无线多媒体网络区分服务建模及其传输性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着个人数字通信和网络社会化的快速发展,功能强大的数据终端以及多元化的网络业务,正推动着网络技术从有线向无线、从固定到移动、从文字业务向多媒体业务演化,同时网络业务的服务质量也从忽略向支持、从单一服务向多优先级区分服务进化。在这种大环境下,能实现“任何人在任何时间、任何地点以任何方式与任何人通信”的无线多媒体网络(WMN, Wireless Multimedia Network)得到了飞速的发展和广泛的应用,既能弥补传统有线多媒体网络的不足,又能提供足够的带宽满足语音、视频、图像等多媒体业务传输的需求。因此,基于服务区分的无线多媒体网络技术引起了学术界和工业界的广泛研究。
     本文在国家自然科学基金(61070043,61379123)和“十二五”国家科技支撑计划(2012BAD10B01)等项目的资助下,而向基于IEEE802.11e EDCA协议的无线多媒体网络,对其区分服务机制和多媒体传输性能进行深入的研究和分析,取得了如下研究成果:
     (1)针对无线多媒体传输建模复杂问题,首先建立基于离散Markov链的EDCA区分服务饱和模型与非饱和模型,以该模型为基础进一步提出视频流的丢包模型和时延模型,并结合视频编码结构,最终形成完整的饱和与非饱和状态下无线多媒体传输模型。根据IEEE802.11e EDCA协议的二进制退避机制,建立了基于Markov链的EDCA饱和模型,并通过该模型获取各状态的概率分布、状态间转移概率以及各优先级队列的碰撞概率、发送概率等。由于EDCA协议默认将所有的视频流数据映射至队列AC(2),综合考虑饱和状态下队列AC(2)的碰撞丢包(内部碰撞和外部碰撞)和无线信道误码丢包,建立了视频流的丢包模型;同时考虑网络延迟对于实时多媒体传输质量的影响,在EDCA饱和模型的基础上,建立了视频流的时延模型。结合上述丢包模型和时延模型,深入分析MPEG-4视频编码技术,结合其编码结构,提出实时视频传输模型,并引入可解码帧率DFR评估视频流传输质量。针对数据流的突发性和动态网络环境,在上述饱和状态下多媒体传输模型的基础上,建立更符合实际的非饱和状态多媒体传输模型。深入分析EDCA协议工作机制和后退避过程,引入特殊网络状态“空闲状态”,建立了基于Markov链的EDCA非饱和模型。同时基于该模型,分别建立视频流的丢包模型和时延模型,同时结合多媒体编码结构,提出了非饱和状态下多媒体传输模型。
     (2)针对EDCA协议单时隙竞争机制所导致的各优先级队列传输碰撞问题,引入了混合时隙的概念,提出了混合多时隙信道分配机制,并分别建立了饱和与非饱和状态下混合多时隙分配机制的传输性能模型。通过系统优化将三个时隙组合成一个混合时隙,各队列以混合时隙为单元进行数据传输,根据各队列的优先级别,将混合时隙中的第一个时隙固定分配至最高优先级队列AC(3)的数据传输,第二个时隙固定分配至次高优先级队列AC(2)的数据传输,而低优先级队列AC(1)和AC(0)共享第三个时隙。此外,根据基于Markov链的EDCA饱和与非饱和模型,分别建立了饱和状态与非饱和状态下混合多时隙分配机制的传输性能分析模型。实验结果和模型分析证明了所提混合多时隙分配机制显著地降低传输碰撞概北,提高各队列的吞吐量,降低各队列的传输时延,从而改善多媒体的传输质量。
     (3)针对EDCA协议中视频帧映射问题,利用视频编码结构特征和视频帧的重要性信息,通过跨层信息交互,分别提出了自适应前向映射机制、双重后向映射机制和拥塞感知机制,并最终融合为动态参数自适应双向映射机制。该机制在EDCA区分服务机制的基础上,充分挖掘视频分层编码的结构特征和视频帧的重要性信息,通过应用层和MAC层的信息交互,实现视频帧映射过程的跨层优化。针对不同视频帧重要性的区别和当前网络负载程度,提出了动态自适应前向映射机制和双重后向映射机制;又根据网络环境的时变特性,引入拥塞感知机制。通过与现有三种视频帧映射机制的对比分析,验证了所提参数自适应双向映射机制的优越性能。
     (4)针对无线多媒体网络中不同数据流业务中的服务质量问题,分别提出了基于LV生物竞争模型的无优先级区分和多优先级区分的仿生竞争模型,并采用自适应粒子群算法实现模型参数优化,在保证系统稳定性的前提下使网络资源利用率最大化。引入了Lotka-Volterra生物竞争模型,并系统地建立了生态系统与网络系统之间的映射关系,分别提出了无优先级区分的仿生竞争模型和多优先级区分的仿生竞争模型(Bio-EDCA模型)。针对Bio-EDCA模型,求解模型的稳定性、稳态输出值以及模型参数优化等问题,在实现带宽按特定比例分配的前提下最大化网络带宽利用率。在任意动态突发数据流条件下,该模型始终具有优越的稳定性和自适应性,同时保持传输友好性和避免网络拥塞。实验表明,与传统区分服务机制相比,Bio-EDCA模型不仅可以根据网络变化动态调整各优先级数据传输速率,使得网络带宽利用率达到93%(EDCA协议带宽率用率为60%-70%),而且能收敛至系统稳定状态,抗干扰能力强。
With the rapid development of personal digital communication and social network, and the increasing of powerful data terminals and various network applications, which push the network technology forward from wired to wireless, from fixed to mobile, from text data to multimedia transmission, and the Quality of Service (QoS) is also promoted from be ignored to be supported, from single priority to multi-priority service differentiation. Under this condition, Wireless Multimedia Network (WMN), i.e. a network can communicate with anyone using anymode at anytime and anywhere, have been widely researched and employed in military, commercial and daily lives. WMNs can not only make up the deficiencies of tranditional wired networks, also support the transmission of multimedia applications, such as voice, video and images, etc.
     Based on the fundings of National Natural Science Foundation of China (Grant No.61070043,61379123) and National Science&Technology Pillar Program during the Twelfth Five-year Plan Period (Grant No.2012BAD10B01), oriented to the service differentiaon mechanism of IEEE802.11e EDCA protocol in WMN, this thesis had conducted in-depth investigation in terms of service differentiation and its performance for multimedia transmission, and has acquired considerable achievements, where the major contributions of this thesis were listed as follows:
     (1) According to the binary backoff mechanism of IEEE802.11e EDCA protocol, two analytical models based on Markov Chain were proposed for EDCA protocol working in saturated and unsaturated cases, respectively. The probabilities of data collision, state distribution, state transfer and access the channel of each priority queue can be derived from the proposed model. Since all the video frames are allocated to queue AC(2) according to the default rules of EDCA protocol, we built a packet loss model for video transmission by integrating the collision probability of AC(2) and wireless channel error rate. At the same time, a delay model for video transmission was also proposed by considering the effect of time delay on video transmission quality. Relying on the above packet loss model and time delay model, with the structure of MPEG-4coding, we proposed a video transmission model and introduced the Decoded Frame Rate (DFR) to evaluate the video transmission quality. Due to the characteristics of bursty data flows and dynamic network conditions, we investigated the more practical and complicated video transmission quality in unsaturated case than in saturated case. Through an in-depth study of EDCA protocol and its post backoff mechanism, an analytical model based on Markov Chain in unsaturated case was proposed by introducing a special backoff state "idle state". The corresponding packet loss model and delay model for video transmission in unsaturated case were also presented. Similarly, based on the above packet loss model and time delay model, with the structure of MPEG-4coding, we proposed a novel video transmission model for video transmission in unsaturated case.
     (2) Although EDCA protocol achieves service differentiation by introducing four Access Categories (ACs), its performance is deteriorated seriously due to high collision probability among ACs and underutilization of channel resources. In order to overcome these deficiencies, a novel Hybrid Slot Allocation Mechanism (HSAM) was proposed by assembling three time slots into a super slot. The main idea of HSAM is to stagger the transmission slots of different ACs to reduce their collisions. Based on the extended Markov Chain model, two comprehensive analytical models were presented to evaluate the performance of HSAM both in unsaturated case and saturated case. Extensive results from simulations have demonstrated the superior performance of HSAM than EDCA protocol in terms of throughput, packet loss and MAC delay. Moreover, the simulation results are matched very well by the derived analytical models.
     (3) In order to deal with the mapping problem of video frames in EDCA protocol, a Parameter Adaptive Bi-directional Mapping (PABM-EDCA) mechanism was proposed to assign each video frame with appropriate priority. This mechanism takes the structure of hierarchical video coding and the importance of each video frame into consideration, and utilizes the information of Application Layer and MAC Layer through cross-layer optimization. According to the importance of different video frames and network condition, we proposed the adaptive forward mapping mechanism and double backward mapping mechanism, respectively. Both of the above mechanisms had been equipped with congestion awareness ability. From the comparison of PABM-EDCA with other three mapping mechanisms, the experiment results showed the superior performance of PABM-EDCA under dynamic network contidions.
     (4) Based on the extended Lotka-Volterra (LV) biological competitive model, a bio-inspired self-adaptive rate control approach for multi-priority data transmission was proposed. This approach calculated the optimum sending rate of each flow by taking the system stability, limited available network resources and competitions from other flows into consideration. Then the proposed approach was applied to four categories of data flows defined in EDCA protocl, the allocated bandwidth of each data flow was optimized through model parameter optimization. Under the recommended parameter values, the total bandwidth utilization was maximized up to93%compared with60%-70%achieved by the EDCA protocol, whilst maintaining the service differentiation of multi-priority flows. Extensive simulation studies had been conducted to show the superior performance of the proposed approach.
引文
[1]IEEE 802-11e-2005:Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications:Medium Access Control (MAC) Quality of Service Enhancements [S],2005
    [2]周新运,皇甫伟,孙利民,王显雷,李凯慧.无线局域网EDCA机制(?)MAC接入延时分析[J].软件学报,2008,19(8):2127-2139.
    [3]王万良,蒋一波,李祖欣等.网络控制与调度方法及其应用[M].北京:科学出版社,2009
    [4]Zhou Liang, Wang Xinbing, Tu Wei et al. Distributed scheduling scheme for video streaming over multi-channel multi-radio multi-hop wireless networks [J]. IEEE Journal on Selected Areas in Communications,2010,28(3):409-419.
    [5]Wu Dalei, Ci Song, Wang Haohong. Cross-layer optimization for video summary transmission over wireless networks [J]. IEEE Journal on Selected Areas in Communications,2007,25(4):841-850.
    [6]K. Stuhlmuller, N. Farber, M. Link et al. Analysis of video transmission over lossy channels [J]. IEEE Journal on Selected Areas in Communications,2000,18(6):1012-1032.
    [7]Miao Zhourong, A. Ortega. Scalable proxy caching of video under storage constraints [J]. IEEE Journal on Selected Areas in Communications,2002,20(7):1315-1327.
    [8]Scott Pudlewski, Tommaso Melodia. A distortion-minimizing rate controller for wireless multimedia sensor networks[J]. Computer Communications,2010,33(12):1380-1390.
    [9]J. Chakareski, J. G. Apostolopoulos, S. Wee et al. Rate-distortion hint tracks for adaptive video streaming [J]. IEEE Transactions on Circuits and Systems for Video Technology,2005,15(10): 1257-1269.
    [10]G. Xie, MNS Swamy, M. O. Ahmad. Joint Optimal Multipath Routing and Rate Control for Multidescription Coded Video Streaming in Ad Hoc Networks [J]. IEEE Transactions on Multimedia, 2008,10(8):1687-1697.
    [11]廖勇,杨士中,李平等.融合QoS与负载均衡的基础服务集信道分配算法[J].电子与信息学报.2012(9):2230-2235.
    [12]Chun-cheng Chen. Learning-Based Interference Mitigation for Wireless Networks [D]:University of Illinois at Urbana-Champaign,2009
    [13]Wei Wei, A. Zakhor. Interference Aware Multipath Selection for Video Streaming in Wireless Ad Hoc Networks [J]. IEEE Transactions on Circuits and Systems for Video Technology,2009,19(2):165-178.
    [14]王玉斐.无线多媒体传感器网络若干关键技术研究[D].南京邮电大学博士论文,2009.
    [15]万征,方志军,王正友.基于相对排队延时的无线视频传输研究[J].中国图象图形学报A.2011,16(5):703-709.
    [16]Mao Shiwen, Lin Shunan, S. S. Panwar et al. Reliable transmission of video over ad-hoc networks using automatic repeat request and multipath transport [C]. Vehicular Technology Conference,2001. VTC 2001 Fall. IEEE VTS 54th,2001:615-619.
    [17]Zhou Liang, Zheng Baoyu, A. Wei et al. A Robust Resolution-Enhancement Scheme for Video Transmission Over Mobile Ad-Hoc Networks[J]. IEEE Transactions on Broadcasting,2008,54(2): 312-321.
    [18]Patricia Acelas, Pau Arce, JuanC. Guerri. Effect of the Multiple Description Coding over a Hybrid Fixed-AdHoc Video Distribution Network [J]. Future Multimedia Networking,2009,5630:176-187.
    [19]A. Fiandrotti, D. Gallucci, E. Masala et al. Traffic Prioritization of H.264/SVC Video over 802.11e Ad Hoc Wireless Networks [C]. Computer Communications and Networks,2008. ICCCN'08. Proceedings of 17th International Conference on,2008:1-5.
    [20]S. J. Lee, M. Gerla. Split multipath routing with maximally disjoint paths in ad hoc networks [C].2001 IEEE International Conference on Communications,2001:3201-3205.
    [21]P. P. Pham, S. Perreau. Performance analysis of reactive shortest path and multipath routing mechanism with load balance [C]. INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies,2003:251-259.
    [22]A. Nasipuri, S. R. Das. On-demand multipath routing for mobile ad hoc networks [C]. Eight International Conference on Computer Communications and Networks,1999:64-70.
    [23]Xue Bo, Ren Pinyi, Yan Shuangcheng. Link Optimization Ad-Hoc On-Demand Multipath Distance Vector Routing for Mobile Ad-Hoc Networks [C]. Wireless Communications, Networking and Mobile Computing,2009. WiCom'09.5th International Conference on,2009:1-6.
    [24]S. Gowrishankar, S. K. Sarkar, T. G. Basavaraju. Performance analysis of AODV, AODVUU, AOMDV and RAODV over IEEE 802.15.4 in wireless sensor networks [C].2nd IEEE International Conference on Computer Science and Information Technology,2009. ICCSIT2009:59-63.
    [25]刘永强,严伟,代亚非.一种满足QoS约束的自适应多径Ad Hoc网络路由协议[J].计算机学报.2006,29(005):681-689.
    [26]L. Reddeppa Reddy, S. V. Raghavan. SMORT:Scalable multipath on-demand routing for mobile ad hoc networks [J]. Ad Hoc Networks,2007,5(2):162-188.
    [27]Yongwei Wang, Venkata C. Giruka, Mukesh Singhal. Truthful multipath routing for ad hoc networks with selfish nodes[J]. Journal of Parallel and Distributed Computing,2008,68(6):778-789.
    [28]Z. Wan. Evaluation on Multiple Video Streaming in IEEE 802.11 e Multihop Networks [J]. Journal of Networks,2012,7(12):2057-2062.
    [29]E. Setton, Zhu Xiaoqiny, B. Girod. Minimizing distortion for multi-path video streaming over ad hoc networks[C].2004 International Conference on Image Processing, ICIP'04,2004:1751-1754.
    [30]Zhu Xiaoqing, B. Girod. A Distributed Algorithm for Congestion-Minimized Multi-Path Routing Over Ad-Hoc Networks [C]. IEEE International Conference on Multimedia and Expo, ICME 2005: 1484-1487.
    [31]Hong Man, Yang Li. A multipath video delivery scheme over diffserv wireless LANs [C]. Visual Communications and Image Processing 2004, Sethuraman Panchanathan,2004:1148-1158.
    [32]A. Miu, J. G. Apostolopoulos, Tan Wai-Tian et al. Low-latency wireless video over 802.11 networks using path diversity [C].2003 International Conference on Multimedia and Expo, ICME'03. Proceedings,2003:441-444.
    [33]Fujian Qin, Youyuan Liu. Multipath Based QoS Routing in MANET [J]. Journal of Networks,2009, 4(8):771-778.
    [34]Sunand Tullimas, Thinh Nguyen, Rich Edgecomb et al. Multimedia streaming using multiple TCP connections [J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2008,4(2):11-12.
    [35]Bing Wang, Wei Wei, Zheng Guo et al. Multipath live streaming via TCP:Scheme, performance and benefits [J]. ACM Transactions on Multimedia Computing, Communications, and Applications.,2009, 5(3):21-25.
    [36]Shiang Hsien-Po, M. van der Schaar. Multi-user video streaming over multi-hop wireless networks:A distributed, cross-layer approach based on priority queuing [J]. IEEE Journal on Selected Areas in Communications,2007,25(4):770-785.
    [37]P. Pahalawatta, R. Berry, T. Pappas et al. Content-aware resource allocation and packet scheduling for video transmission over wireless networks [J]. IEEE Journal on Selected Areas in Communications, 2007,25(4):749-759.
    [38]Joon Oh Byung, Wen Chen Chang. A Cross-Layer Approach to Multichannel MAC Protocol Design for Video Streaming Over Wireless Ad Hoc Networks [J]. IEEE Transactions on Multimedia,2009, 11(6):1052-1061.
    [39]Suraj K. Jaiswal, Aura Ganz, Ramgopal Mettu. An Optimization Framework for Demand-based Fair Stream Allocation in MIMO Ad Hoc Networks[J]. Mobile Networks and Application,2009,14(4): 451-469.
    [40]蒋一波,王万良,金晶.流媒体监控系统的非合作博弈调度模型及其遗传算法求解[J].仪器仪表学报.2007,28(010):1800-1805.
    [41]姚信威,王万良,陈伟杰,赵燕伟.面向视频维护的拥塞感知自适应映射方法及其应用[J].计算机集成制造系统.2011,17(1):216-223.
    [42]Guan-Ming Su, Zhu Han, Min Wu et al. Joint Uplink and Downlink Optimization for Real-Time Multiuser Video Streaming Over WLANs[J]. IEEE Journal of Selected Topics in Signal Processing, 2007,1(2):280-294.
    [43]Yi Su, M. der van Schaar. Multiuser Multimedia Resource Allocation Over Multicarrier Wireless Networks [J]. IEEE Transactions on Signal Processing,2008,56(5):2102-2116.
    [44]吴其林,陆阳,葛伦跃等.基于节点区分的IEEE802.11e无线局域网中的VoIP容量分析与优化[J].计算机研究与发展.2011,48(9):1623-1633.
    [45]张纯鹏.无线局域网中竞争窗口控制的研究[D].中国科学技术大学博士论文,2008.
    [46]A. L. Ruscelli, G. Cecchetti, A. Alifano et al. Enhancement of QoS support of HCCA schedulers using EDCA function in IEEE 802.11 e networks [J]. Ad Hoc Networks,2012,10(2):147-161.
    [47]J. Hu, G. Min, M. E. Woodward. Performance analysis of the TXOP burst transmission scheme in single-hop ad hoc networks with unbalanced stations[J]. Computer Communications,2011,34(13): 1593-1603.
    [48]S. H. Nguyen, H. L. Vu, L. L. H. Andrew. Performance analysis of IEEE 802.11 WLANs with saturated and unsaturated sources [J]. IEEE Transactions on Vehicular Technology,2012,61(1): 333-345.
    [49]朱颖,武穆清.基于802.11e的无线多跳自适应合作式QoS算法[J].电子学报.2010,38(10):2350-2357.
    [50]G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination function[J]. IEEE Journal on selected areas in communications,2000,18(3):535-547.
    [51]Jie Hui, M. Devetsikiotis. A unified model for the performance analysis of IEEE 802.11e EDCA [J]. IEEE Transactions on Communications,2005,53(9):1498-1510.
    [52]Hua Zhu, I. Chlamtac. Performance analysis for IEEE 802.11e EDCF service differentiation[J]. IEEE Transactions on Wireless Communications,2005,4(4):1779-1788.
    [53]Jae Young Lee, Hwang Soo Lee. A performance analysis model for IEEE 802.11e EDCA under saturation condition[J]. IEEE Transactions on Communications,2009,57(1):56-63.
    [54]A. Banchs, L. Vollero. A delay model for IEEE 802.11e EDCA [J]. IEEE Communications Letters, 2005,9(6):508-510.
    [55]Ching-Ling Huang, Wanjiun Liao. Throughput and delay performance of IEEE 802.11e enhanced distributed channel access (EDCA) under saturation condition [J]. IEEE Transactions on Wireless Communications,2007,6(1):136-145.
    [56]Zhifeng Tao, S. Panwar. Throughput and delay analysis for the IEEE 802.11e enhanced distributed channel access [J]. IEEE Transactions on Communications,2006,54(4):596-603.
    [57]Z. Kong, D. H. K. Tsang, B. Bensaou et al. Performance analysis of IEEE 802.11 e contention-based channel access[J]. IEEE Journal on selected areas in communications,2004,22(10):2095-2106.
    [58]W. Dapeng, Z. Yan, W. Muqing et al. Medium access control access delay analysis of IEEE 802.11e wireless LAN [J]. Communications, IET,2009,3(6):1061-1070.
    [59]I. Inan, F. Keceli, E. Ayanoglu. Analysis of the 802.11 e enhanced distributed channel access function [J]. IEEE Transactions on Communications,2009,57(6):1753-1764.
    [60]S. Rashwand, J. Misic. IEEE 802.11 e EDCA under bursty traffic—how much TXOP can improve performance [J]. IEEE Transactions on Vehicular Technology,2011,60(3):1099-1115.
    [61]H. Zhai, Y. Kwon, Y. Fang. Performance analysis of IEEE 802.11 MAC protocols in wireless LANs [J]. Wireless communications and mobile computing,2004,4(8):917-931.
    [62]A. Ziviani, B. E. Wolfinger, J. F. De Rezende et al. Joint adoption of QoS schemes for MPEG streams [J]. Multimedia Tools and Applications,2005,26(1):59-80.
    [63]C. H. Ke, C. H. Lin, C. K. Shieh et al. Evaluation of streaming MPEG video over wireless channels [J]. Journal of mobile multimedia,2007,3(1):47-64.
    [64]Cheng-Han Lin, Naveen K. Chilamkurti, Sherali Zeadally et al. Performance modeling of MPEG-4 video streaming over IEEE 802.11 using distribution coordination function [J]. Wireless Communications and Mobile Computing,2011,11(9):1312-1322.
    [65]张伟IEEE 802.11e的网络性能、容量评估与资源分配策略研究[D].上海交通大学博士论文,2008.
    [66]X. W. Yao, W. L. Wang, S. H. Yang. Video streaming transmission:performance modelling over wireless local area networks under saturation condition [J]. IET Communications,2012,6(1):13-21.
    [67]Yung-Cheng Yao, Jyh-Horng Wen, Chien-Erh Weng. The Performance Evaluation of IEEE 802.11 e for QoS Support in Wireless LANs [J]. Wireless Personal Communications,2012:1-13.
    [68]I. Tinnirello, G. Bianchi. Rethinking the IEEE 802.11 e EDCA performance modeling methodology[J]. IEEE/ACM Transactions on Networking,2010,18(2):540-553.
    [69]J. H. Wen, C. E. Weng. The performances study of IEEE 802.11 e to support QoS in channel error environment[J]. Wireless Communications and Mobile Computing,2011,15(12):1381-1388.
    [70]Malone David, Duffy Ken, Leith Doug. Modeling the 802.11 Distributed Coordination Function in Nonsaturated Heterogeneous Conditions[J]. IEEE/ACM Transactions on Networking,2007,15(1): 159-172.
    [71]Ling Xinhua, Liu Kuang-Hao, Cheng Yu et al. A Novel Performance Model for Distributed Prioritized MAC Protocols [C]. Global Telecommunications Conference,2007. GLOBECOM'07. IEEE,2007: 4692-4696.
    [72]S. Rashwand, J. Mi V S I C. Stable operation of IEEE 802.11 e EDCA:Interaction between offered load and MAC parameters [J]. Ad Hoc Networks,2012,10(2):162-173.
    [73]Y. Zhang, W. Li, J. Zhang et al. Performance Analysis and QoE-Aware Enhancement for IEEE 802.11 e EDCA under Unsaturations [C].2011 IEEE Vehicular Technology Conference (VTC Fall),2011:1-5.
    [74]J. Misic, S. Rashwand, V. B. Misic. Analysis of Impact of TXOP Allocation on IEEE 802.11 e EDCA under Variable Network Load[J]. IEEE Transactions on Parallel and Distributed Systems,2012,23(5): 785-799.
    [75]Liu Jing, Niu Zhisheng. Delay Analysis of IEEE 802.11e EDCA Under Unsaturated Conditions [C]. Wireless Communications and Networking Conference,2007.WCNC 2007. IEEE,2007:430-434.
    [76]Jia Hu, Geyong Min, Weijia Jia et al. Comprehensive QoS analysis of enhanced distributed channel access in wireless local area networks [J]. Information Sciences,2012,214(0):20-34.
    [77]O. Tickoo, B. Sikdar. Modeling Queueing and Channel Access Delay in Unsaturated IEEE 802.11 Random Access MAC Based Wireless Networks [J]. IEEE/ACM Transactions on Networking,2008, 16(4):878-891.
    [78]Jia Hu, Geyong Min, M. E. Woodward et al. A Comprehensive Analytical Model for IEEE 802.11e QoS Differentiation Schemes under Unsaturated Traffic Loads[M],2008:241-245
    [79]Yueying Zhang, Wei Li, Junlong Zhang et al. Performance Analysis and QoE-Aware Enhancement for IEEE 802.11eEDCA under Unsaturations[M],2011:1-5
    [80]S. H. Nguyen, H. L. Vu, L. L. H. Andrew. Performance Analysis of IEEE 802.11 WLANs With Saturated and Unsaturated Sources [J]. IEEE Transactions on Vehicular Technology,2012,61(1): 333-345.
    [81]Sri Harsha, Anurag Kumar, Vinod Sharma. An analytical model for performance evaluation of multimedia applications over EDCA in an IEEE 802.11e WLAN [J]. Wireless Networks,2010,16(2): 367-385.
    [82]Yoon Yohaan, Kim Myungchul, Lee Sooyong et al. Performance analysis of H.264/AVC, H.264/SVC, and VP8 over IEEE 802.11 wireless networks [C].2012 IEEE Symposium on Computers and Communications (ISCC),2012:151-156.
    [83]A. Kamadyta, Y. Bandung, A. Z. R. Langi. Performance analysis of supporting QoS for multimedia in IEEE 802.11e [C].2012 International Conference on Cloud Computing and Social Networking (ICCCSN),2012:1-4.
    [84]Wei Zhang, Jun Sun, Jing Liu et al. Performance analysis of IEEE 802.11e EDCA in wireless LANs[J]. Journal of Zhejiang University SCIENCE A,2007,8(1):18-23.
    [85]P. Patras, A. Banchs, P. Serrano. A control theoretic scheme for efficient video transmission over IEEE 802.11 e EDCA WLANs [J]. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP),2012,8(3):29:1-29:23.
    [86]Pablo Serrano, Albert Banchs, Paul Patras et al. Optimal configuration of 802.11 e EDCA for real-time and data traffic [J]. IEEE Transactions on Vehicular Technology,2010,59(5):2511-2528.
    [87]BA Hirantha Sithira ABEYSEKERA, Takahiro Matsuda, Tetsuya Takine. Dynamic contention window control scheme in IEEE 802.11 e EDCA-Based wireless LANs [J]. IEICE transactions on communications,2010,93(1):56-64.
    [88]Budhaditya Deb, Michael J. Hartman. Distributed optimization of Contention Windows in 802.11 e MAC to provide QoS differentiation and maximize channel utilization [C].,2012 IEEE International Symposium on World of Wireless, Mobile and Multimedia Networks (WoWMoM), IEEE,2012:1-7.
    [89]C. Cano, B. Bellalta, A. Sfairopoulou et al. Tuning the EDCA parameters in WLANs with heterogeneous traffic:A flow-level analysis [J]. Computer Networks,2010,54(13):2199-2214.
    [90]Jelena Misic, Saeed Rashwand, Vojislav B. Misic. Analysis of Impact of TXOP Allocation on IEEE 802.11 e EDCA under Variable Network Load[J]. IEEE Transactions on Parallel and Distributed Systems,2012,23(5):785-799.
    [91]Gabriele Cecchetti, Anna Lina Ruscelli, Antonia Mastropaolo et al. Providing variable TXOP for IEEE 802.11 e HCCA real-time networks [C]. Wireless Communications and Networking Conference (WCNC),2012 IEEE,2012:1508-1513.
    [92]Yanbing Liu, Man Meng. Survey of admission control algorithms in IEEE 802.11 e wireless LANs [C]. 2009 International Conference on Future Computer and Communication, FCC'09:IEEE,2009: 230-233.
    [93]Hu Jia, Min Geyong, Jia Weijia et al. Admission Control in the IEEE 802.11e WLANs Based on Analytical Modelling and Game Theory [C]. Global Telecommunications Conference,2009. GLOBECOM 2009. IEEE,2009:1-6.
    [94]Yong He, Jie Sun, Ruixi Yuan et al. A reservation based backoff method for video streaming in 802.11 home networks[J]. IEEE Journal on Selected Areas in Communications,2010,28(3):332-343.
    [95]Kang Kai, Jiang Hongqi, Lin Xiaokang. Research on Multi-Slot Virtual Collision Mechanism for IEEE 802.11 DCF [C]. Vehicular Technology Conference,2008. VTC 2008-Fall. IEEE 68th,2008:1-6.
    [96]A. Dua, C. W. Chan, N. Bambos et al. Channel, deadline, and distortion (C D2) aware scheduling for video streams over wireless[J]. IEEE Transactions on Wireless Communications,2010,9(3): 1001-1011.
    [97]Chuan Heng Foh, Yu Zhang, Zefeng Ni et al. Optimized Cross-Layer Design for Scalable Video Transmission Over the IEEE 802.11e Networks [J]. IEEE Transactions on Circuits and Systems for Video Technology,2007,17(12):1665-1678.
    [98]J. W. Huang, H. Mansour, V. Krishnamurthy. A Dynamical Games Approach to Transmission-Rate Adaptation in Multimedia WLAN [J]. IEEE Transactions on Signal Processing,2010,58(7): 3635-3646.
    [99]Lyes Khoukhi, Soumaya Cherkaoui. Intelligent QoS management for multimedia services support in wireless mobile ad hoc networks [J]. Computer Networks,2010,54(10):1692-1706.
    [100]Scott Pudlewski, Tommaso Melodia. A distortion-minimizing rate controller for wireless multimedia sensor networks[J]. Computer Communications,2010,33(12):1380-1390.
    [101]X. Zhu, T. Schierl, T. Wiegand et al. Distributed Media-Aware Rate Allocation for Video Multicast over Wireless Networks [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011(99):1181-1192.
    [102]X. Zhu, P. Agrawal, J. P. Singh et al. Distributed rate allocation policies for multihomed video streaming over heterogeneous access networks [J]. IEEE Transactions on Multimedia,2009,11(4): 752-764.
    [103]Y. Xiao, Y. Zhang, M. Nolen et al. A Cross-Layer Approach for Prioritized Frame Transmissions of MPEG-4 Over the IEEE 802.11 and IEEE 802.11 e Wireless Local Area Networks[J]. IEEE Systems Journal,2011,5(4):474-485.
    [104]Cheng-Han Lin, Yu-Chi Wang, Ce-Kuen Shieh et al. An unequal error protection mechanism for video streaming over IEEE 802.11e WLANs [J]. Computer Networks,2012,56(11):2590-2599.
    [105]P. Antoniou, A. Pitsillides. A bio-inspired approach for streaming applications in wireless sensor networks based on the Lotka-Volterra competition model [J]. COMPUTER COMMUNICATIONS, 2010,33(17):2039-2047.
    [106]A. Ksentini, M. Naimi, A. Gueroui. Toward an improvement of H.264 video transmission over IEEE 802.11 e through a cross-layer architecture[J]. IEEE Communications Magazine,2006,44(1):107-114.
    [107]Naveen Chilamkurti, Sherali Zeadally, Robin Soni et al. Wireless multimedia delivery over 802.11e with cross-layer optimization techniques [J]. Multimedia Tools and Applications,2010,47(1):189-205.
    [108]C. H. Lin, C. K. Shieh, C. H. Ke et al. An adaptive cross-layer mapping algorithm for MPEG-4 video transmission over IEEE 802.11 e WLAN[J]. Telecommunication Systems,2009,42(3):223-234.
    [109]C. Zhu, G. Yin. On competitive Lotka-Volterra model in random environments [J]. Journal of Mathematical Analysis and Applications,2009,357(1):154-170.
    [110]Jianhai Bao, Xuerong Mao, Geroge Yin et al. Competitive Lotka-Volterra population dynamics with jumps [J]. Nonlinear Analysis:Theory, Methods & amp; Applications,2011,74(17):6601-6616.
    [111]F. Dressler, O. B. Akan. A survey on bio-inspired networking [J]. Computer Networks,2010,54(6): 881-900.
    [112]P. Antoniou, A. Pitsillides. Towards a scalable and self-adaptable congestion control approach for autonomous decentralized networks [J]. Third European Symposium on Nature-inspired Smart Information Systems (NiSIS 2007),2007:1-6.
    [113]范通让,赵永斌,孙燕等.仿生态特性的网络运转模型研究[J].通信学报.2010(9A):169-175.
    [114]G. Hasegawa, M. Murata. TCP Symbiosis:Congestion control mechanisms of TCP based on Lotka-Volterra competition model[J].2006 Workshop on Inter-perf 200,2006:11:1-10.
    [115]I. F. Akyildiz, Lee Won-Yeol, M. C. Vuran et al. A survey on spectrum management in cognitive radio networks [J]. IEEE Communications Magazine,2008,46(4):40-48.
    [116]Wang Jianfeng, M. Ghosh, K. Challapali. Emerging cognitive radio applications:A survey [J]. IEEE Communications Magazine,2011,49(3):74-81.
    [117]A. De Domenico, E. C. Strinati, M. G. Di Benedetto. A Survey on MAC Strategies for Cognitive Radio Networks [J]. IEEE Communications Surveys & Tutorials,2012,14(1):21-44.
    [118]H. Kushwaha, Xing Yiping, R. Chandramouli et al. Reliable Multimedia Transmission Over Cognitive Radio Networks Using Fountain Codes [J]. Proceedings of the IEEE,2008,96(1):155-165.
    [119]Hsien-Po Shiang, M. van der Schaar. Queuing-Based Dynamic Channel Selection for Heterogeneous Multimedia Applications Over Cognitive Radio Networks[J]. IEEE Transactions on Multimedia,2008, 10(5):896-909.
    [120]Hu Donglin, Mao Shiwen, J. H. Reed. On Video Multicast in Cognitive Radio Networks [C]. INFOCOM 2009, IEEE,2009:2222-2230.
    [121]S. Ali, F. R. Yu. Cross-Layer QoS Provisioning for Multimedia Transmissions in Cognitive Radio Networks [C]. Wireless Communications and Networking Conference,2009. WCNC 2009. IEEE,2009: 1-5.
    [122]Hu Donglin, Mao Shiwen. Streaming Scalable Videos over Multi-Hop Cognitive Radio Networks [J]. IEEE Transactions on Wireless Communications,2010,9(11):3501-3511.
    [123]Guan Zhangyu, Ding Lei, T. Melodia et al. On the Effect of Cooperative Relaying on the Performance of Video Streaming Applications in Cognitive Radio Networks [C]. Communications (ICC),2011 IEEE International Conference on,2011:1-6.
    [124]T. Yucek, H. Arslan. A survey of spectrum sensing algorithms for cognitive radio applications[J]. IEEE Communications Surveys & Tutorials,2009,11(1):116-130.
    [125]Huang Xin-Lin, Wang Gang, Hu Fei et al. The Impact of Spectrum Sensing Frequency and Packet-Loading Scheme on Multimedia Transmission Over Cognitive Radio Networks [J]. IEEE Transactions on Multimedia,2011,13(4):748-761.
    [126]黑永强,李晓辉,李文涛.认知网络中的多用户MIMO线性协作频谱感知问题研究[J].通信学报.2012,2(33):45-52.
    [127]Lee Won-Yeol, I. F. Akyldiz. A Spectrum Decision Framework for Cognitive Radio Networks [J]. IEEE Transactions on Mobile Computing,2011,10(2):161-174.
    [128]Wang Chung-Wei, Wang Li-Chun, F. Adachi. Modeling and Analysis for Reactive-Decision Spectrum Handoff in Cognitive Radio Networks [C]. Global Telecommunications Conference (GLOBECOM 2010),2010 IEEE,2010:1-6.
    [129]文娟,盛敏,张琰.异构认知网络环境下的动态分级资源管理方法[J].通信学报.2012,1(33):107-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700