吸附为物理吸附。使CO分子沿碳纳米管管壁移动时,无论是沿圆周方向还是轴向,运动到空位时的系统能量最低,系统最稳定。CO分子中氧原子会影响碳纳米管的电子结构,这种变化主要是由于氧原子p轨道的电子与碳纳米管相互作用引起的。
     第五章是对所做工作的总结。
Nanotechnology is considered as the greatest invention since the electricity, almost involved in all science fields:nano-materials, nanoelectronics, nano-biology, nanochemistry and so on. With the continuous development in experimental techniques of micro-electronics and improvement of theoretical method, constructing some functional electronic devices based on the single molecules becomes a hot topic in the nanotechnology field. Metal-molecule-metal type molecule junction, with special mechanical and electronical properties, is the most basic and widely studied structure in molecular device. Meanwhile, the carbon nanotubes (CNT) have rapidly attracted a lot of attention in many scientific domains because of their unique physical, chemical properties and structure, as well as their signification potential on a broad range of applications since they have been discovered in 1991 by Doctor Iijima of NEC company. However, the experimentations have certificated that the applications of perfect carbon nanotubes are limited, and realistic carbon nanotubes doubtlessly contained various topological defects which may change the properties and influence the applications of the tubes.
     Based on the ab initio total energy density function theory (DFT) and the software SIESTA, we present theoretical studies focused on the research about the molecular break junction (MBJ) and another research about the carbon nanotubes with single atomic vacancy. The first part is a theoretical study of the elongation process of molecular junction formed by octanedithiol molecule and Au electrodes. The second part is to analyze the effect of adsorption of small gas molecule CO on the electronic structure modification of the defected carbon nanotubes.
     The thesis is organized as following four parts:
     In the first chapter, we introduce the background knowledge of molecular junction, such as junction type, experimental technique, status in quo and problems. Second we review the basic knowledge of carbon nanotube included its allotropes, geometrical structure, sorts, properties of the carbon nanotubes. Then we give a brief description on the carbon nanotube with a single vacancy. Finally we give a brief description of our research contents
     At the beginning of the second chapter, we review the first principles of quantum mechanics which the simulative calculation used, includes Born-Oppenheimer approximation and single electron approximation. Then we emphasize the basic knowledge of density function theory, such as the theory of Hohenberg-Kohn, Local Density Approximation, Generalized Gradient Approximation. Finally self-consistent field calculation and the software SIESTA are briefly introduced.
     In chapter 3, we present a theoretical study of the MBJ processes of the molecular junction formed by octanedithiol molecules and Au electrodes. In the project, we simulate the contraction and elongation processes of five types of molecular junctions. The variation of the total energy and the average force needed to break the molecular junction are calculated, and each type of molecular junctions is found to have a characteristic breaking force. The results show that the behavior of the end H atom in the -SH group plays a crucial role in the variation of the junction structure and each type of molecular junction has a specific breaking geometry and a characteristic breaking force. We conclude that the breakdown of the H-Au bond may be the most important mechanism in the MBJ experiment if the molecular junction contains SH-Au contacts.
     Systematical study on surface adsorption of carbon nanotubes with small gas molecules (CO) is presented in chapter 4. Take the (5,5) tubes and the (7,0) tubes for instance, we mainly investigate the adsorption of CO either on a single atomic vacancy or on the defect-free region, and simulate three types of dynamic processes of CO along the defected carbon nanotubes. Then we give an analysis of the change of the adsorption energies, density of states (DOS) and projected DOS (PDOS). It is shown that the adsorbed CO makes similar effect on the (5,5) tubes and the (7,0) tubes. When the CO adsorbed above the defect site, the effect between CO molecule and nanotube is chemical adsorption. However, the effect converts to physical adsorption as the CO molecule far away from nanotube. Additionally, the dynamic processes as ether along the axial or circumferential direction, the systematic energy is the minimum and the system is the most stable when the CO moved to the space site. The oxygen atom of CO molecule may affect the electronic structure of nanotube, which is attributed to the electron on the p orbital of the oxygen atom.
     The main conclusions are given in the last chapter.
引文
[1]华中一.针尖上的计算机纳米电子学.上海:上海科学技术文献出版社.(2004)P.17
    [2]Ramachandran G.K., Hopson T.J.,Rawlett A.M., et al. A bond-fluctuation mechanism for stochastic switching in wired molecules. [J]. Science,2003, 300:1413-1416.
    [3]Metzger R.M.. Unimolecular rectifiers and proposed unimolecular amplifier. Ann NY Acad. Sci [J],2003,1006:252-276.
    [4]Nitzan A.,Ratner Mark A.. Electron Transport in Molecular Wire Junctions. [J], Science,2003,300:1384-1389.
    [5]Salomon A.,Cahen D., Lindsay S., et al. Comparison of Electronic Transport Measurements on Organic Molecules. [J]. Adv Mater,2003,15:1881-1890.
    [6]Reed M.A., Zhou C., Muller C.J.,et al. Conductance of a molecular junction. [J]. Science,1997,278(5336):252-254.
    [7]Liang W., Bockrath M., Bozovic D., et al. Fabry - Perot interference in a nanotube electron waveguide. [J]. Nature,2001,411:665-669.
    [8]Cui X. D., Primak A., Zarate X., et al. Reproducible measurement of single-molecule conductivity. [J]. Science,2001,294:571-574.
    [9]Xu B., Tao N.J.. Measurement of single-molecule resistance by repeated formation of molecular junctions. [J]. Science,2003,301:1221-1223.
    [10]Thompson S.E., Parthasarathy S.. Moore's law: the future of Si microelectronics. [J]. Materials Today,2006,9:20-25.
    [11]刘云圻,朱道本.分子器件[J].物理,1990,19(5):P260
    [12]M.A.Ratner, A.Aviram. Molecular rectifiers. Chem.Phy.Lett,29:277,1974
    [13]Rawlett A M, Hop son T J, Nagahara L A, et al. Electrical measurements of a dithiolated electronic molecule via conducting atomic force microscopy. [J]. Appl.Phys.Lett.,2002,81,3043
    [14]Xu B Q, Tao N J. Measurement of single molecule conductance by repeated formation of molecular junctions. [J]. Science.,2003,301,1221.
    [15]C.J.Muller, J.M.van Ruitenbeek, de L.J.Jongh. Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width. [J]. Phys. Rev. Lett.,1992,69:140-143.
    [16]Reed M A. et al. Conductance of a molecular junction. [J]. Science,1997, 278(5336):252-254.
    [17]Reichert J, Ochs R, et al. Driving current through single organic molecules. [J]. Phys.Rev.Lett.,2002,88,4.
    [18]Weber H B, Reichert J, et al. Electronic transport through single conjugated molecules. [J]. Chem. Phys.,2002,281,113.
    [19]Dulic D, van der Molen S J, et al. One-way optoelectronic switching of photochromic molecules on gold. [J]. Phys.Rev.Lett.,2003,91,4.
    [20]Reichert J, Weber H B, et al. Low-temperature conductance measurements on single molecules. [J]. Appl.Phys.Lett.,2003,82,4137.
    [21]Gruter L, Cheng F Y, et al. Resonant tunneling through a C-60 molecular junetion in a liquid environment. [J]. Nanotechnology,2005,16,2143.
    [22]Djukic D, van Ruitenbeek J M. Shot noise measurements on a single molecule. [J]. Nano Lett.,2006,6,789.
    [23]Tsutsui M, Teramas Y, et al. High-conductance states of single benzenedithiol molecules. [J]. Appl.Phys.Lett.,2006,89,3.
    [24]Park J J, Champagne A R, et al. Tuning the kondo effect with a mechanically controllable break junction. [J]. Phys.Rev.Lett.,2007,99,4.
    [25]Elbing M, Ochs R, et al. A single-molecule diode. [J]. Proc.Natl.Acad.Sci. U.S.A., 2005,102,8815.
    [26]Lortscher E, Weber H B, Riel H. Statistical approach to investigating transport through single molecules.[J]. Phys.Rev.Lett.,2007,98,176807.
    [27]Porath D, Bezryadin A, de Vries S, et al. Direct measurement of electrical transport through DNA molecules. [J]. Nature,2000,403:635-638.
    [28]Storm A J, van Noort J, de Vries S, et al. Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale. [J]. Appl Phys Lett,2001, 79:3881-3883.
    [29]Kasumov A Y, Kociak M, et al. Proximity-induced superconductivity in DNA. [J]. Science,2000,291:280-282.
    [30]Cohen H, Nogues C, Naaman R, et al. Direct measurement of electrical transport through single DNA molecules of complex sequence. [J]. Proc Natl Acad Sci USA,2005,102:11589-11593.
    [31]Zhitenev N B, Erbe A, Bao Z. Single- and multigrain nanojunctions with a self-assembled monolayer of conjugated molecules. [J]. Phys.Rev.Lett.,2004, 92:186805.
    [32]Zhitenev N B, Meng H, Bao Z. Conductance of small molecular junctions. [J]. Phys.Rev.Lett.,2002,88(22):226801.
    [33]H.W.Kroto, J.R.Heath, S.C.O’Brien, R.F.Curl, and R.E.Smally. C60: Buckminster-fullerene. Nature,1985,318:162.
    [34]D.Ugarte. Curling and closure of graphitic networks under electron-beam irradiation. Nature,1992,359:707.
    [35]S.Iijima. Helical microtubules of graphitic carbon. Nature,1991,354:56-58.
    [36]S.Iijima, T.Ichihashi. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993,363:603.
    [37]D.S.Bethune, C.H.Kiang, M.S.de Vries, G.Gorman, J.Savoy, R.Vazquez, and R.Beyers. Cobalt-catalysed growthof carbon nanotubes with single-atomic-layer walls. Nature,1993,363:605.
    [38]H.W.Zhu, C.L.Xu, D.H.Wu, B.Q.Wei, R.Vajtai, P.M.Ajayao. Direct synthesis of long nanotube strands. Science,2002,296:884.
    [39]R.Saito, G.Dresselhaus, M.S.Dresselhaus. Physical properties of carbon nanotubes. Imperial College Press, London,1998.
    [40]L.F.Sun, S.S.Xie, W.Liu, W.Y.Zhou, Z.Q.Liu, D.S.Tang, G.Wang, and L.X.Qian. Creating the narrowest carbon nanotubes. Nature,2000,403:384.
    [41]L.C.Qin, X.L.Zhao, K.Hirahara, Y.Miyamoto, Y.Ando, and S.Iijima. Materials science:The smallest carbon nanotube. Nature,2000,408:50.
    [42]N.Wang, Z.K.Tang, J.Chen, and G.Li. Materials science:Single-walled 4A carbon nanotube arrays. Nature,2000,408:50.
    [43]L.M.Peng, Z.L.Zhang, Z.Q.Xue, Q.D.Wu, Z.N.Gu, and D.G.Pettifor. Stability of Carbon Nanotubes:How Small Can They Be?. Phys.Rev.Lett.,2000, 85:3249-3252.
    [44]X.Zhao, Y.Liu, S.Inoue, T.Suzuki, R.O.Jones, and Y.Ando. Smallest Carbon Nanotube Is 3A in Diameter?. Phys.Rev.Lett.,2004,92:125502.
    [45]R.Saito, GDresselhaus, and M.S.Dresselhaus. Physical Properties of Carbon Nanotubes. Imperial College Press,1998.
    [46]J.Cao, Q.Wang, H.Dai, Electromechanical Properties of Metallic, Quasimetallic, and Semiconducting Carbon Nanotubes under Stretching. Phys.Rev.Lett.,2003, 90:157601.
    [47]M.R.Falvo, GJ.Clary, R.M.Taylor, V.Chi, F.P.Brooks Jr, S.Washburn, and R. Superfine. Bending and buckling of carbon nanotubes under large strain. Nature.1997,389:582.
    [48]J.W.Ding, X.H.Yan, J.X.Cao. Analytical relation of band gaps to both chirality and diameter of single-wall carbon nanotubes. Phys.Rev.B.,2002,66,073401.
    [49]J.X.Cao, X.H.Yan, J.W.Ding, D.L.Wang. Band structures of carbon nanotubes: the sp3s* tight-binding model.J.Phys.:Condens.Matter.,2001,13, L271.
    [50]J.X.Cao, X.H.Yan, J.W.Ding, D.L.Wang, D.Lu. Electronic properties of single-walled carbon nanotubes.J.Phys.Soc.Jpn.,2002,71,1339.
    [51]Y.H.Huang, M.Okada, K.Tanaka, T.Yamabe. Estimation of superconducting transition temperature in metallic carbon nanotubes. Phys.Rev.B.,1996, 53:5129.
    [52]Pelgney A, Laurent Ch, Flahaute E, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes [J]. Carbon,2001,39:507.
    [53]Che J W, Cagin T, Goddard W A. Thermal Conduetivity of Carbon Nanotubes. Nanotechnology [J]. Nanoteehnology,2000,11:65-69.
    [54]Collins P G, Arnold M S, Avouris P. Engineering carbon nanotubes and nanotubo circuits using electrical breakdown [J]. Science,2001,292:706-709
    [55]Yi W, Lu L, Zhang D L, et al. Linear specific heat of carbon nanotubes [J]. Phy. Rev. B.,1999,59:9015-9018.
    [56]Hone J, Whituey M, Piskoti C. Thermal conductivity of single-walled carbon nanotubes. Phys.Rev.B.,1999,59:2514-2516.
    [57]Kim P, Shi L, Majumdar A. Therma Transport Measurements of Indi-vidual Multiwalled Nanotubes. Phys.Rev.Lett.,2001,82:215502.
    [58]Berber S, Kwon Y K, Tomanek D. Unusually High Thermal Conduetivity of Cathon nanotubes. Phys.Rev.Lett.,2000,84:4613-4616.
    [59]Osman M A, Srivastava D. Temperature dependence of thermal conduetivity of single-walled carbon nanotubes. Nanotechnology,2001,12:21-24.
    [60]Collins P G, Zettl A. Unique characteristies of cold cathode carbon nanotube-matrixfield emitters [J]. Phys. Rev. B.,1997,55(15):9391-9399.
    [61]Saito Y, Uemura S, Hamaguchi K. Cathode ray tube lighting elements with carbon nanotube field emitters [J]. Appl. Phys. Lett.,1998,37:346-347.
    [62]W.Zhu,C.Bower,O.Zhou,GKochanski,and S.Jin,Large current density from carbon nanotube field emitters. Appl.Phys.Lett.,1999,75:873.
    [63]W.A.de Heer, W.S.Bacsa, A.Chatelain, T.Gerfin, R.H.Baker, L.Forro, and D.Ugarte. Aligned carbon nanotubes films:production and optical and electrical properties. Science,1995,268:845.
    [64]S.S.Fan, M.GChapline, N.R.Franklin, T.W.Tombler, A.M.Cassell, and H.G.Dai. Self-oriented regular arrays of carbon nanotube and their field emission properties. Science,1999,283:512.
    [65]S.J.Tans, A.R.M.Verschueren, and C.Dekker. Room-temperature transistor based on a single nanotubes. Nature,1998,393:49.
    [66]C.Dekker. Carbon nanotubes as molecular quantum wires. Physics Today,1999, 52:22.
    [67]H.D.Wagner, O.Lourie, Y.Feldman, and R.Tenne. Stress-induced fragmentation of multiwalled carbon nanotubes in a polymer matrix. Appl.Phys.Lett.,1998, 72:188.
    [68]P.Chen, X.Wu, J.Lin, and K.L.Tan. High H2 uptake alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science,1999, 285:91.
    [69]A.C.Dillon, K.M.Jones, T.A.Bekkedahl, C.H.Kiang, D.S.Bethune, and M.J.Heben. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997,386:377.
    [70]S.Akita, Y.Nakayama, S.Mizooka. Nanotweezers consisting of carbon nanotubes operating in an atomc force microscope. Appl.Phys.Lett.,2001,79:1691-1693.
    [71]R.H.Baughman, C.Cui, A.A.Zakhidov. Carbon nanotube actuators. Science,1999, 284:1340-1344.
    [72]S.S.Wong, A.T.Woolley, T.W.Odom. Single-walled carbon nanotube probes for high-resolution nanostructure imaging. Appl.Phys.Lett.,1998,73:3465-3467.
    [73]G.Hummer, J.C.Rasaiah, J.P.Noworyta. Water conduction through the hydrophobic channel of a carbon nanotube. Nature(London),2001, 414:188-190.
    [74]R.H.Baughman, A.A.Zakhidov, W.A.D.Heer. Carbon nanotubes-Route toward Applications. Science,2002,297:787-792.
    [75]A.Bachtold, P.Hadley, T.Nakanishi. Logic circuits with carbon nanotube transistors. Science,2001,294:1317-1320.
    [76]V.H.Crespi, M.L.Coben, A.Rublo. In -situ bandgap engineeringin carbon nanotubes. Phys.Rev.Lett.,1997,792:2093-2096.
    [77]Pugno N M. Young's modulus reduction of defective nanotubes. Appl.Phys.Lett., 2007,90:043106-043108.
    [78]Pugno N M, Ruoff R S. Quantized fracture mechanics. Philos.Mag.,2004,84: 2829-2845.
    [79]Song J, Jiang H, Shi D L, et al. Stone-wales transformation:precursor of fracture in carbon nanotubes. International Journal of Mechanical Sciences,2006,48: 1464-1470.
    [80]Kotakoski J, Krasheninnikov A V, Nordlund K. Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes:Atomistic simulations. Phys.Rev.B.,2006,74:245420-245424.
    [81]Sawaya S, Akita S, Nakayama Y. Correlation between the mechanical and electrical properties of carbon nanotubes. Nanotechnology,2007,18:035702-035704.
    [82]Uryu S, Ando T. Impurity induced inter-tube conductance in double-wall carbon nanotubes. Phys.Stat.Sol(b),2006,243(13):3281-3284.
    [83]Yamamoto K, Kamimura T, Matsumoto K. Electrical transport characteristic of carbon nanotube after mass-separated ultra-low-energy oxygen ion beams irradiation. Applied Surface Science,2006,252(15):5579-5582.
    [84]Gupta S, Patel R J, Smith N, et al. Room temperature dc electrical conductivity studies of electron-beam irradiated carbon nanotubes. Diam.Rela.Mate.,2007, 16(2):236-242.
    [85]SkakalovaV, Woo Y S, Osvath Z, et al. Electron transport in Ar+-irradiated single wall carbon nanotubes. Phys.Stat.Sol.(b),2006,243(13):3346-3350.
    [86]Robinson J A, Snow E S, et al. Role of defects in single-walled carbon nanotube chemical sensors. Nano Letters,2006,6(8):1747-1751.
    [87]Kim S J, Park Y J, Ra E J, et al. Defect-induced loading of Pt nanoparticles on carbon nanotubes. Appl.Phys.Lett.,2007,90:023114-023116.
    [88]Stone A J, Wales D J. Theoretical studies of icosahedral C60 and some related species. Chem.Phys.Lett.,1986,128:501-503.
    [89]Nardelli M B,Yakobson B I,Bernholc J.Brittle and ductile behavior in carbon nanotubes. Phys.Rev.Lett.,1998,81:4656-4659.
    [90]Zhang P, Lammert P E, Crespi V H. Plastic deformations of carbon nanotubes. Phys.Rev.Lett.,1998,81:5346-5349.
    [91]Zhou L G, Shi S Q. Adsorption of foreign atoms on Stone-Wales defects in carbon nanotube. Carbon,2003,41(3):613-615.
    [92]Sung Jin Bee, Chung-ro Lee, Insung S.Choi, Cheong-Soo Hwang, Myoung-seon Gong, Kwan Kim, and Sang-Woo Joo. Adsorption of 4- biphenylisocyanide on gold and solver nanoparticle surface. [J]. J. Phys. Chem. B.,2002,160(28): 7076-7080.
    [93]Jason I. Henderson, Sue Feng, llwmas Bein, Cliford P. Kubiak. Adsorption of diisoeyanides on gold. [J]. Langnmir,2000,16(15):6183-6187.
    [1]Born M., Oppenheimer J.R., Zur Quantentheorie der Molekein[J], Ann. Phys., 1927,84: 457-484.
    [2]Hartree D. R., The wave mechanics of an atom with a non-coulomb central field. part I-theory and methods[J]. Proc. Cam. Phil. Soc.,1928,24:89-110.
    [3]Fock V., Naherungsmethode zur losung des quanten-mechanischen mehrkorper-probleme [J]. Z. Phys.1930,61:126-148.
    [4]Thomas H. L., The calculation of atomic fields [J]. Proc. Camb. Phil Philos. Soc., 1927,23:542-548.
    [5]Fermi E., Application of statistical gas methods to electronic systems[J]. Z. Phys. 1928,48:73-79.
    [6]Hohenberg P., Kohn W., Inhomogeneous electron gas[J]. Phys. Rev. B.,1964,136: 864-871.
    [7]Kohn W., Sham L. J., Self-consistent equations including exchange and correlation effects[J]. Phys. Rev. A.,1965,140:1133-1138.
    [8]徐光宪、黎乐民、王德民,量子化学(中册)科学出版社,北京,1985。
    [9]谢希德、陆栋,固体能带理论[M],复旦大学出版社,上海,1998。
    [10]Kresse G, Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys.:Condens. Matt.,1994,6:8245-8257.
    [11]Payne M. et al., Iterative minimization techniques for ab initio total-energy 1992,64:1045-1097.
    [12]Koelling D. D. and Arbman G. O., Use of energy derivative of the radial solution in an augmented plane wave method:application to copper [J]. J. Phys. F (Metal Phys.),1975,5:2041-2054.
    [13]Henrik Bruus and Karsten Flensberg. Many-body quntum theory in condensed matter physics:an introduction [M]. Oxford University Press,2004:121-139.
    [14]Beck T. L., Real-space mesh techniques in density-functional theory [J]. Rev. Mod. Phys.,2000,72:1041-1080.
    [15]Nakaoka N. et al., Partitioned real-space density functional calculations of bielectrode systems under bias voltage and electric field [J]. Phys. Rev. Lett., 2001,86:540-543.
    [16]马文淦、张子平,计算物理学[M],中国科学技术大学出版社,合肥,1992。
    [17]Chelikowsky J. R. et al., Finite-difference-pseudopotential method:electronic structure calculations without a basis [J]. Phys. Rev. Lett.,1994,72:1240-1243.
    [18]Chelikowsky J. R., et al., Higher-order finite-difference pseudopotential method: an application to diatomic molecules [J]. Phys. Rev. B,1994,50:11355-11364.
    [19]Pask J. E., et al., Real-space local polynomial basis for solid-state electronic structure calculations:A finite-element approach [J]. Phys. Rev. B,1999,59: 12352-12358.
    [20]Briggs E. L., et al., Real-space multigrid-based approach to large-scale electronic structure calculations [J]. Phys. Rev. B,1996,54:14362-14375.
    [21]Ono T. and Hirose K., Timesaving double-grid method for real-space electronic-structure calculations [J]. Phys. Rev. Lett.,1999,82:5016-5019.
    [22]Press W. H. et al., Numerical recipies in FORTRAN 77:the art of scientific computing [M]. Cambridge University Press, Cambridge,1992.
    [23]Goedecker S., Linear scaling electronic structure methods [J]. Rev. Mod. Phys. 1999,71:1085-1123.
    [24]Bowler D. R. Miyazaki T. and Gillan M. J., Recent progress in linear scaling ab initio electronic structure techniques [J].J. Phys.:Condens. Matter:2002,14: 2781-2798.
    [25]Kohn W., Density Functional and density matrix method scaling linearly with the number of atoms [J]. Phys. Rev. Lett.1996,76:3168-3171.
    [26]Geodecker S. and Colombo L., Efficient linear scaling algorithm for tight-binding molecular dynamics[J]. Phys. Rev. Lett.,1994,73:122-125.
    [27]Liang W., Saravanan C., Shao Y., et al., Improved Fermi operator expansion methods for fast electronic structure calculations[J]. J. Chem. Phys.,2003,119: 4117-4125.
    [28]Geodecker S., Low complexity algorithms for electronic structure calculations [J]. J. Comput. Phys.,1995,18:261-268.
    [29]Li X.-P., Nunes R. W., and Vanderbilt D., Density-matrix electronic-structure method with linear system-size scaling [J]. Phys. Rev. B,1993,47:10891-10894.
    [30]Mauri F., Galli G., and Car R., Orbital formulation for electronic-structure calculations with linear system-size scaling [J]. Phys. Rev. B,1993,47:9973-9976.
    [31]Kim J., Mauri F., and Galli G., Total-energy global optimizations using non-orthogonal localized orbitals [J]. Phys. Rev. B,1995,52:1640-1648.
    [32]Yang W., Direct calculation of electron density in density-functional theory [J]. Phys. Rev. Lett.,1991,66:1438-1441.
    [33]Yang W. and Lee T. S., A density-matrix divide-and-conquer approach for electronic structure calculations for large molecules [J].J. Chem. Phys.,1995, 103:5674-5678.
    [34]Lee T. S., York D. M., and Yang W., Linear-scaling semi-empirical quantum calculations for macromolecules [J]. J. Chem. Phys.,1996,105:2744-2747.
    [35]Baroni S. and Giannozzi P., Towards very large-scale electronic-structure calculations [J]. Euro. Phys. Lett.,1992,17,547-552.
    [36]Aoki M., Rapidly convergent bond order expansion for atomistic simulations [J], Phys. Rev. Lett.,1993,71:3842-3845.
    [37]Gibson A., Haydock R., and LaFemina J. P., Ab initio electronic-structure computations with the recursion method [J]. Phys. Rev. B,1993,47:9229-9237.
    [38]Watson S. C. and Carter E. A., Linear scaling parallel algorithms for the first principles treatment of metals [J]. Comput. Phys. Commun.,2000,128:67-92.
    [39]Gonzalez D. J., Gonzalez L. E. and Stoot M. J., Surface structure of liquid Li and Na: An ab initio molecular dynamics study [J]. Phys. Rev. Lett.,2004,92: 085501.
    [40]Wang L. W. and Teter M. P., Kinetic-energy functional of the electron density [J]. Phys. Rev. B,1992,45:13196-13220.
    [41]Wang Y. A., Govind N., and Carter E. A., Orbital-free kinetic-energy density functionals with a density-dependent kernel [J]. Phys. Rev. B,1999,60:16350.
    [42]Soler J., Artacho E., Gale J., et al., The SIESTA method for ab initio order-N materials simulation[J].J. Phys.:Condens. Matter,2002,14:2745-2779.
    [1]Sung Jin Bee, Chung-ro Lee, Insung S.Choi, Cheong-Soo Hwang, Myoung-seon Gong, Kwan Kim, and Sang-Woo Joo. Adsorption of 4- biphenylisocyanide on gold and solver nanoparticle surface [J]. J. Phys. Chem. B.,2002,160(28):7076-7080.
    [2]Jason I. Henderson, Sue Feng, llwmas Bein, Cliford P. Kubiak. Adsorption of diisoeyanides on gold [J]. Langnmir,2000,16(15):6183-6187.
    [3]Reed M. A.; Chen J.; Rawlett A. M.; Price D.W.; Tour J. M., Molecular random access memory cell[J]. Appl. Phys. Lett.2001,78:3735-3737.
    [4]Cui X. D.,Primak A., Zarate X.; Tomfohr J.; Sankey O. F.; Moore A.L.; Moore T. A.; Gust D.; Harris G.; Lindsay S. M., Muller reproducible measurement of single-molecule conductivity[J]. Science,2001,294:571-574.
    [5]Reed M. A.; Zhou C.; C. J.; Burgin T. P.; Tour J. M., Conductance of a molecular junction[J]. Science,1997,278:252-254.
    [6]Kergueris C.; Bourgoin J. P.; Palacin S.; Esteve D.; Urbina C.;Magoga M.; Joachim C., Electron transport through a metal-molecule-metal junction[J]. Phys. Rev.B,1999,59:12505-12513.
    [7]Liang W.; Shores M. P.; Bockrath M.; Long J. R.; Park H., Kondo resonance in a single-molecule transistor[J]. Nature,2002,417:725-729.
    [8]Pobelov I. V.; Li Z.; Wandlowski T. Electrolyte gating in redox-active tunneling junctions an electrochemical STM approach[J],J. Am. Chem. Soc.2008,130: 16045-16054.
    [9]Di Ventra M.; Pantelides S. T.; Lang N. D., First-principles calculation of transport properties of a molecular device[J]. Phys. Rev. Lett.2000,84:979-982.
    [10]D'Agosta R.; Di Ventra M., Local electron and ionic heating effects on the conductance of nanostructures [J]. J. Phys.:Condens. Matter,2008,20:374102 (1-10).
    [11]Taylor J.; Brandbyge M.; Stokbro K., Theory of rectification in tour wires:the role of electrode coupling [J]. Phys. Rev. Lett.2002,89:138301(1-4).
    [12]Zoloff Michoff M. E.; Ve'lez P.; Leiva E. P. M. Substituent effect on the mechanical properties of Au-N nanojunctions [J]. J. Phys. Chem. C,2009,113: 3850-3854.
    [13]Kazunari Y.; Tomofumi T.; Aleksandar S. Orbital views of the electron transport in molecular devices [J]. J. Am.Chem.Soc.,2008,130:9406-9413.
    [14]Xu B. Q.; Tao N. J., Measurement of single-molecule resistance by repeated formation of molecular junctions[J]. Science,2003,301:1221-1223.
    [15]Reddy P.; Jang S. Y.; Segalman R. A.; Majumdar A., Thermoelectricity in molecular junctions [J]. Science,2007,315:1568-1571.
    [16]Tsutsui M.; Taniguchi M.; Kawai T., Local heating in metal-molecule-metal junctions [J]. Nano Lett.2008,8:3293-3297.
    [17]Salomon A.; Cahen D.; Lindsay S.; Tomfohr J.; Engelkes V. B.; Frisbie C. D., Comparison of electronic transport measurements on organic molecules[J]. Adv. Mater.2003,15:1881-1890.
    [18]Park J.; Pasupathy A. N.; Goldsmith J. I.; Chang C.; Yaish Y.;Petta J. R.; Rinkowski M.; Sethna, J. P.; Abruna H. D.; McEuen P. L.; Ralph D. C., Coulomb blockade and the Kondo effect in single-atom transistors[J]. Nature, 2002,417:722-725.
    [19]Reichert J.; Ochs R.; Beckmann D.; Weber H.B.; Mayor M.; Lohneysen H. v. Driving current through Single Organic Molecules[J]. Phys. Rev. Lett.2002,88: 176804(1-4).
    [20]Akkerman H. B.; Blom P. W. M.; de Leeuw, D. M.; de Boer, B., Towards molecular electronics with large- area molecular junctions[J]. Nature,2006,441: 69-72.
    [21]Maksymovych P.; Sorescu D. C.; Dougherty D.; Yates J. T., Surface bonding and dynamical behavior of the CH3SH molecule on Au [J].J. Phys. Chem. B,2005, 109:22463-22468.
    [22]Maksymovych, P.; Yates, J. T. J. Auadatoms in self-assembly of benzenethiol on the Au(111)surface [J]. J. Am. Chem. Soc.2008,130:7518-7519.
    [23]Kodama C.; Hayashi T.; Nozoye H., Enhanced Magneto-optical Effect due to interface alloy formation in Co/Pt(111) ultrathin films upon thermal annealing[J].Appl. Surf. Sci.2001,169-170:264-267.
    [24]Nuzzo R.G.; Zegarski B. R.; Dubois L. Fundamental studies of the chemisorption of organosulfur compounds on gold(111) implications for molecular self-assembly on gold surfaces H.[J].J. Am. Chem. Soc.1987,109:733-740.
    [25]Gronbeck, H.; Curioni, A.; Andreoni, W. Thiols and disulfides on the Au (111) surface:the headgroup-gold interaction [J]. J. Am. Chem. Soc.2000,122:3839-3842.
    [26]Zhou J. G.; Hagelberg F.. Do methanethiol adsorbates on the Au (111) surface dissociate? [J]. Phys. Rev. Lett.2006,97:045505(1-4).
    [27]Qi Y.;Guan D.;Jiang Y.;Liu C.;Zhang D., Theoretical study of the electronic transport property of the hydrogen-Pt contact system[J]. Appl.Phys.Lett.,2006, 89:182119-182121.
    [28]Qi Y.; Guan D.; Jiang Y.; Zheng Y.; Liu C., How do oxygen molecules move into Silver Contacts and Change Their Electronic Transport Properties?[J]. Phys. Rev. Lett.2006,97:256101(1-4).
    [29]Kohn W, Sham J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev.,1965,140:A1133-A1138.
    [30]Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys. Rev.,1964,136: B864-B871.
    [31]Soler J.; Artacho E.; Gale J.; Garcla A.; Junquera J.; Ordejon P.; Sanchez-Portal D.. The SIESTA method for ab initio order-N materials simulation[J].J. Phys.. Condens.Matter,2002,14:2745-2779.
    [32]Perdew J. P.; Burke K.; Ernzerhof M., Generalized gradient approximation made simple[J]. Phys. Rev. Lett.1996,77:3865-3868.
    [33]Troullier N.; Martins J. L., Efficient pseudopotentials for plane-wave calculations[J], Phys. Rev. B 1991,43:1993-2006.
    [34]Artacho A.; Sanchez-Portal D.; Ordejon P.; Garcia A.; Soler J. M., Linear-scaling ab-initio calculations for large and complex systems[J]. Phys. Status Solidi B 1999,215:809-817.
    [35]H. J. Monkhorst, J. D. Pack. Special points for brillouin zone integrations[J]. Phys. Rev. B,1976,13:5188-5192.
    [36]Khein A.; Singh D. J.; Umrigar C. J., All-electron study of gradient corrections to the local-density functional in metallic systems[J]. Phys. Rev. B 1995,51: 4105-4109.
    [37]Maksymovych P., Sorescu D. C., John T. Yates J., Methanethiolate adsorption site on Au(111):a combined STM/DFT study at the single-molecule level [J]. J. Phys. Chem. B,2006,110 (42):21161-21167.
    [38]Rubio G.; Agrait N.; Vieira S., Atomic-sized metallic contacts:mechanical properties and electronic transport [J]. Phys. Rev. Lett.1996,76:2302-2305.
    [39]Li, X. L.; He J.; Hihath J.; Xu B. Q.; Lindsay S. M.; Tao N. J., Conductance of single alkanedithiols:conduction mechanism and effect of molecule-electrode contacts [J]. J. Am.Chem. Soc.2006,128:2135-2141.
    [1]M.W.Zhao, Y.Y.Xiao, and L.M.Mei. Phys.Rev.B.,71,165413(2005).
    [2]Carolina Garan, Antonio Frontera, et al. Lithium diffusion in single-walled carbon nanotubes:a theoretical study. Chem.Phys.Lett.,374,548(2003).
    [3]G.Chen, and Y.Kawazoe. Interaction between a single Pt atom and a carbon nanotube studied by density functional theory. Phys.Rev.B.,73,125410(2006).
    [4]R.Pati, Y.Zhang, S.K.Nayak, P.M.Ajayan. Quantum-cascade-laser structures as photodetectors. Appl.Phys.Lett.,81,2683(2000).
    [5]J. J.Zhao, A.Buldum, J.Han, J.P.Lu. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology,13,195(2002).
    [6]H.Chang, J.D.Lee, S.M.Lee, Y.H.Lee. Adsorption of NH3 and NO2 molecules on carbon nanotubes. Appl.Phys.Lett.,79,3863(2001).
    [7]S.Peng, K.J.Cho. Chemical control of nanotube electronics. Nanotechnology,11, 57(2000).
    [8]A.Wadhawan, R.E.Stallcup Ⅱ, K.F.Stephens Ⅱ, and J.M.Perez, L.A.Akwani. Effects of 02, Ar, and H2 gases on the field-emission properties of single-walled and multiwalled carbon nanotubes. Appl. Phys. Lett.,79,1867(2001).
    [9]Anastasios L.Skoulidus, David S.Sholl, J.Karl Johllson. Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes. J.Chem.Phys.,124,054708(2006).
    [10]V.P.Sokhan, D.Nicholson, and Quirke. Transport properties of nitrogen in single walled carbon nanotubes. J.Chem.Phys.,120,3855(2004).
    [11]P.G.Collins, K.Bradleym, M.Ishigami, A.Zettl. Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes. Science,287,1801(2000).
    [12]L.Vralentini, L.Amentano, J.M1 Kelmy, C.Cantalini, L.Lozzi, S.Salltucci. Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films. Appl. Phys. Lett.,82,961(2003).
    [13]L.M.Woods, S.C.Badescu, T.L.Reinecke. Adsorption of simple benzene derivatives on carbon nanotubes. Phys. ReV. B.,75,155415(2007).
    [14]B.K.Agrawal, V.Singh, A.Pathak, Srivastava. Ab initio study of ice nanotubes in isolation or inside single-walled carbon nanotubes.Phys. Rev.B.,75,195421 (2007).
    [15]O.Gulseren, T.Yildirim, S.Ciraci. Effects of hydrogen adsorption on single-wall carbon nanotubes:Metallic hydrogen decoration. Phys.Rev.B.,66, 121401(R)(2002).
    [16]K.N.Kudin, H.F.Bettinger, Scuseria, E.Gustavo. Fluorinated single-wall carbon nanotubes. Phys.Rev.B.,63,045413(2001).
    [17]K.A.Park, Y.S.Choi, Y. H.Lee, C.Kim. Atomic and electronic structures of fluorinated single-walled carbon nanotubes. Phys.Rev.B.,68,045429(2003).
    [18]J. Kong, N.R.Franklin, C.Zhou, M.G.Chapline, S.Peng, K.Cho, H.Dai. Nanotube molecular wires as chemical seneors. Science,2000,287:622
    [19]P.G.Collins, K.Bradley, M.Ishigami, A.Zettl. Extrmem oxygen sensitivity of electronic properties of carbon nanotubes. Science,2000,287:1801
    [20]X.P.Tang, A.Kleinhammes, H.Shimoda, L.Fleming, K.Y.Bennoune, S.Sinha, C.Bower, O.Zhou, Y.Wu. Electronic structures of single-walled carbon nanotubes determined by NMR. Science,2000,288:492
    [21]A.Kleinhammes, S.H.Mao, X.J.Yang, X.P.Tang, H.Shimoda, J.P.Lu, O.Zhou, Y.Wu. Gas adsorption in single-walled carbon nanotubes studied by NMR. Phys.Rev.B.,2003,68,075418
    [22]A.Goldoni, R.Larciprete, L.Petaccia, S.Lizzit. Single-wall carbon nanotube interaction with gases:sample contaminants and environmental monitoring. J.Am.Chem.Soc,2003,125:11329
    [23]K.Bradley, J.C.P.Gabriel, M.Briman, A.Star, G.Gruner. Charge Transfer from ammonia physisorbed on nanotubes. Phys.Rev.Lett.,2003,91:218301
    [24]A.Star, T.R.Han, J.C.P.Gabriel, K.Bradley, G.Gruner. Interaction of aromatic compounds with carbon nanotubes:correlation to the hammett patameter of the substituent and measured carbon nanotube FET response. Nano Lett.,2003,3: 1421
    [25]G.U.Sumanasekera, C.K.W.Adu, S.Fang, P.C.Eklund. Effects of gas adsorption and Collisions on electrical transport in single-walled carbon nanotubes. Phys.Rev.Lett.,2000,85:1096
    [26]G.U.Sumanasekera, B.K.Pradhan, H.E.Romero, K.W.Adu, and P.C.Eklund. Giant thermpower effects from molecular physisorption on carbon nanotubes. Phys.Rev.Lett.,2002,89:166801
    [27]A.V.Krasheninnikov, K.Nordlund, M.Sirvio, et al. Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes. Phys.Rev.B.,2001,63:245405
    [28]P.M.Ajayan, V.Ravikumar, J.C.Charlier. Surface reconstructions and dimensional charges in single-walled carbon nanotubes. Phys.Rev.Lett.,1998, 81:1437-1440

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700