用户名: 密码: 验证码:
正激直流环节单相和三相软开关静止变流器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空静止变流器(ASI—Aeronautical Static Inverter)是航空电源系统的二次电源,其作用是将飞机主电源直流电27V或270VDC变换成恒压恒频单相115V/400Hz,单相36V/400Hz,三相115V/200V,或三相36V交流电,供飞机上负载使用。与传统的旋转变流机相比,ASI具有效率高、功率密度高、无噪声、可靠性高、寿命长、供电品质好、维护方便等优点。欧美先进国家早在70年代就已经用ASI取代了旋转变流机。国内由于受飞机主电源系统供电体制的影响,大多数现役飞机的二次电源目前仍然使用旋转变流机,只有少数国产机型和在研飞机采用了ASI,且型号较少,不能满足现有战斗机的需要,更不能满足第四代战斗机、舰载机的需要。因此对ASI的研究成为国防建设提出的紧迫课题。
     本文选题“正激直流环节单相和三相软开关静止变流器的研究”,来自航空工业总公司“九五”预研项目之一——“先进飞机二次电源变换关键技术研究”课题,是它的一个子课题,研究的是正激直流环节单相和三相逆变器。这种逆变器采用高频软开关技术,由直直变换器、吸收支路和逆变桥三部分电路级联构成,结构简单,利于模块化设计,具有高频隔离功能,实现了高功率密度、高变换效率、高可靠性和高电能质量。本课题的成果将为先进飞机二次电源研究奠定可靠的技术基础,对航空电源的发展具有重要意义。下面是本课题取得的主要结果。
     鉴于有源箝位正激变压器体积较小、重量较轻,采用它作为前级的电路拓扑。通过对逆变桥工作模式的分析,发现在两种模式转换的过程中功率管开通时存在一定的损耗,据此认为逆变桥功率管应采用输出电容小的器件。
     根据脉冲密度调制技术的原理导出了使输出电压失真度最小、有效值最大,系统效率也较高的环宽取值公式。推导出了使逆变桥的无功回馈能量最小的滤波电容取值公式,原理样机的滤波容因此从20μF减小到7.6μF,减小了62%;系统的效率提高了1.5个百分点,重量也有所减小。在滞环控制原理的基础上,依据滤波电感电流的跟踪特性给出了电感上限值的取值原则,根据最佳环宽的选择公式和滤波电感电流最大脉动值给出了电感下限值的取值原则,原理样机的滤波电感因此从1mH减小到了0.65mH,减小了35%,输出滤波器的谐振频率由2.8倍基波频率提高至5.7倍基波频率,系统体积和重量也可以减小。
     通过对静止变流器损耗的分析得到了原边回路损耗达全部损耗的61.2%,为损耗的主要分布点,提高系统效率的有效途径是减小原边电流的有效值的结论。在此基础上提出了吸收管滞后关断控制与吸收管变频控制两种提高系统效率的方案。第一个方案使整机效率提高2.5个百分点,第二个方案使整机效率进一步提高了0.42~0.96个百分点。
    
    
     在以上对单相逆变器研究工作的基础上,进一步研究了正激直流环节三相组合式
    软开关逆变器。这种逆变器由三个正激直流环节单相逆变器构成,三相彼此独立控制,
    控制简单,带不平衡负载能力高。每一相静止变流器既可用作单相静止变流器,也可
    以通过适当的外部控制组合成三相静止变流器,便于模块化设计,可维修性高。本文
    通过理论分析、仿真与实验研究,得到了满足对称度指标的参数条件和器件选取的约
    束条件,并提出在电路设计中,每个单模块的吸收电容、功率管、滤波电感和变压器
    的定额应比单相静止变流器的大。
     根据上述研究,本工作设计的单相原理样机效率提高到85%,重量减轻到4.skg,
    三相原理样机效率达到83%,重量为14kg。三相原理样机经国防科工委组织的技术
    鉴定,认为该项研究成果填补了我国模块化大功率航空静止变流器的空白,处于国内
    领先水平。
Aeronautical Static Inverter(ASI) is a kind of static converting device, which converts the DC(27V/270V) in the main power of aircraft into AC of constant-voltage and constant frequency by means of power semiconductor devices. With the development of the aircraft, all the electric equipment on the plane requires the power supply system with better performance. The Rotational Converter could not satisfy with the requirement anymore. Compared with the Rotational Converter, ASI is better in the efficiency, power density, reliability and electrical quality. ASI have already replaced the Rotational Converter in western developed countries since the 70's. But, in our country, most acitive aircrafts are still using Rotational Converters as the secondary power supplies. So it is urgent for us to develop our own ASI.
    The mam purpose of this dissertation is to achieve high power density, efficiency, reliability and electric quality of ASI. The novel Forward DC Link Inverter, made up by a DC/DC converter, an energy storage circuit and an inverter, has been chosen because of its advantages of simple structure, high-frequency isolation function and easy achievement of modular design.
    Because of the advantages of high efficiency, small volume and weight, the active-clamped forward circuit are used as the DC/DC converter. The DC/DC converter provides pulse voltage, which returns to zero periodically, for the devices in the inverter to realize ZVS. But the devices still have some on-loss under two kinds of state commutation. Therefore, it is better to use the devices with smaller junction capacitor.
    The selection rule of the hysteresis width has been developed in order to make the THD and RMS value of the output voltage to be the best with high efficiency, according to the principle of pulse density modulation. The equation of selecting filter capacitor is derived to make the feedback energy which is produced by the inverter to be minimum. The value of the capacitor has been decreased from 20u.F to 7.6fiF and the efficiency has been improved by 1.5%. The maximal filter inductor value has been given on the base of the hysteresis control principle. The minimum filter inductor value is also given to limit the maximal pulsating inductor current. Both the simulation and experimental results show that the design method is feasible. The value of the inductor has been decreased from ImH to 0.65mH. Then the volume and weight of the system could also be reduced.
    The loss analysis shows that the main loss is the loss of primary loop so the effective
    approach of improving efficiency is to lower the RMS value of primary current. Two novel
    
    
    
    control schemes are proposed in this paper. The first one improved efficiency by 2.5%. The efficiency has been increased 0.42-0.96% by the second scheme.
    On the base of the research result mentioned above, a novel three-phase combined ASI is proposed hi this paper, which is made up by three single-phase ASI. Each single-phase ASI works separately. Thus modular design can be realized conveniently. The analysis shows that it has good performance even with unsymmetrical load.
    A single-phase prototype of 27VDC/115V(400Hz)/lKVA and a three-phase prototype of 27VDC/115V(400Hz)/3KVA have been developed successfully according to the research result mentioned above. The experimental results show that they have good performance.
引文
[1] 严仰光,航空航天器供电系统,北京:航空工业出版社,1995.8
    [2] 飞机静止变流器通用技术条件,中华人民共和国航空工业部标准,HB5962-86
    [3] SI—2500LP Static Inverter, PN 501-1329-01, Maintenance manual with illustrated parts list, JET Electronics and Technology, Inc.
    [4] 彭灯明,电流控制两态调制技术在逆变电源中的应用研究,南京航空航天大学申请工学硕士学位论文,1982
    [5] D.M. Divan, The resonant dc link converter—a new concept in static power conversion, IEEE IAS, 1986, pp.648-656
    [6] W. McMurrary, Resonant snubbers with auxiliary switches, IEEE Trans. Ind. Appl., vol.29, No.2, 1993, pp.355-362
    [7] S.J. Finney et al, Spectral characteristics of resonant link inverters, IEEE PESC Record, 1992, pp.607-614
    [8] D.M. Divan, Gary Skibinski, Zero-switching-loss inverters for high-power applications, IEEE Trans. Ind. Appl., vol.25, No.4, 1989, pp.634-643
    [9] D.M. Divan, Design methodologies for soft switched inverter, IEEE Trans. Ind. Appl., vol.29, No. 1, 1993, pp. 126-135
    [10] Thomas M. Jahns, A. A. De Doncker et al, System design consideration for a high-power aerospace resonant link converter, IEEE Trans. Power Electronics, vol.3, No.4, October 1993, pp.663-671
    [11] J. He and N. Mohan, Paralled resonant DC link circuit—A novel zero switching loss topology with minimum voltage stresses, IEEE PESC Record, 1989, pp. 1006-1012
    [12] J. G. Gho, H. S. Kim, and G. H. Cho, Novel soft switching PWM converter using a new parallel resonant DC link, IEEE PESC, 1991, pp.241-247
    [13] A. Chibani et al, A new state—feedback control based 3 phase pwm inverter with improved paralled resonant dc link, IEEE IAS, 1992, pp.801-808
    [14] J. Brett Bell, Design ofa zvs pwm inverter for a brushless dc motor in an EMA application, IEEE APEC, 1995, pp.399-405
    [15] A. Cheriti, A rugged soft commutated pwm inverter for ac drive, IEEE PESC, 1990, pp.656~662
    [16] 童永胜,一种软开关组合式变换器的分析与实现,南京航空航天大学申请工学博士学位论文,1994.5
    [17] 丁洛,多逆变器共用谐振直流环节系统的研究,南京航空航天大学申请工学博士学位论文,1996.5
    
    
    [18] Xiaolan, Tong Yongsheng and Yan Yangguang, Analysis of a single-phase rugged resonant DC link inverter, IEEE PESC, 1997, pp.284-289
    [19] Jong-Woo Choi and Seung-Ki Sul, Resonant link bi-directional power converter: part Ⅰ—resonant circuit, IEEE Trans. Power Electronics, vol. 10, No.4, July 1995, pp.479-484
    [20] Joohn-Sheok Kim and Seung-Ki Sul, Resonant link bi-directional power converter: part Ⅱ—application to bidirectional AC motor drive without electronic capacitor, IEEE Trans. Power Electronics, vol. 10, No.4, July 1995, pp.485-493
    [21] Jun Hu and Jie Chang et al, Modular design of soft-switching circuit for two-level and three-level inverters, IPEMC 2000, pp.143-146
    [22] 萧岚,单相和三相软开关静止变流器的研究,南京航空航天大学申请工学博士学位论文,1998.11
    [23] 陈道炼,软开关PWM组合式航空静止变流器研究,南京航空航天大学申请工学博士学位论文,1998.10
    [24] D. D. Patterson et al, Pseudo—resonant full bridge dc/dc converter, IEEE PESC, 1987,pp.424-430
    [25] J.G.. Cho et al, Three phase sine wave voltage source inverter using soft switched resonant poles, IEEE IECON, 1989, pp.48-53
    [26] 王聪,徐刚等,辅助二极管谐振极逆变器的分析、设计与实现,电工技术学报,1999,No.13,pp.41-45
    [27] G. Bingen, Utilisation de Transistors a fort courant et tension elevee, Rec. of European Power Electronics and App. Conf., 1987, pp. 1.15-1.20
    [28] R. D. DeDoncker and J. P. Lyons, The auxiliary resonant commutated pole converter, IEEE IAS conference proceedings, 1990, pp.1228-1235
    [29] W. McMurrary, Resonant snubbers with auxiliary switches, IEEE Trans. Ind. Appl. Vol.29, No.2, 1993 pp.355-362
    [30] K. Iida et al, The influence of the conducting inductance in the auxiliary resonant commutated pole inverter, Record of IEEE Power Electronics Specialists Cof., 1997, pp. 1238-1245
    [31] Jih-Sheng Lai, Robert W. Young, George W. Ott. Jr, John W. McKeever, and Fang Zheng Peng, A delta-configured auxiliary resonant snubber inverter, IEEE Trans. Ind. Appl. Vol.32, No.3, 1996, pp.518-525
    [32] V. Vlatovic, D. Borojevic, F. C. Lee, C. Cuadros, and S. Gataric, A new zero-voltage transition three-phase PWM rectifier/inverter circuit. IEEE PESC 1993, pp.656-662
    [33] C. Cuadros, D. Borojevic, S. Gataric, V. Vlatovic, H. Mao, and F. C. Lee, Space vector moduated zero-voltage transition three-phase bi-directional converter, IEEE PESC 1994, pp. 16-23
    [34] Jih-Sheng Lai, Robert W. Young, George W. Ott. Jr, C. P. White John W. McKeever, and D. S. Chen, A novel resonant snubber inverter, IEEE APEC 1995, pp.797-803
    
    
    [35] E. R. Silva, Y. Murai, T. A. Lipo, L. P. Oliveira, and C. B. Jacobina, Pulsed DC-link current converters-A reivew, IEEE IAS 1997, pp.1406-1413
    [36] E. R. Silva, M. C. Cavalcanti and C. B. Jacobina, Comparative study of pulsed DC-link voltage converters, IEEE PESC 2000, Session 27. 7
    [37] M. D. Bellar, T. S. Wu, A. Tchamdjou, J. Mahdavi, M. Ehsani, A reivew of soft-switched DC-AC converters, IEEE Trans. Ind. Appl. Vol.34, No.4, 1998, pp.847-860

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700