宽带混沌信号产生、分析与处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽带信号具有良好的距离分辨率、电磁兼容性、抗干扰性能、较高的穿透能力和低截获特性,因此自上世纪60年代以来,在雷达和通信等诸多领域得到了广泛的应用。人们在宽带信号产生、分析与处理等方面取得了一系列有价值的成果;但是,随着新理论和新技术的问世,有关宽带信号研究的新成果也在不断的涌现。混沌信号是由确定性系统产生的伪随机信号,具有易于产生和控制等特点,在宽带和超宽带领域中引起了人们的极大关注。本文就是根据混沌理论的发展,研究基于混沌的宽带/超宽带信号的产生、分析和处理技术。
     本文的主要工作和贡献可以归纳如下:
     1.新型混沌信号源和实现
     研究了混沌二相码序列驱动Colpitts电路实现的混沌系统,提出了由数字电路和模拟电路混合实现的混沌信号产生系统。数字部分产生脉冲信号驱动模拟部分直接产生符合要求的混沌信号;模拟部分又分为振荡器和滤波器两部分,由滤波器控制混沌信号的频谱范围。数值仿真和电路实验表明本文提出的混沌源不仅具有可控的信号频谱,也易于控制和同步。在模拟系统与数字激励之间实现广义同步时,可以用较低时钟频率的数字部分控制产生较高频率的混沌信号。
     2.混沌信号时频分析算法
     时间尺度信号计算是进行时频分析的核心运算。对混沌信号,我们首先揭示了混沌时间尺度信号与混沌系统参数之间的关系,然后提出了基于混沌同步的时间尺度混沌信号产生技术,最后发展了宽带混沌信号的模糊函数计算算法。在时间尺度混沌信号产生技术研究中,根据混沌系统是自治的还是非自治的,分别利用脉冲同步和广义同步理论,给出相应的产生技术。在提出的模糊函数计算算法方面,可采用模拟一数字混合结构实现模糊函数计算,为混沌信号分析和雷达应用提供了新手段。
     3.混沌信号半盲提取与分离
     提出了基于混沌同步的线性混合混沌信号的半盲提取和分离技术。在混沌信号提取方面,将提取矢量的估计问题转化为混沌系统输出函数参数的估计问题,然后构造基于同步的参数估计方法来提取混沌信号。在混沌信号分离方面,将信道和多个子系统看作一个整体系统,信道混叠参数变为未知的系统参数,然后构造基于同步的参数估计方法,从而分离混沌信号。基于同步的混沌信号分离技术充分利用了每个混沌源信号的产生信息,增强了分离技术的鲁棒性,在信噪比为0dB时仍然有效工作。混沌信号分离技术可应用于降低多用户通信和雷达系统中发射机之间的相互干扰,也可提高混沌信号雷达系统的多目标性能和抗多径干扰能力。
Wideband signals have a lot of performance advantages in radar and communication applications, such as high range-resolution, good electromagnetic compatibility, anti-jamming ability, and low-interception probablity. Since 1960, much attention has been taken on the signal research and generated great advances on signal generation, analyses and processing. With the advance on the new theroy and techniques, the new results appear as sequal. Chaotic signal, generated by deterministic systems, can be easily implemented by a simple circuit and controlled to the desired states. Since its founding, the singal has attaracted wide interests in applications. With the development of chaotic theory and appeal in applications, this dissertation mainly studies the generation, analysis and processing of chaotic signals.
     Main results are concluded as follows:
     1. New generating system and implementation of chaotic sources
     A Clopitts circuit drived by a chaotic binary code is implemented. Then we propose a chaotic system consisting of digital-analog mixed circuits. The digital circuit provides a pulse-driving signal for the generation of chaotic signals from the analog circuits. The analog circuit consists of the oscillator and the filters. The filters are used to shape the structure of the chaotic singals. The SPICE simulation and circuit implementation show that the new source has controllable spectra and easy to control and synchronize. It is also found that thecircuit can generate high-frequency chaotic signals with low-frequency driving pulse.
     2. Time-frequency analysis of chaotic signals
     Time-scaling signals are key operation in the time-frequency analysis. For chaotic signals, we reveal the relation between the time-scaling and system parameters. With the relation, the time-scaling chaotic signals can be generated with the chaotic generating systems. We apply the generating methods to the analysis of chotic singals and develop the corresponding techniques for calculating ambiguity functions of the chaotic signals. For the generation of the time-scaling singals, we develop the pule-synchaonization-based and generalized-synchronization-based techniques with the corresponding autonomous and non-autonomous systems. The calculation of the amnbiguity functions can be implemented by analog-digital mixed structure and provides new strategy for the analysis processing of chaotic radar signals.
     3. Partially-blind extraction and separation of chaotic singals
     We develop the synchronization-based techniques for the extraction and separation of chaotic signals. In the extraction of chaotic signals, we transform the estimation of the extracting vectors into the parameter estimation problem of the chaotic systems. The signal extraction is implemented by a synchronization-based parameter estimation of chaotic systems. In the separation of chaotic signals, we integrate the singal channel and multiple sources into a system. The developed parameter estimation method is used to implement the source separation. The separation technique fully utilizes the information of the chaotic generating systems and enhances the robustness of the separation. It is found that the new technique is still applicable under signal level below 0dB.
引文
[1]G.N.Saddik,R.S.Singh,E.R.Brown.Ultra-Wideband Multifunctional Communications/Radar System.Microwave Theory and Techniques,IEEE Transactions on,55(7):1431-1437
    [2]I.Y.Immoreev,J.D.Taylor.Ultrawideband radar special features & terminology.Aerospace and Electronic Systems Magazine,IEEE,2005,20(5):13-15
    [3]R.S.Vickers.Ultra-wideband radar-potential and limitations.Microwave Symposium Digest,1991.,IEEE MTT-S International,1991,1:371-374
    [4]L.Y.Astanin,A.A.Kostylev.Ultra-wideband signals-a new step in radar development.Aerospace and Electronic Systems Magazine,IEEE,1992,7(3):12-15
    [5]I.Immoreev.Ten questions on UWB[ultra wide band radar].Aerospace and Electronic Systems Magazine,IEEE,2003,18(11):8-10
    [6]Yang Liuqing,G.B.Giannakis.Ultra-wideband communications:an idea whose time has come.Signal Processing Magazine,IEEE,2004,21(6):26-54
    [7]L.Yang,G.B.Giannakis,A.Swami.Noncoherent Ultra-Wideband(De)Modulation.Communications,IEEE Transactions on,2007,55(4):810-819
    [8]M.Z.Win,R.A.Scholtz.Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications.Communications,IEEE Transactions on,2000,48(4):679-689
    [9]Guolin Sun,Jie Chen,Wei Guo,K.J.R.Liu.Signal processing techniques in network-aided positioning:a survey of state-of-the-art positioning designs.Signal Processing Magazine,IEEE,2005,22(4):12-23
    [10]L.G.Weiss.Wavelets and wideband correlation processing.Signal Processing Magazine,IEEE,1994,11(1):13-32
    [11]H.Krim,M.Viberg.Two decades of array signal processing research:the parametric approach.Signal Processing Magazine,IEEE,1996,13(4):67-94
    [12]S.Valaee,P.Kabal.Wideband array processing using a two-sided correlation transformation.Signal Processing,IEEE Transactions on,1995,43(1):160-172
    [13]J.Krolik,D.Swingler.Focused wide-band array processing by spatial resampling.Acoustics,Speech,and Signal Processing[see also IEEE Transactions on Signal Processing],IEEE Transactions on,1990,38(2):356-360
    [14]J.N.Lee,A.Vanderugt.Acoustooptic signal processing and computing.Proceedings of the IEEE, 1989, 77(10): 1528~1557
    [15] R. Amirtharajah, A.P. Chandrakasan. Self-powered signal processing using vibration-based powergeneration. Solid-State Circuits, IEEE Journal of, 1998, 33(5):687~695
    [16] R. Kumar, T. M. Nguyen, C.C. Wang, GW. Goo. Signal processing techniques for wideband communications systems. Military Communications Conference Proceedings, 1999. MILCOM 1999. IEEE, 1999,1: 452~457
    [17] Jiang Yi, P. Stoica, Li Jian. Array signal Processing in the known waveform and steering vector case. Signal Processing, IEEE Transactions on, 2004, 52(1): 23~35
    [18] K.M. Cuomo, J.E. Pion, J.T. Mayhan. Ultrawide-band coherent processing. Antennas and Propagation, IEEE Transactions on, 1999,47(6): 1094~1107
    [19] R.J. Fontana, E.A. Richley, L.C. Beard, J. Barney. Programmable ultra wideband signal generator for electromagnetic susceptibility testing. Aerospace and Electronic Systems Magazine, IEEE, 2004,19(5): 36~41
    [20] Lie-Liang Yang, L. Hanzo. Multicarrier DS-CDMA: a multiple access scheme for ubiquitous broadband wireless communications. Communications Magazine, IEEE,2003,41(10): 116~124
    [21] J.E. Padgett. The power spectral density of a UWB signal with pulse repetition frequency (PRF) modulation. Ultra Wideband Systems and Technologies, 2003 IEEE Conference on, 2003,15~20
    [22] Hongbo Sun, Yilong Lu, Guosui Liu. Ultra-wideband technology and random signal radar: an ideal combination. Aerospace and Electronic Systems Magazine, IEEE, 2003,18(11): 3~7
    [23] V. Venkatasubramanian, H. Leung. A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging. Signal Processing Letters, IEEE, 2005,12(7): 528~531
    [24] C.-C. Chong, S. K. Yong, S.-S. Lee. UWB Direct Chaotic Communication Technology. Antennas and Wireless Propagation Letters, 2005, 4(1): 316~319
    [25] A.M. Shigaev, B.S. Dmitriev, Y.D. Zharkov, N.M. Ryskin. Chaotic dynamics of delayed feedback klystron oscillator and its control by external signal. Electron Devices, IEEE Transactions on, 2005, 52(5): 790~797
    [26] G Kolumban, M.P. Kennedy, L.O. Chua, The role of synchronization in digital communications using chaos. I. Fundamentals of digital communications. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, 1997, 44(10): 927-936
    [27]V.Venkatasubramanian,H.Leung.A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging.Signal Processing Letters,IEEE,2005,12(7):528-531
    [28]Nan Xie,H.Leung.An analog multi-user spread spectrum technique for wireless home automation.Consumer Electronics,IEEE Transactions on,2002,48(4):1016-1025
    [29]Donhee Ham,Xiaofeng Li,Scott A.Denenberg,Thomas H.Lee,David S.Ricketts.Ordered and chaotic electrical solitons:communication perspectives.Communications Magazine,IEEE,2006,44(12):126-135
    [30]Fan-Yi Lin,Jia-Ming Liu.Ambiguity functions of laser-based chaotic radar.Quantum Electronics,IEEE Journal of,2004,40(12):1732-1738
    [31]Yongxiang Xia,C.K.Tse,F.C.M.Lau.Performance of differential chaos-shift-keying digital communication systems over a multipath fading channel with delay spread.Circuits and Systems Ⅱ:Express Briefs,IEEE Transactions on,2004,51(12):680-684
    [32]A.P.Kurian,S.Puthusserypady,Su Myat Htut.Performance enhancement of DS/CDMA system using chaotic complex spreading sequence.Wireless Communications,IEEE Transactions on,2005,4(3):984-989
    [33]Nan Xie,H.Leung.Blind identification of autoregressive system using chaos.Circuits and Systems Ⅰ:Regular Papers,IEEE Transactions on,2005,52(9):1953- 1964
    [34]Y.Doisy,L.Deruaz;S.P.Beerens;R.Been.Target D(o|¨)ppler estimation using wideband frequency modulated signals.IEEE transactions on signal processing,2000,48(5):1213-1224
    [35]M.Soumekh.Reconnaissance with ultra wideband UHF synthetic aperture radar.Signal Processing Magazine,IEEE,1995,12(4):21-40
    [36]D.Broomhead,G..P.King.Extracting qualitative dynamics from experimental data.Physica 20D,1986,217-236
    [37]Stephen Ellnerand,Peter Turchin.Chaos in a Noisy World:New Methods and Evidence from Time-Series Analysis.Am Nat,1995,145:343-375
    [38]Julien Clinton Sprott.Chaos and Time-Series Analysis.Oxford University Press,2003
    [39]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社,2001
    [40]M.T.Rosenstein,J.J.Collins,C.J.Deluca.A practical method for calculating largest Lyapunov exponents from small data sets.Physica D,1993,65:117-134
    [41]M.T.Martin,F.Permini,A.Plastino.Fisher's information and the analysis of complex signals. Phys. Lett. A, 1999,256: 173~180
    [42] J. L. Chen, J. Y. Ko, J. S. Lih, H. T. Su, R. R. Hsu. Recognizing hidden frequencies in a chaotic time series. Phys. Lett. A, 1998,238:134~140
    [43] J. L. Breeden, A. Hubler. Reconstructing equations of motion from experimental data with unobserved variables. Phys. Rev. A, 1990,42: 5817~5826
    [44] Y. T. Michael, M.V. Konstantin. Mathematical Model of the Nucleic Acids conformational transitions with hysteresis over Hydration-Dehydration cycle. Lecture Notes in Computational Science and Engi-neering, Springer: 1999,116
    [45] J. Lu, J. Lu, J. Xie, G. Chen. On reconstruction of the Lorenz and Chen systems with noisy observations. Computers and Mathematics with Application, 2002
    [46] D. Kugiurmtzis, State space reconstruction parameters in the analysis of chaotic time series-the role of the time window length. Physica D, 1996,95: 13~28
    [47] P. G rassberger, L. Procaccia. Measuring the strangeness of strange attractors. Physica D, 1983,9:189~208
    [48] F. Takens. Determing strang attractors in turbulence. Lecture notes in Math, 1981, 898:361~381
    [49] C. Ziehmann, L. A. Smith, J. Kurths. The bootstrap and Lyapunov exponents in deterministic chaos. Physica D, 1999,126: 49~59
    [50] M. T. Rosenstein, J. J. Collins, C. J. Deluca. A practical method for calculating largest Lyapunov exponents from small data sets, Physica D, 1993, 65: 117~134
    [51] R. Stoop, J. Parisi. Calculation of Lyapunov exponents avoiding spuriou elements. Physica D, 1991,50:89~94
    [52] A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano. Determining Lyapunov exponents from a time series. Physica 16D, 1985,285~317
    [53] G. Barana, I. Tsuda. A new method for computing Lyapunov exponents. Phys. Lett. A, 1990,151:27~32
    [54] K. Briggs. An improverd method for estimating Liapuncv exponents of chaotic time series. Phys. Lett. A, 1990,151: 27~32
    [55] R. Brown, P. Bryant, H. D. J. Abarbanel. Computing the Lyapunov spectrum of a dynamical system from an observed time series. Phys. Rev. A, 1991,43: 2787~2806
    [56] J. P. Eckmann, S. O.Kamphorst, D. Ruelle, S. Ciliberto. Lyapunov exponents from time series. Phys. Rev. A, 1986,34: 4971~4979
    [57] M. T. Borisuk, J. J. Tyson. Bifurcation analysis of a model of muotic control in frog egg. J. Theor. Biol., 1998,195: 69~85
    [58] T. Ueta and G. Chen. Bifurcation analysis of Chen's attractor. Int. J. of Bifor. Chaos, 2000,10: 1917~1931
    [59] L. Billings, E. M. Bollt. Probability density functions of some skew tent maps. Chaos, Solitons & Fractals, 2001, 12(2): 365~376
    [60] T. Falk, M. Gotz, T. Kilias, W. Schwarz, T. Ruhlicke. A chaos-based programmable analogue-digital circuit for broadbandsignal generation. Digital Signal Processing Workshop Proceedings, 1996., IEEE, 1996,482~485
    [61] B.C. Flores, E.A. Solis, G. Thomas. Assessment of chaos-based FM signals for range-Doppler imaging. Radar, Sonar and Navigation, IEE Proceedings, 2003, 150(4):313-22-
    [62] H. Sakai, H. Tokumaru. Autocorrelations of a certain chaos. Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal Processing], IEEE Transactions on, 1980, 28(5): 588~590
    [63] T. L. Carroll. Optimizing chaos-based signals for complex radar targets. Chaos, 2007, 17:033103
    [64] Fan-Yi Lin, Jia-Ming Liu. Ambiguity functions of laser-based chaotic radar. Quantum Electronics, IEEE Journal of, 2004,40(12): 1732-1738
    [65] Shen Ying, Shang Weihua, Liu Guosui. Ambiguity function of chaotic phase modulated radar signals. Signal Processing Proceedings, 1998. ICSP '98. 1998 Fourth International Conference on, 1998,2: 1574~1577
    [66] Y. Doisy, L. Deruaz, S.P. Beerens, R. Been. Target Doppler estimation using wideband frequency modulatedsignals. Signal Processing, IEEE Transactions on, 2000, 48(5):1213~1224
    [67] W.M. Tarn, F.C.M. Lau, C.K. Tse, A.J. Lawrance. Exact analytical bit error rates for multiple access chaos-based communication systems. Circuits and Systems Ⅱ: Express Briefs, IEEE Transactions on [see also Circuits and Systems Ⅱ: Analog and Digital Signal Processing, IEEE Transactions on], 2004, 51(9): 473~481
    [68] A.R. Murch, R.H.T. Bates, Colored noise generation through deterministic chaos. Circuits and Systems, IEEE Transactions on, 1990, 37(5): 608~613
    [69] S. Azou, G. Burel, C. Pistre. A chaotic Direct-Sequence Spread-Spectrum system for underwater communication. Oceans '02 MTS/IEEE, 2002, 4: 2409~2415
    [70] A. Bauer. Chaotic signals for CW-ranging systems. A baseband system model fordistance and bearing estimation. Circuits and Systems, 1998. ISCAS '98. Proceedings of the 1998 IEEE International Symposium on, Monterey, CA, USA, 1998, 3: 275~278
    [71] HERVE DEDIEU, MACIEJ OGORZALEK. Chaos-based signal processing. International Journal of Bifurcation and Chaos (IJBC), 2000,10(4): 737~748
    [72] R. A. Katz Editor, Brace J. Bates. Chaotic, Fractal, and Nonlinear Signal Processing. The Journal of the Acoustical Society of America, 1997,102(3): 1274
    [73] Christian Merkwirth, Ulrich Parlitz, Werner Lauterborn. Fast nearest-neighbor searching for nonlinear signal processing. Phys. Rev. E, 2000, 62:2089~2097
    [74] Bohou Xu, Fabing Duan, Ronghao Bao, Jianlong Li. Stochastic resonance with tuning system parameters: the application of bistable systems in signal processing.Chaos,Solitons & Fractals, 2002,13(4): 633~644
    [75] Xavier Godivier, Fran(?)ois Chapeau-Blondeau. Noise-assisted signal transmission in a nonlinear electronic comparator: Experiment and theory. Signal Processing, 1997, 56(3):293~303
    [76] Fran(?)ois Chapeau-Blondeau. Stochastic resonance for an optimal detector with phase noise. Signal Processing, 2003, 83(3): 665~670
    [77] A. Lapedes; R. Farber. Nonlinear signal processing using neural networks: Prediction and system modeling. IEEE international conference on neural networks; 21 Jun 1987; San Diego, CA, USA
    [78] Henry Leung, Titus Lo, Sichun Wang. Prediction of noisy chaotic time series using an optimal radialbasis function neural network. Neural Networks, IEEE Transactions on, 2001,12(5): 1163~1172
    [79] Henry Leung, Sichun Wang, A.M. Chan. Blind identification of an autoregressive system using a nonlineardynamical approach. Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 2000, 48(11): 3017~3027
    [80] Yuri V. Andreyev, Alexander S. Dmitriev, Elena V. Efremova. Dynamic separation of chaotic signals in the presence of noise. Phys. Rev. E, 2002,65: 046220~046226
    [81] J. Schweizer, T. Schimming. Symbolic dynamics for processing chaotic signals. Ⅰ. Noisereduction of chaotic sequences. Circuits and Systems Ⅰ: Fundamental Theory and Applications, IEEE Transactions on [see also Circuits and Systems I: Regular Papers, IEEE Transactions on], 2001,48(11): 1269~1282
    [82] J. Schweizer, T. Schimming. Symbolic dynamics for processing chaotic signal. Ⅱ.Communicationand coding. Circuits and Systems Ⅰ: Fundamental Theory and Applications, IEEE Transactions on [see also Circuits and Systems Ⅰ: Regular Papers, IEEE Transactions on], 2001, 48(11): 1283~1295
    [83] N. F. Rulkov, L. S. Tsimring. Synchronization methods for communication with chaos over band-limited channels. International journal of circuit theory and applications, 1999,27(6): 555~567
    [84] H. Dedieu, M.P. Kennedy, M. Hasler. Chaos shift keying: modulation and demodulation of a chaoticcarrier using self-synchronizing Chua's circuits. Circuits and Systems Ⅱ:Analog and Digital Signal Processing, IEEE Transactions on [see also Circuits and Systems Ⅱ: Express Briefs, IEEE Transactions on], 1993, 40(10): 634-642
    [85] L. Kocarev. Chaos-based cryptography: a brief overview. Circuits and Systems Magazine, IEEE, 2001,1(3): 6~21
    [86] ABEL Andreas; SCHWARZ Wolfgang. Chaos communications: Principles, schemes, and system analysis. Proceedings of the IEEE, 2002, 90(5): 691~710
    [87] T. Oguchi, H. Nijmeijer. Prediction of chaotic behavior. Circuits and Systems Ⅰ: Regular Papers, IEEE Transactions on [Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on], 2005, 52(11): 2464~2472
    [88] J. Ohtsubo. Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback. Quantum Electronics, IEEE Journal of, 2002, 38(9): 1141~1154
    [89] He Zhenya, Li Ke, Yang Luxi, Shi Yuhui. A robust digital secure communication scheme based on sporadiccoupling chaos synchronization. Circuits and Systems Ⅰ: Fundamental Theory and Applications, IEEE Transactions on [see also Circuits and Systems Ⅰ: Regular Papers, IEEE Transactions on], 2000,47(3): 397~403
    [90] N. Tishby. A dynamical systems approach to speech processing. Acoustics, Speech, and Signal Processing, 1990. ICASSP-90., 1990 International Conference on, 1990, 1:365~368
    [91] M. Banbrook, S. McLaughlin, I. Mann. Speech characterization and synthesis by nonlinear methods. Speech and Audio Processing, IEEE Transactions on, 1999, 7(1):1~17
    [92] V. Pitsikalis, P. Maragos. Speech analysis and feature extraction using chaotic models. Acoustics, Speech, and Signal Processing, 2002. Proceedings. (ICASSP '02). IEEE International Conference on, 2002,1:I-533~I-536
    [93] I. Kokkinos, P. Maragos. Nonlinear speech analysis using models for chaotic systems. Speech and Audio Processing, IEEE Transactions on, 2005,13(6): 1098~1109
    [94] PR. Chakravarthi. Radar target detection in chaotic clutter. Radar Conference, 1997, IEEE National, 1997, Syracuse, NY, USA: 367~371
    [95] H. Leung, T. Lo. Chaotic radar signal processing over the sea. Oceanic Engineering, IEEE Journal of,1993,18(3):287-295
    [96]方锦清.驾驭混沌与发展高新技术.北京:原子能出版社,2002:1-180
    [97]方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(一).物理学进展,1996,16(1):1-70
    [98]张学义.混沌同步及其在通信中的应用研究.哈尔滨:哈尔滨工程大学,2001:1-10,57-60
    [99]吴祥兴,陈忠等编著.混沌学导论.上海:科技文献出版社,1996:120-143
    [100]E.N.Lorenz.Deterministic nonperiodic flows.J.Atmos.Sci.,1963,20:130-141
    [101]方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二).物理学进展,1996,16(2):137-196
    [102]S.(?)elikovsk(?),G.Chen.On the generalized Lorenz canonical form.Chaos,Solitons and Fractals,2005,26(5):1271-1276
    [103]G.R.Chen,T.Ueta.Yet anthor chaotic attractor.Int.J.Bifur.Chaos,1999,9(6):1465-1466
    [104]E N.Lorenz.The Essence of Chaos.Seattle,WA:University of Washington Press,1993
    [105]I.Stewart.The Lorenz attractor exists.Nature,2002,406:948-949
    [106]J H L(u|¨),G R.Chen.A new chaotic attractor coined.Int.J.Bifur.Chaos,2002,12(3):659-661
    [107]J H L(u|¨),G R Chen,S Zhang.Dynamical analysis of a new chaotic attractor.Int.J.Bifur.Chaos,2002,12(5):1001-1015
    [108]J H L(u|¨),G R Chen,S Zhang.Bridge the gap between the Lorenz and the Chen system.Int.J.Bifur.Chaos,2002,12(12):2917-2926
    [109]W B Liu,G R Chen.A new chaotic system and its generation.Int.J.Bifur.Chaos,2003,13(1):261-267
    [110]C X Liu,T Liu,K Liu.A new chaotic attractor.Chaos,Solitions and Fractals,2004,22(5):1031-1038
    [111]G Y Qi,G R Chen,S Z Du.Analysis of a new chaotic attractor.Physica A,2005,352:295-308
    [112]L.O.Chua.The genesis of Chua's circuit.Archly fur Electronik und ubertragungstechnik,1992,46:250-257
    [113]A Huang,L Pivka,C W Wu.Chua's Equation With Cubic Nonlinearity.Int.J.Bifur.Chaos,1996,6:2175-2222
    [114]O.E.R(o|¨)ssler.An equation for continuous chaos.Physics Letters A,1976,57(5):397-398
    [115]Th. Meyer, M. J. Bünner, A. Kittel, J. Parisi. Hyperchaos in the generalized R(o|¨)ssler system. Phys. Rev. E, 1997, 56: 5069~ 5082
    [116] S. Arlt, R. B(o|¨)ttcher, A. M(o|¨)gel, G. Scarbata, W. Schwarz. Integrierter Chaos generator. In 5. Eurochip Workshop on VLSI Design Training, Dresden, Oktober 1994
    [117] A. Mogel. Integrated Chua's Circuit. In Proceedings of the Workshop on Nonlinear Dynamics of Electronic Systems (NDES'94), 1994, Krakow, Polen: 221~226
    [118] A. Mogel. Integrated realization of analogue system with chaotic behaviour. In A. C. Davies and W. Schwarz, editors, Nonlinear Dynamics of Electronic Systems, Proceedings of the Workshop NDES'93, Dresden, Germany, 23-24 July 1993: 411~418
    [119] W. Schwarz, K. Lemke. Chaos Generators Using Classical Oscillator Structures. In Proceedings of the Workshop on Nonlinear Dynamics of Electronic Systems (NDES'95), 1995, Dublin, Irland: 275~278
    [120] I. Abdomerovic, A. G. Lozowski, P. B. Aronhime. High-Frequency Chua's Circuit. Proc. 43rd IEEE Midwest Symp. on Circuits and Systems, Lansing MI, Aug 8-11,2000
    [121] A. Namajunas, A. Tamasevicius. Modified Wien-bridge oscillator for chaos. Electronics letters, 1995,31:335~336
    [122] O. Morgul. Wien bridge based RC chaos generator. Electronics letters, 1995, 31: 2058-2059
    [123] A. Namajunas, A. Tamasevicius. Simple RC chaotic oscillator. Eletronics letters, 1996, 32: 945~946
    [124] A. S. Elwakil, M. P. Kennedy. Generic RC realizations of Chua's Circuit. Int. J. Bifurcation and Chaos, 2000,10(8): 1981~1985
    [125] M. P. Kennedy. Chaos in the Colpitts oscillator. IEEE Trans. Circuits and Syst.-I, 1994,41:771~774
    [126] C. Wegene, M. Kennedy. RF Chaotic Colpitts oscillator. Proc. of NDES'95, 1995,Dublin, Ireland: 255~258
    [127] A. I. Panas, B. E. Kyarginsky, N. A. Maximov. Single-transistor microwave chaotic oscillator. Proc. of NOLTA'2000,2000, Dresden, Germany: 445~448
    [128] N. Maximov, A. Panas, S. Starkov. Chaotic oscillators design with preassigned spectral characteristics. ECCTD'01-European Conference on Circuit Theory and Design, Espoo, Finland, 2001
    [129] G. Mykolaitis, A. Tama(?)evi(?)ius, S. Bumeliene, G. Lasiene, A. Cenys, A. N. Anagnostopoulos, E. Lindberg. Towards microwave chaos with two-stage Colpitts oscillator. Proc. 9th Workshop NDES 2001, 2001, Delft, The Netherlands: 97~100
    [130] G. Mykolaitis, A. Tamasevicius, S. Bumeliene. Experimental demonstration of chaos from the Colpitts oscillator in the VHF and the UHF ranges. Electron. Lett., 2004, 40(2): 91~92
    [131] A. Tama(?)evicius, S. Bumeliene, E. Lindberg. Improved chaotic Colpitts oscillator for ultrahigh frequencies. Electron. Lett., 2004,40(25): 151~160
    [132] L. Cong, W. Xiaofu. Design and Realization of an FPGA-Based Generator for Chaotic Frequency Hopping Sequences. IEEE Trans. on Circuits and Systems, 2001, 48(5):125~130
    [133] K. Kelber, W. Schwarz. Digital realization of discrete-time chaos generators. Proc.ECCTD'97,1997, Budapest, Hungary: 1025~1030
    [134] K. Eguchi, T. Inoue, A. Tsuneda. FPGA Implementation of a Digital Chaos Circuit Realizing a 3-Dimensional Chaos Model. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 1998, E81-A(6): 1176~1178
    [135] M. A. Aseeri, M. I. Sobhy, P. Lee. Lorenz chaotic model using Filed Programmable Gate Array (FPGA). Circuits and systems, 2002, MWSCA-2002, The 2002 45th Midwest Symposium on, 2002,1: 527~ 530
    [136] MP Kennedy. Chaos in the Colpitts oscillator. IEEE Transactions on Circuits and Systems, 1994,41(11): 771~ 774
    [137] GM Maggio, Feo O De, MP Kennedy. Nonlinear analysis of the Colpitts oscillator and applications to design. IEEE Transactions on Circuits and Systems Ⅰ -Fundamental Theory and Applications, 1999,46(9): 1118~1130
    
    [138] J. Cernak. Digital generators of chaos. Phys. Lett. A, 1996,214: 151~160
    [139] Alexander E. Hramov, Alexey A. Koronovskii. Generalized synchronization: A modified system approach. Phy. Rev. E, 2005, 71: 067201
    [140] H. D. I. Abarbanel, N. F. Rulkov, M. M. Sushchik. Generalized synchronization of chaos: The auxiliary system approach. Phy. Rev. E, 1996, 53: 4528-4538
    [141] L. Cohen. Time-Frequency Analysis: Theory and Applications. Prentice Hall, 1995
    
    [142] R. K. Young. Wavelet theory and its applications. Boston: Kluwer Academic Publishers, 1993
    [143] H. C. Ho, and Y. T. Chan, "Optimum Discrete Wavelet Scaling and Its Application to Delay and Doppler Estimation," IEEE Trans. Signal Processing, vol.46, pp.2282-2290, Sept. 1998
    [144] A. P. Chaiyasena, L. H. Sibul, A. Banyaga. The relationship between narrowband and wideband ambiguity volume properties: A group contraction approach. Conference on Information Science and Systems, Johns Hopkins, Baltimore, March 1991
    [145] J. M. Combes, A. Grossman, Ph. Tchamitchian. Wavelets: Time- Frequency Methods and Phase Space. Springer-Verlag, New York, NY, 1989
    [146] L. H. Sibul, A. P. Chaiyasena, M. L. Fowler. Signal ambiguity functions, Wigner transforms, and Wavelets. in Signal Processing and Digital Filters, M. H. Hamza, editor, Lugano, Switzerland, June 1990: 214~217
    [147] L. H. Sibul, E. L. Titlebaum. Volume properties for the wideband ambiguity function. IEEE Trans. Aero. Elect. Systems, 1981,17: 83~86
    [148] L. H. Sibul, L. J. Ziomek. Generalized wideband crossambiguity function. IEEE ICASSP, 1981: 1239~1242
    [149] X. X. Niu, P. C. Ching, and S. Q. Wu. Design of a wideband optimum signal for time delay and doppler stretch measurements. In Proceedings of IEEE International Symposium on Circuits and Systems, Hong Kong, June 1997: 2533~2536
    [150] Z. B. Lin, "Wideband Ambiguity Function of Broadband Signals," J.Acoust. Soc. Am, vol.83, pp.2108-2116,Jun.1988
    [151] P. M. Woodward. Probability and information theory with applications to radar. Oxford,England: Pergamon, 1964
    [152] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1983
    [153] X. X. Niu, P. C. Ching and Y. T. Chan, "Wavelet Based Approach for Joint Time Delay and Doppler Stretch Measurements," IEEE Trans. Aerosp. Electron. Syst., vol.35,pp.1111-1119, Jul. 1999
    [154]Guanrong Chen. Controlling Chaos and Bifurcations in Engineering Systems. CRC PRESS, 1999
    [155] Shihua Chen, Qing Yang, Changping Wang. Impulsive control and synchronization of unified chaotic system. Chaos, Solitons & Fractals, 2004,20(4): 751-758
    [156] Y. Tao & L. O. Chua, "Impulsive Stabilization for Control and Synchronization of Chaotic Systems: Theory and Application to Secure Communication," IEEE Trans. Cir. Syst., vol. 44, pp.976-988,1997
    [157] Nikolai F. Rulkov, Mikhail M. Sushchik, and Lev S. Tsimring. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E, 1995,51:980~994
    [158] L. Kocarev and U. Parlitz. Generalized Synchronization, Predictability, and Equivalence of Unidirectionally Coupled Dynamical Systems. Phys. Rev. Lett., 1996 76: 1816~ 1819
    [159] S. S. Yang, and C. K. Duan. Generalized Synchronization in Chaotic Systems. Chaos, Solitons, & Fractals, 1998,9(10): 1703~1707
    [160] Tao Yang, Leon 0. Chua. Generalized Synchronization of Chaos via Linear Transformations. International Journal of Bifurcation and Chaos (IJBC), 1999, 9(1):215~219
    [161] Zhao Hongzhong, Zhou Jianxiong, Li Weimin, Fu Qiang. Acceleration ambiguity functions of radar signals and its application. JOURNAL OF ELECTRONICS(CHINA), 2003,20(6): 401~406
    
    [162] H. Van Trees. Detection, Estimation and Modulation Theory, Part Ⅰ, Wiley, 1968
    [163] H. Van Trees. Detection, Estimation and Modulation Theory, Part Ⅲ, Wiley, 1971
    [164] T. H. Glisson, A. P. Sage. On sonar signal analysis. IEEE Trans. Aero. Elect. Systems, 1970, 6(2): 37-49
    [165]D. W. Ricker. The Doppler sensitivity of large TW phase modulated waveforms. IEEE Trans. Signal Proc, Oct. 1992
    [166] K. J. Pope, R. E. Bogner. Blind Signal Separation I. Linear, Instantaneous Combinations. Digital Signal Processing, 1996, (6): 5~16
    [167] K. J. Pope, and R. E. Bogner. Blind Signal Separation Ⅱ. Linear, Convolutive Combinations. Digital Signal Processing, 1996, (6): 17~ 28
    [168] J. -F. Cardoso. Blind Signal Separation: Statistical Principles. Proceedings of the IEEE, 1998, 86(10): 2009~2025
    [169] A. Hyvarinen, J. Karhunen, E. Oja. Independent Component Analysis. John Wiley and Sons, 2001
    [170] K. M. Cuomo, A. V. Oppenheim. Circuit Implementation of Synchronized Chaos with Applications to Communications. Phys. Rev. Lett, 1993, 71(1): 65~68
    [171] Z. Liu, X. H. Zhu, W. Hu, J. Fei. Principles of chaotic signal radar. Int. J. Bifur. Chaos, 2007,17: 1735~1739
    [172] B. Y. Wang, W. X. Zheng. Blind extraction of chaotic signal from an instantaneous linear mixture. Circuits and Systems Ⅱ: Express Brief, 2006, 53(2): 143~147
    [173] T. Lo, H. Leung, J. Litva. Separation of a mixture of chaotic signals. Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, Atlanta, GA, USA, May 1996: 1798~1801
    [174] Lev S. Tsimring, Mikhail M. Sushchik. Multiplexing chaotic signals using synchronization. Physics Letters A, 1996, 213: 155~166
    [175] Y. V. Andreyev, A. S. Dmitriev. E. V. Efremova, A. N. Anagnostopoulos. Separation of chaotic signal sum into components in the presence of noise. IEEE Trans. Circuits Syst., Ⅰ:Fundam.Theory Appl.,2003,50(5):613-618
    [176]M.Cifici,D.B.Williams.An optimal estimation algorithm for multiuser chaotic communications systems.Proc.IEEE Int.Sym.Circuits and Systems,May 2002,1:397-400
    [177]A.Paolo,B.Arturo,F.Luigi,F.Mattia.Separation and synchronization of piecewise linear chaotic systems.Phys.Rev.E,2006,74:026212-1-026212-11
    [178]L.M.Pecora,T.L.Carroll.Synchronization in chaotic systems.Physical Review Letter,1990,64(8):821-824
    [179]L.Kocarev.General approach for chaotic synchronization with application to communication.Phys.rev.lett.,1995,74(25):5028-5031
    [180]J.H.Peng,E.J.Ding,M.Ding,E.Yang.Synchronizing Hyperchaos with a Scalar Transmitted Signal.Phys:Rev.Lett.,1996,76:904-907
    [181]R.Konnur.Synchronization-based approach for estimating all model parameters of chaotic systems.Phys.Rev.E,2003,67:027204-1-027204-4
    [182]D.Huang.Adaptive-feedback control algorithm.Phys.Rev.E,2006,73:066204-1-066204-8
    [183]Y.Zhang,C.Tao,Jack J.Jiang.Parameter estimation of an asymmetric vocal-fold system from glottal area time series using chaos synchronization.CHAOS,2006,16:023118-1-023118-8
    [184]C.Tao,Y.Zhang,G.Du.Estimating model parameters by chaos synchronization.Phys.Rev.E,2004,69:036204-1-036204-5
    [185]U.Parlitz,L.Junge.Synchronization-based parameter estimation from time series.Phys.Rev.E,1996,54:6253-6259
    [186]U.Parlitz.Estimating Model Parameters from Time Series by Autosynchronization.Phys.Rev.Lett.,1996,76:1232-1235
    [187]S.A.Amari,A.Cichocki,H.H.Yang.A new learning algorithm for blind signal separation.In Touretzky,D.,Mozer,M.,and Hasselmo,M.:'Advances in Neural Information Processing Systems 8',(MIT Press,Cambridge MA,1996):752-763
    [188]S.Chen,B.L.Luk,Adaptive simulated annealing for optimization in signal processing applications.Signal Process.,1999,79(1):117-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700