立管涡激振动的实验研究与离散涡法数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界范围内海洋油气开采走向深海,出现了多种形式的海洋平台。立管系统是海洋平台进行海底油气输送的重要设施和关键部分,随着作业水深的发展,立管长度可达几千米。深海立管受海流作用出现的涡激振动问题是造成立管发生疲劳破坏的主要原因。而一旦立管破坏,除了造成严重的经济损失,也将引发漏油事故,可能导致严重的海洋环境污染和生态安全问题。由于对海流作用下立管涡激振动认识的不足,为了保证安全,在立管设计中只好采用非常高的安全系数,但这也导致海洋平台的造价巨额上升。如果能够对立管涡激振动进行准确的预报或者采取适当的涡激振动抑制措施,则可以大大降低海洋平台的造价,因此,这方面的研究也成为海洋工程领域近年来的热点问题。
     本论文工作依托于国家高技术研究发展计划(863计划)课题“3000米水深半潜式钻井平台关键技术研究”(No.2006AA09A103),旨在通过物理模型实验提高对海流作用下立管涡激振动特性和机理的认识,研究和探索涡激振动的抑制措施与方法,并基于离散涡理论建立模拟涡激振动的CFD计算模型,发展立管涡激振动的数值预报技术。主要研究内容归纳如下:
     1.在室内波浪水槽中开展了小尺寸的垂向管涡激振动物理模型实验。立管模型长度约2m,直径16mm,管内部分别填充空气、水和细沙,来改变立管模型的质量比。将新式的光纤光栅(FBG)测量技术应用于水下立管涡激振动实验。通过这个实验,研究了不同质量比的立管模型在水流作用下的涡激振动。应用模态分析法,计算了不同流速作用下涡激振动的响应模态。分别对三种不同质量比立管模型的涡激振动无因次振动频率和振幅与约化速度的关系进行了分析。通过数据分析,给出了不同流速下响应位移在沿立管长度方向上的分布情况。
     2.在立管涡激振动抑制措施方面,提出了在立管周围等角度间隔均匀布置多根附属控制杆的涡激振动抑制措施,并在室内水槽开展了这种抑制措施的实验研究。实验中观测了四种流速和两个极限来流方向下的涡激振动抑制效果。实验结果表明:三根附属控制杆抑制措施可明显降低立管的横向振动幅值,对主管的振动频率改变不大。并且,这一抑制措施对来流方向有较强的适应性,避免了以往单根控制杆在流向发生改变时可能加剧立管涡激振动的问题。
     3.为了研究高阶模态的立管涡激振动,在拖曳水池中开展了大长细比的柔性水平管涡激振动模型实验。立管模型长度约28m,长细比达到1750,雷诺数范围在3000到10000之间。在立管模型的横流向和顺流向分别安装了光纤光栅应变传感器,对两个方向的涡激振动都进行了观测。在本文的实验条件下,横向方向上的涡激振动模态可达到6阶,而纵向方向上的响应可以达到12阶模态。通过模态分析法,研究了单模态响应和多模态响应形式,并且本文实验证实,即使在均匀流作用下,立管也会出现多模态响应。而且,通过频谱分析发现,多模态响应中的这些参与模态具有相同的响应频率。即使在均匀流作用下,涡激振动响应在立管方向上分布也不对称,实验中出现许多这样的结果,进一步的分析表明,这种不对称性主要是由多个模态共同参与涡激振动响应引起的。实验中观测到了三倍频、四倍频和五倍频等高倍谐振,并对这种高倍谐振现象的形成机理进行了分析。
     4.建立了无网格的二维离散涡法时域模型,在离散涡诱导速度的计算中采用快速多极子方法,提高了计算效率,并对固定圆柱绕流和运动圆柱绕流都进行了数值模拟计算。其中,运动圆柱绕流问题包括两个方面,强迫圆柱绕流和弹性支撑刚性圆柱在水流作用下涡激振动。通过弹性支撑刚性圆柱的涡激振动模拟计算,进一步分析了涡激振动中位移响应振幅随约化速度的变化关系。
     5.采用“切片理论”方法,将二维离散涡法水动力模型与立管结构有限元模型结合,建立了计算长柔性立管涡激振动问题的“准三维”离散涡法时域模型。并应用这个时域模型,对两个长柔性立管涡激振动实验工况进行了模拟计算,与相应的实验结果比较接近,验证了算法的合理性和结果的准确性,表明本文建立的准三维离散涡法涡激振动时域模型可以较好地应用于长柔性立管涡激振动问题的预报计算。
As the worldwhile activities of oil and gas exploration and production continue apace to deeper water, many kinds of platforms have been built. A key element of the platform is the marine riser system, which plays an important part in transporting the oil and gas from the seabed to the platform. Marine risers can be thousands of meters long as the prodution depth goes. The vortex-induced vibration (VIV) response of marine risers subjected to the ocean current accounts for the greatest contribution to overall riser fatigue damage. Since their failure may cause great economic damage and environmental problems, marine risers are designed with a great safety factor to guarantee the safe, but which leads to huge cost. Accurate prediction and/or suppression of the VIV response of the marine risers, which can greatly reduce the cost of the platform, has led to an intensification of research activity in ocean engineering in recent years.
     The present research presented in this dissertation is supported by the "National High-Tech Research and Development Program (863Program)"of China with Grant no.2006AA09A103. Experimental investigation has been conducted to improve the understanding of the VIV of marine riser and develop new VIV suppression method. A CFD model has been built based on a discrete vortex method to simulate the VIV response of marine risers. The main content is as follows:
     First, experimental tests of VIV of a small vertical riser pipe have been conducted in a wave flume. The length of the riser model is about2m with a diameter of16mm. In order to vary the mass ratio, the riser pipe is filled with air, water and sand, respectively. Fiber brag grating (FBG), a new technology, is used to measure the strain response in the present experiment. By modal analysis method, the vibrating modes of VIV response are analysed at different flow velocities. The dimensionless vibrating frequency and amplitude versus reduced velocity are also presented in this work. Moreover, the distributions of the displacement of VIV response along the length of the riser are analysed at different flow velocities.
     Second, a passive flow control method to suppress VIV has been tested, which is accomplished by arranging three identical small circular cylinder closed to the riser model with120°angle. The riser model with control rods is placed in a water flume subject to four different current velocities and two extreme attack angles. The experimental results show that the control rods can remarkably reduce the transverse responses of riser model while the vibration frequency of riser model is almost as same as that of a bare riser. The experiments also demonstrate that present flow control measure is not sensitive to the incoming flow direction which is a very important advantage for practical engineering applications.
     Third, laboratory tests have been conducted on vortex-induced vibration (VIV) of a long flexible riser towed horizontally in a wave basin in order to study high mode VIV responses. The riser model has a total length of28.0m with an aspect ratio of about1750. Reynolds numbers ranged from about3000to10000. Fiber optic grating strain gauges are adopted to measure the dynamic response in both cross flow and in-line directions. The cross-flow vibrations were observed to vibrate at modes up to6and the in-line reached up to12. The fundamental response frequencies can be predicted by a Strouhal number of about0.18. Multi-mode responses and the asymmetry of the bare pipe response in uniform flow were observed and analyzed. The experimental results confirmed that the riser pipe vibrated multi-modally despite it being subject to a uniform current profile and all of the excited modes vibrated at the Strouhal frequency. The asymmetrical distribution of displacement was mainly due to more than one mode participating in the resposne. Higher harmonics of the VIV response such as the third, fourth and fifth harmonics frequencies were found to be steady over the entire duration of the test even if they varied along the length of the riser pipe.
     Fourth, a2D grid-free discrete vortex model is established in order to predict VIV responses. Fast multipole method is used in the model in order to improve the efficiency of the calculation of the vortex-induced velocity. Not only flow past a fixed cylinder,but also flow past an oscillating cylinder has been simulated in present work. For flow past an oscillating cylinder, both VIV responses of an elastically mounted rigid cylinder and fluid forces of a forced rigid cylinder are concerned. Drag force, lift force and displacement responses are presented. The relationship between the response amplitude and reduced velocity is analysed in the present work.
     Fifth, coupled with the strip method, a quasi-3D DVM model is established by combining the2D DVM model with the FEM structure model in order to predict the VIV of long flexible risers. Then, numerical simulations of VIV of long flexible risers are conducted. The simulation results are compared with the experimental results, and the reasonable agreements are obtained,which show that the present DVM model can be used to predict the VIV of long flexible risers.
引文
[1]董艳秋.深海采油平台波浪载荷及响应[M].天津:天津大学出版社,2005.
    [2]Wilhoit L, Supan C,Albaugh E K. Offshore magazine. http://www.offshore-mag.com. May 2007.
    [3]谢彬,张爱霞,段梦兰.中国南海深水油气田开发工程模式及平台选型[J].石油学报.2007,28(1):115-118.
    [4]李润培,谢永和,舒志.深海平台技术的研究现状与发展趋势[J].中国海洋平台.2003,18(3):1—5.
    [5]郭海燕,傅强,娄敏.海洋输液立管涡激振动响应及其疲劳寿命研究[J].工程力学.2005,22(4):220-224.
    [6]Guo H Y, Lou M,Dong W Y. Experimental study and numerical simulation on vortex-induced vibration of flexible riser [J]. Acta Oceanologica Sinica.2007,26 (2):94-105.
    [7]Guo H Y,Lou M. Experimental study on coupled cross-flow and in-line vortex-induced vibration of flexible risers [J]. China Ocean Engineering.2008,22 (1):123-129.
    [8]Lou M, Guo H Y,Dong W Y. Experimental study and numerical simulation on vortex-induced vibration of flexible riser [J]. Acta Oceanologica Sinica.2007,26 (2):94-105.
    [9]郭海燕,傅强,娄敏.海洋输液立管涡激振动响应及其疲劳寿命研究[J].工程力学.2005,22(4):220-224.
    [10]王树青,郭海燕.水下输液管道动力特性研究[J].青岛海洋大学学报(自然科学版).2002,32(1):127—132.
    [11]姚宗,陈刚,杨建民等.流速分层流场中细长柔性立管涡激振动试验研究[J].上海交通大学学报.2009,8:1273—1279+1283.
    [12]饶志标,杨建民,付世晓等.剪切流下钢悬链线立管涡激振动响应研究[J].振动与冲击.2010,29(10):4—8+98.
    [13]潘志远,崔维成,刘应中.低质量─阻尼因子圆柱体的涡激振动预报模型[J].船舶力学.2005,9(5):115-124.
    [14]薛鸿祥,唐文勇,张圣坤等.非均匀来流下深海立管涡激振动响应研究[J].振动与冲击.2007,26(12):10-13.
    [15]宋吉宁,吕林,张建侨等.三根附属控制杆对海洋立管涡激振动抑制作用实验研究[J].海洋工程.2009,27(3):23-29.
    [16]张建侨,宋吉宁,吕林等.质量比对柔性立管涡激振动影响实验研究[J].海洋工程.2009,27(4):38-44.
    [17]Song J N, Teng B, Park H I, et al. Experimental investigation on VIV responses of a long flexible riser towed horizontally in a wave basin [C]. Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference, Beijing,China,2010:1115-1120.
    [18]Song J N, Lu L, Teng B, et al. Laboratory tests of vortex-induced vibrations of a long flexible riser pipe subjected to uniform flow [J]. Ocean Engineering.2011,38 (11-12):1308-1322.
    [19]张建侨.细长柔性立管涡激振动的实验研究[D].大连:大连理工大学,2009.
    [20]Tang G Q, Lu L, Teng B, et al. Identification of hydrodynamic coefficients from experiment of vortex-induced vibration of slender riser model [J]. Science China-Technological Sciences.2011,54 (7): 1894-1905.
    [21]陈伟,宗智.立管涡激振动的离散涡数值模拟[J].中国海洋平台.2010,1:26-31.
    [22]高云,曹静,宗智等.剪切流中立管的涡激振动响应预报[J].中国海洋平台.2010,25(3):21—25.
    [23]孙友义,陈国明,畅元江.深水铝合金隔水管涡激振动疲劳特性[J].中国石油大学学报(自然科学版).2008,32(1):100—104.
    [24]盛磊祥,陈国明.海洋并列立管涡激振动参数分析[J].石油矿场机械.2011,40(3):5-8.
    [25]黄智勇,潘志远,崔维成.两向自由度低质量比圆柱体涡激振动的数值计算[J].船舶力学.2007,11(1):1-9.
    [26]何长江,段忠东.二维圆柱涡激振动的数值模拟[J].海洋工程.2008,26(1):57—63.
    [27]方平治,杜明侠,顾明等.两自由度椭圆柱体涡激振动的数值模拟[J].振动与冲击.2009,28(1):51—55.
    [28]Xu J L,Zhu R Q. Numerical simulation of VIV for an elastic cylinder mounted on the spring supports with low mass-ratio [J]. Journal of Marine Science and Application.2009,8:237-245.
    [29]周国成,柳贡民,马俊等.圆柱涡激振动数值模拟研究[J].噪声与振动控制.2010,5:51-55+59.
    [30]董艳秋.波、流联合作用下海洋平台张力腿的涡激非线性振动[J].海洋学报(中文版).1994,16(3):121-129.
    [31]余建星,许华力,袁从敏等.张力腿系缆系统涡激振动疲劳可靠性分析[J].船舶力学.2008,12(4):592-598.
    [32]马驰,董艳秋,杨丽婷.海洋平台张力腿在两种边界条件下的涡激非线性振动的比较研究[J].船舶力学.2000,4(1):56-65.
    [33]王东耀,凌国灿.在平台振荡条件下TLP张力腿的涡激非线性响应[J].海洋学报(中文版).1998,20(3):119-128.
    [34]余建星,罗延生,方华灿.海底管线管跨段涡激振动响应的实验研究[J].地震工程与工程振动.2001,21(4):93—97.
    [35]李磊岩,李华军,梁丙臣等.海底管道管跨段在内外流体作用下的竖向动力特性研究[J].中国海洋大学学报(自然科学版).2005,35(1):162-166.
    [36]黄维平,王爱群,李华军.海底管道悬跨段流致振动实验研究及涡激力模型修正[J].工程力学.2007,24(12):153—157.
    [37]时米波,陈国明,孙友义.基于管土耦合模型的海底管道管跨涡激振动分析[J].石油矿场机械.2007,36(10):5—8.
    [38]沙勇,王永学,王国玉.悬跨海底管线涡激振动试验研究[J].工程力学.2009,26(7):222-226.
    [39]李小超,王永学,李广伟等.海底悬跨管线涡激振动实验方法探讨[J].实验力学.2010,25(4):476-489.
    [40]Sarpkaya T. Vortex-induced oscillations-A selective review [J]. Journal of Applied Mechanics.1979,46: 241-258.
    [41]Griffin O M,Ramberg S E. Some recent studies of vortex shedding with application to marine tubulars and risers [J]. Journal of Energy Resources Technology, Transactions of the ASME.1982,104 (1):2-13.
    [42]Bearman P W. Vortex shedding from oscillating bluff bodies [J]. Annual Review of Fluid Mechanics.1984, 16(1):195-222.
    [43]Parkinson G. Phenomena and modeling of flow-induced vibrations of bluff bodies [J]. Progress in Aerospace Sciences.1989,26(2):169-224.
    [44]Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibrations [J]. Journal of Fluids and Structures.2004,19 (4):389-447.
    [45]Pan Z.Y. C W C, Zhang X.C. Overview on VIV of slender marine structures [J]. Chuan Bo Li Xue/Journal of Ship Mechanics.2005,9 (6):135-154.
    [46]Williamson C H K,Jauvtis N. A high-amplitude 2T mode of vortex-induced vibration for a light body in XY motion [J]. European Journal of Mechanics B/Fluids.2004,23:107-114.
    [47]Williamson C H K,Govardhan R. A brief review of recent results in vortex-induced vibrations [J]. Journal of Wind Engineering and Industrial Aerodynamics.2008,96 (6-7):713-735.
    [48]Feng C C. The measurement of vortex induced effects in flow past stationary and oscillating circular and d-section cylinders [M]. University of British Columbia,1968.
    [49]Khalak A,Williamson C H K. Dynamics of a hydroelastic cylinder with very low mass and damping [J]. Journal of Fluids and Structures.1996,10 (5):455-472.
    [50]Khalak A,Williamson C H K. Investigation of relative effects of mass and damping in vortex-induced vibration of a circular cylinder [J]. Journal of Wind Engineering and Industrial Aerodynamics.1997,69-71: 341-350.
    [51]Khalak A, Williamson C H K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping [J]. Journal of Fluids and Structures.1999, (13):813-851.
    [52]Govardhan R,Williamson C H K. Modes of vortex formation and frequency response for a freely vibrating cylinder [J]. J. Fluid Mech.2000,420:85-130.
    [53]Govardhan R,Williamson C H K. Critical mass in vortex-induced vibration of a cylinder [J]. European Journal of Mechanics B-Fluids.2004,23 (1):17-27.
    [54]Vikestad K, Vandiver J K,Larsen C M. Added mass and oscillation frequency for a circular cylinder subjected to vortex-induced vibrations and external disturbance [J]. Journal of Fluids and Structures.2000, 14(7):1071-1088.
    [55]Larsen C M, Vikestad K,Vandiver J K. On multi-frequency vortex induced vibrations of long marine risers [C]. In Proceedings of Oceans 96 MTS/IEEE Conference, Ft. Lauderdale, Florida,1996.
    [56]Jauvtis N,Williamson C H K. Vortex-induced vibration of a cylinder with two degrees of freedom [J]. Journal of Fluids and Structures.2003,17 (7):1035-1042.
    [57]Jauvtis N,Williamson C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping [J]. Journal of Fluid Mechanics.2004,509:23-62.
    [58]Govardhan R,Williamson C H K. Resonance forever:existence of a critical mass and an infinite regime of resonance in vortex-induced vibration [J]. Journal of Fluid Mechanics.2002,473:147-166.
    [59]Bishop R E D,Hassan A Y. The lift and drag forces on a circular cylinder oscillating in a flowing fluid [C]. Proceedings of the Royal Society of London. Series A,1964:51-75.
    [60]Mercier J A. Large amplitude oscillations of a circular cylinder in a low-speed stream [D]. Hoboken, New Jersey.1981.
    [61]Sarpkaya T. Transverse oscillations of a circular cylinder in uniform flow [M]. Naval Postgraduate School, 1977.
    [62]Wu Z J. Current induced vibrations of a flexible cylinder [D]. Norwegian Institute of Technology,1989.
    [63]Williamson C H K,Roshko A. Vortex formation in the wake of an oscillating cylinder [J]. Journal of Fluids and Structures.1988,2 (4):355-381.
    [64]Gopalkrishnan R. Vortex-induced forces on oscillating bluff cylinders [D]. Cambridge, MA, USA:MIT, 1993.
    [65]Vandiver J K,Jong J Y. The relationship between in-line and cross-flow vortex-induced vibration of cylinders [J]. Journal of Fluids and Structures.1987,1 (4):381-399.
    [66]Vandiver J K. Drag coefficients of long flexible cylinders [C]. Offshore Technology Conference, Houston, TX, USA,1983.OTC4490:405-414.
    [67]Lie H,Kaasen K E. Modal analysis of measurements from a large-scale VTV model test of a riser in linearly sheared flow [J]. Journal of Fluids and Structures.2006,22 (4):557-575.
    [68]Trim A D, Braaten H, Lie H, et al. Experimental investigation of vortex-induced vibration of long marine risers [J]. Journal of Fluids and Structures.2005,21 (3):335-361.
    [69]Chaplin J R, Bearman P W, Huera Huarte F J, et al. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current [J]. Journal of Fluids and Structures.2005,21:3-24.
    [70]Tognarelli M A, Slocum S T, Frank W R, et al. VIV response of a long flexible cylinder in uniform and linearly sheared currents [C]. Offshore Technology Conference, Houston, Texas, USA.,2004:OTC 16338.
    [71]Swithenbank S B. Dynamics of long flexible cylinders at high-mode number in uniform and sheared flows [D]. Massachusetts Institute of Technology,2007.
    [72]Huse E,Kleiven G. Impulse and energy in deepsea riser collisions owing to wake interference [C]. Offshore Technology Conference Houston, Texas,2000.OTC11993.
    [73]Baarholm G S, Larsen C M,Lie H. On fatigue damage accumulation from in-line and cross-flow vortex-induced vibrations on risers [J]. Journal of Fluids and Structures.2006,22 (1):109-127.
    [74]Furnes G, Hassanein T, Halse K, et al. A field study of flow induced vibrations on a deepwater drilling riser [C]. Offshore Technology Conference Houston, Texas,1998.
    [75]Kaasen K E, Lie H, Solaas F, et al. Norwegian deepwater program:Analysis of vortex-induced vibrations of marine risers based on full-scale measurements [C]. Offshore Technology Conference Houston, Texas, 2000.OTC11997.
    [76]Kaasen K E,Lie H. Analysis of vortex induced vibrations of marine risers [J]. Modeling, Identification and Control.2003,24 (2):71-85.
    [77]Chaplin J R, Bearman P W, Cheng Y, et al. Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser [J]. Journal of Fluids and Structures.2005,21:25-40.
    [78]Tognarelli M A, Slocum S T, Frank W R, et al. VIV Response of a Long Flexible Cylinder in Uniform and Linearly Sheared Currents [C]. Offshore Technology Conference, Houston, Texas,2004:16338.
    [79]Frank W R, Slocum S T, Tognarelli M A, et al. Flow-Induced Vibration of a Long, Flexible, Straked Cylinder in Uniform and Linearly Sheared Currents [C].2004.
    [80]Frank W R, Slocum S T,Tognarelli M A. Flow-induced vibration of a long, flexible, straked cylinder in uniform and linearly sheared currents [C]. Offshore Technology Conference,2004:OTC 16340.
    [81]De Wilde J J, Huijsmans R H M,Triantafyllou M S. Experimental investigation of the sensitivity to In-line motions and magnus-like lift production on vortex-induced vibrations [C]. International Offshore and Polar Engineering Conference,2003:593-598.
    [82]Vandiver J K, Marcollo H, Swithenbank S, et al. High-mode-number vortex-induced-vibration field experiments [J]. Journal of Petroleum Technology.2006,58 (2):69-70.
    [83]Vandiver J K, Swithenbank S,Jaiswal V. The effectiveness of helical strakes in the suppression of high-mode-number VIV [C]. Offshore Technology Conference, Houston, Texas, USA,2006:OTC 18276.
    [84]Tognarelli M A, Taggart S,Campbell M. Actual VIV fatigue response of full scale drilling risers:with and without suppression devices [C]. Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering Estoril, Portugal,2008.OMAE2008-57046.
    [85]唐友刚,谷家扬,左建立.隔水套管波流联合作用下非线性动力响应[J].应用数学和力学.2005,26(8):951-956.
    [86]Vandiver J K,Li L. Shear7 v4.4 program theoretical manual [M]. Department of Ocean Engineering, Massachusetts Institute of Technology,2005.
    [87]Triantafyllou M S. VIVA Extended User's Manual [M], Cambridge, MA, USA:Department of Ocean Engineering, Massachusetts Institute of Technology,2003.
    [88]Larsen C, Vikestad K, Yttervik R, et al. VIVANA-Theory Manual [R]. MARTNTEK Report 513102.01.Trondheim,Norway:2000.
    [89]Finn L, Lambrakos K,Maher J. Time domain prediction of riser VIV [C]. Proceedings of the Fourth International Conference on Advances in Riser Technologies, Aberdeen,Scotland,1999.
    [90]Evangelinos C, Lucor D,Karniadakis G E. DNS-derived force distribution on flexible cylinders subject to vortex-induced vibration [J]. Journal of Fluids and Structures.2000,14 (3):429-440.
    [91]Blackburn H M, Govardhan R N,Williamson C H K. A complementary numerical and physical investigation of vortex-induced vibration [J]. Journal of Fluids and Structures.2001,15 (3-4):481-488.
    [92]Lucor D, Imas L,Karniadakis G E. Vortex dislocations and force distribution of long flexible cylinders subjected to sheared flows [J]. Journal of Fluids and Structures.2001,15 (3-4):641-650.
    [93]Dong S,Karniadakis G E. DNS of flow past a stationary and oscillating cylinder at Re= 10000 [J]. Journal of Fluids and Structures.2005,20:519-531.
    [94]Korpus R, Jones P, Oakley O, et al. Prediction of viscous forces on oscillating cylinders by Reynolds-averaged Navier-stokes solver [C]. International Offshore and Polar Engineering Conference, Seattle, WA,USA,2000:471-477.
    [95]Guilmineau E,Queutey P. Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow [J]. Journal of Fluids and Structures.2004,19 (4):449-466.
    [96]Cui W C, Pan Z Y,Miao Q M. Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code [J]. Journal of Fluids and Structures.2007,23 (1):23-37.
    [97]Al-Jamal H,Dalton C. Vortex induced vibrations using Large Eddy Simulation at a moderate Reynolds number [J]. Journal of Fluids and Structures.2004,19 (1):73-92.
    [98]Willden R H J,Graham J M R. Multi-modal Vortex-Induced Vibrations of a vertical riser pipe subject to a uniform current profile [J]. European Journal of Mechanics-B/Fluids.2004,23 (1):209-218.
    [99]Griffin O M,Ramberg S E. On vortex strength and drag in bluff-body wakes [J]. Journal of Fluid Mechanics. 1975,69 (4):721-728.
    [100]Griffin O M,Ramberg S E. Vortex shedding from a cylinder vibrating in line with an incident uniform flow [J]. Journal of Fluid Mechanics.1976,75 (2):257-271.
    [101]Lewis R I. Vortex element methods for fluid dynamic analysis of engineering systems [M]. Cambridge University Press,1991.
    [102]Meneghini J R,Bearman P W. Numerical simulation of high amplitude oscillatory flow about a circular cylinder [J]. Journal of fluids and structures.1995,9 (4):435-455.
    [103]Zhou C Y, So R M C,Lam K. Vortex-induced vibrations of an elastic circular cylinder [J]. Journal of Fluids and Structures.1999,13 (2):165-189.
    [104]凌国灿.圆柱绕流旋涡运动及离散涡方法[J].力学进展.1985,15(04):458—470.
    [105]Qian L,Vezza M. A vorticity-based method for incompressible unsteady viscous flows [J]. Journal of Computational Physics.2001,172:515-542.
    [106]王聪,陈斌,郭烈锦等.离散涡法模拟不同直径串列圆柱绕流[J].西安交通大学学报.2008,(11):1340.1344.
    [107]Chen B, Wang C, Wang Z, et al. Investigation of gas-solid two-phase flow across circular cylinders with discrete vortex method [J]. Applied Thermal Engineering.2009,29:1457-1466.
    [108]Chen B,Teng B. Numerical simulation of wave-current flow field around pile groups by a vortex method [C]. International Offshore and Polar Engineering Conference, Osaka, Japan,2009:670-677.
    [109]林海花.隔水管涡激动力响应及疲劳损伤可靠性分析[D].大连:大连理工大学,2008.
    [110]周巍伟.深海悬链线立管涡激疲劳损伤预报研究[D].大连:大连理工大学,2009.
    [111]Chaplin J, Bearman P, Cheng Y, et al. Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser [J]. Journal of Fluids and Structures.2005,21 (1):25-40.
    [112]Larsen C M,Halse K H. Comparison of models for vortex induced vibrations of slender marine structures [J]. Marine Structures.1997,10 (6):413-441.
    [113]Zdravkovich M M. Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding [J]. Journal of Wind Engineering and Industrial Aerodynamics.1981,7: 145-189.
    [114]Gad-el-Hak M,Bushnell D M. Separation control:review [J]. Journal of Fluids Engineering-Transactions of the Asme.1991,113:5-30.
    [115]Griffin O M,Hall M S. Review-vortex shedding lock-on and flow control in bluff body wakes [J]. Journal of Fluids Engineering-Transactions of the Asme.1991,113:526-537.
    [116]Lesage F,Gartshore I S. A method of reducing drag and fluctuating side force on bluff bodies [J]. Journal of Wind Engineering and Industrial Aerodynamics.1987,25 (2):229-245.
    [117]Sakamoto H,Haniu H. Optimum suppression of fluid forces acting on a circular cylinder [J]. Journal of Fluids Engineering-Transactions of the Asme.1994,116 (2):221-227.
    [118]Lee S-J, Lee S-I,Park C-W. Reducing the drag on a circular cylinder by upstream installation of a small control rod [J]. Fluid Dynamics Research.2004,34 (4):233-250.
    [119]Larsen C M, Baarholm G S,Lie H. Influence from helical strakes on vortex induced vibrations and static deflection of drilling risers [C]. Halkidiki, Greece,2005:477-483.
    [120]Baarholm G S, Martin Larsen C,Lie H. Reduction of VIV using suppression devices--An empirical approach [J]. Marine Structures.2005,18 (7-8):489-510.
    [121]Allen D, Lee L,Henning D. Fairings versus helical strakes for suppression of vortex induced vibration: technical comparisons [C]. Offshore Technology Conference, Houston, Texas, USA,2008:OTC 19373.
    [122]Bearman P,Brankovic M. Experimental studies of passive control of vortex-induced vibration [J]. European Journal of Mechanics B-Fluids.2004,23 (1):9-15.
    [123]Cheng L, Zhou Y,Zhang M M. Perturbed interaction between vortex shedding and induced vibration [J]. Journal of Fluids and Structures.2003,17 (7):887-901.
    [124]Cheng L, Zhang M M,Zhou Y. Closed-loop-controlled vortex shedding and vibration of a flexibly supported square cylinder under different schemes [J]. Physics of Fluids.2004,16 (5):1439-1448.
    [125]Zhang M M, Cheng L,Zhou Y. Control of vortex-induced non-resonance vibration using piezo-ceramic actuators embedded in a structure [J]. Smart Materials & Structures.2005,14 (6):1217-1226.
    [126]Fujisawa N,Nakabayashi T. Neural network control of vortex shedding from a circular cylinder using rotational feedback oscillations [J]. Journal of Fluids and Structures.2002,16 (1):113-119.
    [127]林建忠,阮晓东,陈邦国.流体力学[M].清华大学出版社,2005.
    [128]Van Dyke M. An album of fluid motion [M]. Stanford:CA,1982.
    [129]Blevins R D. Flow-induced vibration [M]. New York:Van Nostrand Reinhold Company,1990.
    [130]Coutanceau M,Defaye J R. Circular cylinder wake configurations:A flow visualization survey [J]. Appl Mech Rev.1991,44 (6):255-305.
    [131]Lienhard J H. Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders [R]. Pullman, Washington:Dept. of Mechanical Engineering, Washington State Universtiy,1966.
    [132]Norberg C. Fluctuating lift on a circular cylinder:review and new measurements [J]. Journal of Fluids and Structures.2003,17 (1):57-96.
    [133]Pan Z Y, Cui W C,Zhang X C. Overview on VTV of slender marine structures [J]. Chuan Bo Li Xue/Journal of Ship Mechanics.2005,9 (6):135-154.
    [134]Williamson C H K,Jauvtis N. A high-amplitude 2T mode of vortex-induced vibration for a light body in XY motion [J]. European Journal of Mechanics B-Fluids.2004,23 (1):107-114.
    [135]Timoshenko S, Young D H,Weaver W. Vibration Problems in Engineering,fourth ed [M]. NewYork: Wiley,1974.
    [136]吴浩,孙大鹏.深海立管涡激振动被动抑制措施的研究[J].中国海洋平台.2009,4(1):1—8.
    [137]Halse K H. Norwegian Deepwater Program:improved predictions of vortex-induced vibrations [C]. Offshore Technol Conference, Houston,2000:557-564.
    [138]Khalak A, Williamson C H K. Investigation of relative effects of mass and damping in vortex-induced vibration of a circular cylinder [J]. Journal of Wind Engineering and Industrial Aerodynamics.1997,71: 341-350.
    [139]Strykowski P J,Sreenivasan K R. On the formation and suppression of vortex'shedding'at low Reynolds numbers [J]. Journal of Fluid Mechanics.1990,218:71-107.
    [140]Igarashi T,Tsutsui T. Flow control around a circular cylinder by a new method (2nd report, fluids forces acting on the cylinder) [C]. Transactions of the JSME,1989.511:708-714.
    [141]Igarashi T,Tsutsui T. Flow control around a circular cylinder by a new method (3rd report, properties of the reattachment jet) [C]. Transactions of the JSME,1991.533:8-13.
    [142]赵明.波浪、水流对结构物的作用及局部冲刷研究[D].大连:大连理工大学,2005.
    [143]Vandiver J K, Jaiswal V,Jhingran V. Insights on vortex-induced, traveling waves on long risers [J]. Journal of Fluids and Structures.2009,25 (4):641-653.
    [144]Huera-Huarte F J,Bearman P W. Wake structures and vortex-induced vibrations of a long flexible cylinder-Part 1:Dynamic response [J]. Journal of Fluids and Structures.2009,25 (6):969-990.
    [145]Swithenbank S B,Larsen C M. The Importance of Mode Number on in Line Amplitude of Vortex-Induced Vibration of Flexible Cylinders [J]. Proceedings of the 27Th International Conference on Offshore Mechanics and Arctic Engineering-2008, Vol 5.2008:771-778.
    [146]DNV-RP-C203. Fatigue desigh of offshore steel structures. DetNorske Veritas (http://www.dnv.com/resources/rules_standards/).2008.
    [147]Downing S D,Socie D F. Simple rainflow counting algorithms [J]. International Journal of Fatigue.1982, 4 (11):31-40.
    [148]陈斌,郭烈锦,杨晓刚.圆柱绕流的离散涡数值模拟[J].自然科学进展.2002,12(9):964—969.
    [149]Wu J C,Thompson J F. Numerical solution of time-dependent incompressible Navier-Stokes equation using an integro-differential formulation [J]. Computers & Fluids.1973,1:197-215.
    [150]Ling G C, Bearman P W,Graham J M R. A furthrer simulation of starting flow around a flat plate by a discrete vortex model [C]. Internal Seminar on Engineering Applications of the Surface and Cloud Vorticity Methods, Wroclaw, Poland,1986.14:118-138.
    [151]Leonard A. Vortex methods for flow simulation [J]. J. Comp. Phys.1980,37 (3):289-335.
    [152]Koumoutsakos P,Leonard A. High-resolution simulations of the flow around an impulsively started cylinder using vortex methods [J]. Journal of Fluid Mechanics.1995,296:1-38.
    [153]Chorin A J. Vortex sheet approximation of boundary layers [J]. J. Comp. Phys.1978,27:428-442.
    [154]Porthouse D T C. Numerical simulation of aerofoil and bluff body flows by vortex dynamics [D]. University of Newcastle Upon Tyne,1983.
    [155]Meneghini J R, Yamamoto C T, Saltara F, et al. Numerical simulations of vortex-induced vibration on flexible cylinders [J]. Journal of Fluids and Structures.2004,19 (4):467-489.
    [156]Lam K, Jiang G D, Liu Y, et al. Grid-free surface vorticity method applied to flow induced vibration of flexible cylinders [J]. International Journal For Numerical Methods In Fluids.2004, (46):289-313.
    [157]Kamemoto K. On contribution of advanced vortex element methods toward virtual reality of unsteady vortical flows in the new generation of CFD [J]. J. of the Braz. Soc. of Mech. Sci. & Eng.2004, XXVI (4): 368-378.
    [158]Lam K, Jiang G D, Liu Y, et al. Simulation of cross-flow-induced vibration of cylinder arrays by surface vorticity method [J]. Journal of Fluids and Structures.2006,22:1113-1131.
    [159]Yamamoto C T, Meneghini J R, Saltara F, et al. Numerical simulations of vortex-induced vibration on flexible cylinders [J]. Journal of Fluids and Structures.2004,19 (4):467-489.
    [160]Uhlman J S. An integral equation formulation of the equations of motion of an incompressible fluid [R]. Rhode Island:Naval Undersea Warfare Center Division Newport,1992.
    [161]Greengard L,Rokhlin V. A fast algorithm for particle simulations [J]. Journal of Computational Physics. 1987,73:325-348.
    [162]Cantwell B,Coles D. An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder [J]. Journal of Fluid Mechanics.1983,136:321-374.
    [163]Roshko A. Experiments on the flow past a circular cylinder at very high Reynolds number [J]. Journal of Fluid Mechanics.1961,10:345-356.
    [164]Patel M H,Witz J A. Compliant Offshore Structures [R]. Butterworth-Heinemann, England:1991.
    [165]Ferrari J A. Hydrodynamic loading and response of offshore risers [D]. London:University of London, 1998.
    [166]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [167]张雄,王天舒.计算动力学[M].北京:清华大学出版社,2007.
    [168]Huang K,Chen H C. Vertical riser VIV simulation in uniform current [J]. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme.2010,132 (031101):1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700