无线宽带网络MAC性能研究与资源管理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,无线网络以其方便、快捷的优点,受到产业界和学术界的关注。但是同有线网络相比,它们所提供的服务质量还有很大的差距。所有的无线网络都是共享媒介的,物理层提供了信息的通道,MAC层则定义了信息的传输方式,对网络的性能起非常重要的作用。随着网络上业务种类的日益丰富,物理层数据传输速率越来越高,无线网络MAC层的作用更显突出,对无线网络MAC层协议的性能分析和改善具有非常重要的意义。本文主要做了如下工作:
     (1)通过分析IEEE 802.11e基于竞争的接入机制——EDCA提供区分服务的本质,提出了一个四维离散Markov链模型。本文的研究基于退避的和基于帧间隔的优先级区分机制,包含了实际冲突与虚冲突。仿真结果表明四维Markov模型可以更精确地表达EDCA的性能。论文研究了初始竞争窗口大小与AIFS在IEEE 802.11eEDCA服务区分机制中的作用。通过对结果进行分析,指出IEEE 802.11e EDCA存在的问题。
     (2)针对IEEE 802.11e EDCA存在的问题,为IEEE 802.11e EDCA提出了一个QoS增强机制,包括三个部分:(1)通过QAP的虚拟排队实现不同优先级AC之间的隔离。(2)对具有QoS要求的AC实行接纳控制。(3)对尽力而为的AC[0],通过调整初始竞争窗口使饱和吞吐量稳定在最大值附近,仗各个业务源具有相同的发送机会,即保证了效率与公平。并通过建模分析以及仿真试验验证了算法的有效性。
     (3)在分析影响Ad hoc网络性能因素的基础上,提出了一个Ad hoc的聚簇算法以解决Ad hoc的可扩展问题。算法以达到簇结构的稳定性为聚簇的目标,考虑节点的移动特性以及节点在网络的位置。通过熵来度量节点与周围邻居节点的相对移动性,用节点度衡量节点在网络中的重要程度,利用遗传算法寻找最优的簇首集合,使得所得到的聚簇结构尽可能地稳定。
     (4)为IEEE 802.1 6提出了一个新的的上行调度算法,BS中的上行调度器负责收集来自各个连接的带宽请求信息,根据各个连接的QoS特性制定相应的调度决策,将计算得到的各个SS应得的Data Grants分配给SS,具体的调度算法在SS
Recent advances in portable computing and wireless technologies are opening up exciting possibilities for the future of wireless networks. There are great differences between wireline network and wireless network. The channel is shared by all nodes in the wireless networks. PHY layer provides the wireless channel and MAC layer manages the transmission of information over the channel. With the richness of traffic types and the increase of bandwidth, MAC will play a more and more important role in the performance of wireless network. More notably, Wireless Local and Metropolitan Area Networks (WLAN and WMAN) technologies are expected to revolutionize the way we live. Given their unprecedented importance, in the dissertation we investigate the performance of MAC layer and suggest some new solutions in the context of WLAN and WMAN, including Ad hoc network. The main contributions are as follows:
    (1) By the analysis of the Enhanced Distributed Channel Access (EDCA) of IEEE 802.11e wireless LANs, a four-dimension Markov chain model is proposed in this paper. Based on the Markov model, We have studied the priority differentiation based on backoff and based on Inter-Frame Space (IFS). The research takes the real collision and virtual collision into account. The consistency of analysis and simulation validates the Markov chain model. By analyzing the simulation results, we find some performance deficiencies of IEEE 802.11 e EDCA.
    (2) We introduce an enhanced QoS mechanism for IEEE 802.11e EDCA based on the previous conclusion. There are three parts in this QoS architecture: Firstly, the collision separation among many ACes is implemented through the virtual queuing in QAP. Secondly, to guarantee the previous traffic, it is necessary to control the access of these ACes with the same priority. Finally, the saturated throughput of the ACfO] achieves the stable maximum by adjusting the initial contention window. Because of the equal transmitting opportunity, it is fair among BE traffics. The analysis and simulation validate the efficiency of our algorithm.
    (3) Based on the analysis of some performance factors of Mobile Ad hoc NETwork (MANET), a clustering algorithm is proposed to improve the scalability of Ad hoc network. By considering the node mobility and node locality in the network, this clustering algorithm is aimed at a more stable clustering structure. We model the relative mobility between a node and its neighbor nodes by the concept of Entropy in information theory. And we estimate the contribution of a node to the whole network by the concept of the Node Degree in graph theory. Based on the Entropy and Node Degree,
引文
[1] IEEE standard, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, ISO/IEC 8802-11:1999, Aug. 1999.
    [2] IEEE 802.11 Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements, 2005[3] 范志峰,Wi-Fi与3G的无缝融合—业务和应用的融合,电信科学,2003.10
    [4] L. Kleinrock and F. A. Tobagi, Packet Switching in Radio Channels: Part Ⅰ--Carrier Sense Multiple-Access Modes and Their Throughput-Delay Characteristics, IEEE Transactions on Communications, Vol. com-23, No. 12, Dec. 1975.
    [5] A. Muqattash and M. Krunz, CDMA-Based MAC Protocol for Wireless Ad Hoc Networks, ACM MobiHoc 2003, June 1-3, 2003, Annapolis, Maryland, USA.
    [6] Mark Klerer, Introduction to IEEE 802.20-Technical and Procedural Orientation, IEEE 802.20-PD PD-04.
    [7] Piyush Gupta and P. R. Kumar, The Capacity of Wireless Networks, IEEE Transactions on Information Theory, Vol. 46, No. 2, Mar. 2000
    [8] F. Cali, M. Conti, and E. Gregori, IEEE 802.11 Protocol: Design and Performance Evaluation of an Adaptive Backoff Mechanism, IEEE JSAC Vol. 18, No.9, 2000.
    [9] Daqing Gu, Jinyun Zhang, QoS enhancement in IEEE 802.11 wireless local area networks, IEEE Communication Magazine, June, 2003
    [10] Wasan Pattara-atikom and Prashant Krishnamurthy, Distributed Mechanisms for Quality of Service in Wireless LANs, IEEE Wireless Communications, June 2003.
    [11] T.S. Rappaport, Wireless Communications: Principles and Practice, Prentice Hall, 1999.
    [12] John G. Proakis, Digital Communications Fourth Edition, Prentice Hall, 2001
    [13] 郑少仁,王海涛等,Ad Hoc 网络技术,人民邮电出版社,20053.01
    [14] Karn P., MACA: A New Channel Access Method for Packet Radio, ARRL/CRRL Amateur Radio 9th Computer Networking Conference, 1990
    [15] V. Bharghavan, A. Demers, S. Shenker, Lixia Zhang, MACAW: A Media Access Protocol for Wireless LANs, ACM SIGCOMM 1994, pages 212-225, London, England, UK, Aug. 31 Sept. 02, 1994.
    [16] Deng J., Haas Z., Dual Busy Tone Multiple Access (DBTMA): A New Medium Access Control for Packet Radio Networks, in Proceeding of IEEE ICUPC'99, October 1998
    [17] Naipuri A., Zhuang L., and Das S., A Multi-channel CSMA MAC protocol for Multihop Wireless Networks, in Proceeding of WCNC'99, September 1999
    [18] Douglas S. J. De Couto, Daniel Aguayo John Bicker, Robert Morris, A High-Throughput Path Metric for Multi-Hop Wireless Routing, ACM Mobicom 2003, Sept. 14-19, 2003, San Diego, California, USA.
    [19] S. Xu, T. Saadawi, Does the IEEE 802.11 MAC Protocol Work Well in Multihop Wireless Ad Hoc Networks?, IEEE Communication Maganize, June, 2001
    [20] Ram Ramanathan and Jason Redi, A brief overview of ad hoc networks: challenges and directions, IEEE Communication Magazine, May, 2002
    [21] IEEE 802.16-2004: IEEE Standard for Local and metropolitan area networks Part 16: Air??Interface for Fixed Broadband Wireless Access Systems, IEEE standard, Oct., 2004.
    [22] IEEE 802.16e: IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, IEEE standard, Dec. 2005.
    [23] Mohammed Hawa and David W. Peter, Quality of Service Scheduling in Cable and Broadband Wireless Access Systems, the Tenth IEEE International Workshop on Quality of Service, 2002.
    [24] Kitti Wongthavarawat and Aura Ganz, IEEE 802.16 Based Last Mile Broadband Wireless Military Networks With Quality of Service Support, in Proceeding of IEEE Military Communications Conference (MILCOM), 2003.
    [25] Carl Eklund, Roger B. Marks, Kenneth L. Stanwood and Stanley Wang, IEEE Standard 802.16: A Technical Overview of the WirelessMAN Air Interface for Broadband Wireless Access, IEEE Communications Magazine, Vol. 40, No. 6, Jun., 2002
    [26] Howon Lee, Taesoo Kwon, and Dong-Ho Cho, An Enhanced Uplink Scheduling Algorithm Based on Voice Activity for VoIP Services in IEEE 802.16d/e System, IEEE Communications Letters, Vol. 9, No. 8, Aug., 2005.
    [27] Kitti Wongthavarawatn,y and Aura Ganzz, Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems, International Journal of Communication Systems, Vol. 16, 2003.
    [28] Claudio Cicconctti, Luciano Lenzini, and Enzo Mingozzi, Quality of Service Support in IEEE 802.16 Networks, IEEE Network, Man/Apr., 2006.
    [29] Jianfeng Chen, Wenhua Jiao and Qian Guo, An Integrated QoS Control Architecture for IEEE 802.16 Broadband Wireless Access Systems, in Proceeding of IEEE Globecom 2005, 2005.
    [30] Sara Motahari, Ehsan Haghani, Shahrokh Valaee, Spatio-Temporal Schedulers in IEEE 802.16, in Proceeding of IEEE Globecom 2005, 2005.[1] IEEE 802.11 Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Aug. 1999.
    [2] IEEE 802.11 Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)specifications, Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements, 2005
    [3] Aad and Castelluccia C. Differentiation mechanisms for IEEE 802.11. In: Proceedings of The IEEE conference on Computer Communications (1NFOCOM), 2001. 209-218
    [4] Barry M, Campbell A T, and Veres A. Distributed control algorithms for service differentiation in wireless packet networks. In: Proceedings of The IEEE conference on Computer Communications (INFOCOM), 2001. 582-590
    [5] Veres A, Campbell A T, Barry M, et al. Support service differentiation in wireless packet networks using distributed control. IEEE Journal of Selected Areas in Communications, 2001, 19(10):2094-2104
    [6] Deng J and Chang R S. A priority scheme for IEEE 802.11 DCF access method. 1E1CE Transaction on Communications, 1999, E82-B(1):96-102
    [7] Xiao Y. A simple and cffective priority scheme for IEEE 802.11. IEEE Communications Letters, 2003, 7(2):70-72
    [8] Xiao Y. Backoff-based priority schemes for IEEE 802.11. In: Proceedings of IEEE International Conference on Communications (ICC), 2003, 1568-1572
    [9] Mangold S, Choi S, May P, et al. IEEE 802.11e wireless Lan for quality of service. In: Proceedings of European Wireless, 2002, 32-39
    [10] Truong H L and Vannuccini G. Performance evaluation of the QoS enhanced IEEE 802.11e MAC layer. In: Proceedings of IEEE Vehicular Technology Conference (VTC-Spring), 2003, 940-944
    [11] He D J and Shen C Q. Simulation study of IEEE 802.1 le EDCF. In: Proceedings of IEEE Vehicular Technology Conference (VTC-Spring), 2003, 685-689
    [12] Grilo A and Nuncs M. Performance evaluation of IEEE 802.11e. In: Proceedings of IEEE International Symposium on Personal Indoor and Mobile Radio Communications (P1MRC), 2002,511-517
    [13] Choi S, del Prado J, N S S, et al. IEEE 802.11e contention-based channel access (EDCF) performance evaluation. In: Proceedings of IEEE International Conference on Communications (ICC), 2003, 1151 -1156
    [14] Pond D and Moors T. Call admission control for IEEE 802.11 contention access mechanism. In: Proceedings of IEEE Global Telecommunications Conference (GLOBECOM) 2003, 173-178
    [15] D. Qiao and K. G. Shin, "Achieving efficient channel utilization and weighted fairness for data communications in IEEE 802.11 WLAN under the DCF," in Proc. IWQoS, May 2002, pp. 227-236.
    [16] J. Zhao, Z. Guo, Q. Zhang, andW. Zhu, "Performance study ofMAC for service differentiation in IEEE 802.11," in Proc. Globecom, Nov. 2002, pp. 778-782.
    
    [17] F. Cali, M. Conti, and E. Gregori, "IEEE 802.11 wireless LAN: Capacity analysis and protocol enhancement," in Proc. INFOCOM, 1998, pp. 142-149.
    [18] F. Cali, M. Conti, and E. Gregori, "Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit," in IEEE/ACM Trans. Netw., vol. 18, Dec. 2000, pp. 785-799.
    [19] G. Bianchi and I. Tinnirello, "Analysis of priority mechanisms based on differentiated inter frame spacing in CSMA-CA," in Proc. VTC, Fall 2003, pp. 1401-1405.
    [20] G. Bianchi, "IEEE 802.11 saturation throughput analysis," IEEE Commun. Lett., vol. 2, no. 12, pp. 318-320, Dec. 1998.
    [21] G. Bianchi, "Performance analysis of the IEEE 802.11 distributed coordination function," IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 535-547, Mar. 2000.
    [22] Ge Y and Hou J. An analytical model for service differentiation in IEEE 802.11. In: Proceedings of IEEE International Conference on Communications (ICC), 2003, 1157-1162
    [23] Yang. Xiao, "Backoff-based priority schemes for IEEE 802.11," in Proc. ICC, May 2003, pp. 1568-1572.
    [24] Yang. Xiao, "Enhanced DCF of IEEE 802.11e to support QoS," in Proc. WCNC, 2003, pp. 1291-1296.
    [25] Yang Xiao Performance Analysis of Priority Schemes for IEEE 802.11 and IEEE 802.11e Wireless LANs. IEEE Transactions on wireless communications, 2005, 4(4): 1506-1515
    [26] Yang. Xiao, "Enhanced DCF of IEEE 802.11e to support QoS," in Proc. WCNC, 2003, pp. 1291-1296.
    [27] Hua Zhu and Imrich Chlamtac, "An analytical model for IEEE 802.11e EDCF differential services," in Proc. ICCCN, Oct. 2003, pp. 163-168.
    [28] Hua Zhu and Imrich Chlamtac. Performance Analysis for IEEE 802.11e EDCF Service Differentiation. IEEE Transactions on wireless communications, 2005, 4(4): 1779-1788
    [29] J. He, L. Zheng, Z. Yang, and C. T. Chou, "Performance analysis and service differentiation in IEEE 802.11 WLAN," in Proc. 28th Int. Conf. Local Computer Netw., Oct. 2003, pp. 691-697.
    [30] Jie Hui and M. Devetsikiotis, "Designing improved MAC packet scheduler for 802.11e WLAN," in Proc. Globecom, Dec. 2003, pp. 184-189.
    [31] Jie H and Michael D. A unified Model for the Performance Analysis of IEEE 802.11e EDCA. IEEE Transactions on communications, 2005, 53(9): 1498-1510
    [32] K. Xu, Q. Wang, and H. Hassanein, "Performance analysis of differentiated QoS supported by IEEE 802.11e enhanced distributed coordination function (EDCF) in WLAN," in Proc. Globecom, Dec. 2003, pp. 1048-1053.
    [33] Haitao Wu, Yong Peng, Keping Long, Shiduan Cheng, and Jian Ma, "Performance of reliable transport protocol over IEEE 802.11 wireless LAN: Analysis and enhancement," in Proc.
    INFOCOM, Jun. 2002, pp. 599-607.
    [34] Zhao J, Guo Z H, Zhang Q, et al. Performance study of MAC for service differentiation in IEEE 802.11. In: Proceedings of IEEE Global Telecommunications Conference (GLOBECOM) 2002, 17-21
    [35] Kong Z N, Tsing D H K, Bensaou B, et al. Performance analysis of IEEE 802.11e contention-based channel access. IEEE Journal of Selected Areas in Communications, 2004, 22(10):2095-2106
    [36] Robinson J W and Randhawa T S. Saturation throughput analysis of IEEE 802.11e enhanced distributed coordination function. IEEE Journal of Selected Areas in Communications (JSAC), 2004, 22(5):917-928
    [1] IEEE standard for Wireless LAN Medium Access Control and Physical Layer (PHY) specifications [S], ISO/IEC 8802-11: 1999 (E), 1999.
    [2] IEEE 802.11 Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements[S], 2005
    [3] Yang Xiao and Haizhon Li, Evaluation of Distributed Admission Control for the IEEE 802.11 e EDCA, IEEE Communication Magazine, 2004, 42(9):S20-S24.
    [4] Yang Xiao and Haizhon Li, Voice and Video Transmissions with Global Data Parameter Control for the IEEE 802.11e Enhanced Distributed Channel Access[J], IEEE Transactions on Parallel and Distributed Systems, 2004, 15(11): 1041-1053.
    [5] Yang Xiao, Haizhon Li and Sunghyun Choi, Protection and Guarantee for Voice and Video Traffic in IEEE 802.11e Wireless LANs, Proc. IEEE INFOCOM'04, vol. 3, Hong Kong, Mar. 2004, pp. 2152-62.
    [6] Yang Xiao and Haizhon Li, Evaluation of Distributed Admission Control for the IEEE 802.11e EDCA[J], IEEE Radio Communications, September 2004.
    [7] M. Barry, A. T. Campbell, and A. Veres, Distributed Control Algorithms for Service Differentiation in Wireless Packet Networks, Proc. IEEE INFOCOM'01, vol. 1, Anchorage, AK, 2001, pp. 582-90.
    [8] A. Veres et al., Supporting Service Differentiation in Wireless Packet Networks Using Distributed Control, IEEE JSAC, 2001, 19(10):2081-93.
    [9] Daqing Gu and Jinyun Zhang, A New Measurement-Based Admission Control Method for IEEE802.11 Wireless Local Area Networks[C], Proc. IEEE PIMRC'03.
    [10] Liqiang Zhang and Sherali Zeadally, HARMONICA: Enhanced QoS Support with Admission Control for IEEE 802.11 Contention-based Access[C], Proc. IEEE RTAS '04, Toronto, Canada, May 2004, pp. 64-71.
    [11] Dennis Pong and Tim Moors, Call Admission Control for IEEE 802.11 Contention Access Mechanism, Proc. IEEE GLOBECOM'03, vol. 1, San Francisco, CA, Dec. 2003, pp. 174-78.
    [12] Giuseppe Bianchi, Performance Analysis of the IEEE 802.11 Distributed Coordination Function, IEEE JSAC, 2000, 18(3):535-47.
    [13] Giuseppe Bianchi and Ilenia Tinnirello, Kalman Filter Estimation of the Number of Competing Terminals in an IEEE 802.11 network[C], Proc. IEEE INFOCOMM'05
    [14] Zhen-ning Kong, Tsing D H K, Brahim Bensaou, et al. Performance analysis of IEEE 802.11e contention-based channel access[J], IEEE Journal of Selected Areas in Communications, 2004,22(10):2095-2106.
    [15] Zhen-ning Kong, Danny H.K.Tsang and Brahim Bensaou, Measurement-assisted Model-based Call Admission Control for IEEE 802.11e WLAN Contention-based Channel Access[C], Proc. IEEE LANMAN'04
    [16] A. Banchs, X. Perez-Costa, and D. Qiao, Providing Throughput Guarantees in IEEE 802.1 le Wireless LANs, Proc. 18th Int'l. Teletraffic Cong., Berlin, Germany, Sept. 2003.
    [17] Deyun Gao, Jianfei Cai and King Ngi Ngan,Admission Control in IEEE 802.11e Wireless LANs[J], IEEE Network, July 2005
    [18] Deyun Gao and Jianfei Cai, Admission Control with Physical Rate Measurement for IEEE 802.11e Controlled Channel Access[J], IEEE Communications Letters, 2005, 9(8).
    [19] Wing Fai Fan, Deyun Gao, Danny H.K Tsang, Brahim Bensaou, Admission Control for Variable Bit Rate traffic in IEEE 802.11e WLANs[C], Proc. APCC'04.
    [20] Adlen Ksentini, Abdelhak Gueroui, Mohamed Naimi, A New IEEE 802.11 MAC protocol with Admission Control for Sensitive Multimedia Applications[C], Proc. IEEE GLOBECOM 2005.
    [21] A. Nafaa, A. Kscntini, A. Mchaoua, SCW: Sliding Contention Window for efficient service differentiation in IEEE 802.11 networks[C], in Proc. of IEEE WCNC'05, New Orleans, LA, March 2005.
    [22] Hayoung Yoon, JongWon Kim, and DongYun Shin, Dynamic Admission Control in IEEE 802.11e EDCA-based Wireless Home Network[C], Proc. IEEE CCNC'06.
    [23] Changhua Zhu, Changxing Pei, Jiandong Li and Weidong Kou, QoS-oriented Hybrid Admission Control in IEEE 802.11 WLAN[C], Proc. IEEE AINA'05
    [24] Sachin Garg, Martin Kappes, Admission Control for VoIP Traffic in IEEE 802.11 Networks[C], Proc. IEEE GLOBECOM'03
    [25] Juliana Freitag, Nelson L. S. da Fonseca and Jose F. de Rezende, Admission Control in IEEE 802.11 Networks[C], Proc. IEEE GLOBECOM'04.
    [26] Yu-Liang Kuo, Chi-Hung Lu, Eric Hsiao-Kuang Wu, and Gen-Huey Chen, An Admission Control Strategy for Differentiated Services in IEEE 802.11 [C], Proc. IEEE GLOBECOM'03
    [27] Lidong Lin, Haohuan Fu and Wcijia Jia, An Efficient Admission Control for IEEE 802.11 Networks Based on Throughput Analyses of (Un)saturated Channel[C], Proc. IEEE GLOBECOM'05
    [28] "NS", URL http://www-mash.cs.berkeley.edu/ns/[1] 郑少仁,王海涛等,Ad Hoc网络技术,人民邮电出版社,20053.01.
    [2] 王海涛,郑少仁,Ad hoc网络面临的挑战及其对策,中国数据通信,Vol.4 No.5,2003.
    [3] 方旭明,移动Ad hoc网络研究与发展现状,中国数据通信,Vol.5 No.9,2003.
    [4] 秦媛媛,谈振辉,Ad hoc网络的应用及其面临的挑战,中国数据通信.
    [5] Zygmunt J.Hass and Siamak Tabrizi, On Some Challenges and Design Choices in Ad hoc Communication, in the Proceeding of IEEE MILCOM'98 October 1998.
    [6] Ram Ramanathan and Jason Redi, A Brief Overview of Ad hoc Networks: Challenges and Directions, IEEE Communication Magazine, May, 2002.
    [7] Lakshminarayanan Subramanian and Randy H.Katz, An Architecture for Building Self-Configurable Systems, IEEE/ACm Workshop on Mobile Ad hoc Networking and Computing, August, 2000.
    [8] Sobrinho J.L. and Krishnakumar A.S., Quality of Service in Ad hoc Carrier Sense Multiple Access Networks. IEEE Journal on Selected Areas in Communications (JASC), Aug. 1999.
    [9] 刘凯,李建东,使用并行接收的多跳自组织无线网络,电子学报,28(5),2000.
    [10] Izhak Rubin and Patrick Vincent, Topolical Synthesis of Mobile Backone Networks for Managing Ad hoc Wireless Networks, MMNS, 2001.
    [11] Chiang C., Wu H.K., Winston Liu and Mario Gerla, Routing in Clustered Multihop Mobile Wireless Networks, the IEEE Singapore International Conference on Networks, 1997.
    [12] Shiann-Tsong Sheu and Tzu-Fang Sheu, DBASE: A Distributed Bandwidth Allocation/Sharing/Extension Protocol for Multimedia over IEEE 802.11 Ad Hoc Wireless LAN, IEEE??Infocom 2001.
    [13] Jiang M., Li J. and tay Y.C., Cluster-Based Routing Protocol (CBRP), IETF Draft, 1999.
    [14] Pearman M.R. and Hass Z.J., Determining the Optimal Configuration for the Zone Routing Protocol, IEEE Journal on Selected Areas in Communications (JASC),19(7), 2001.
    [15] Basagni S., Turgut D. and Das S.K., Mobility-Adaptive Protocols for Managing large Ad hoc Networks, in Proceeding of IEEE ICC, 2001.
    [16] Ulas C. Kozat, George Kondylis and Mahesh Marina, Virtual dynamic Backbone for Mobile Ad hoc Networks, in the Proceeding of IEEE ICC 2001.
    [17] Bluetooth-Based Ad hoc Networks, in Proceeding of the IEEE ICC, 2001.
    [18] V. Bharghavan, A. Demers, S. Shenker, Lixia Zhang, MACAW: A Media Access Protocol for Wireless LANs, In ACM SIGCOMM 1994, pages 212-225, London, England, UK, Aug. 31-Sept. 02, 1994.
    [19] T. Korakis, G. Jakllari, L. Tassiulas, A MAC Protocol for Full Exploitation of Directional Antennas in Ad-hoc Wireless Networks, ACM MobiHoc 2003, June 1-3, 2003, Annapolis, Maryland, USA.
    [20] Naipuri A., Zhuang L., and Das S., A Multi-channel CSMA MAC protocol for Multihop Wireless Networks, in Proceeding of WCNC'99, September 1999.
    [21] Douglas S. J. De Couto, Daniel Aguayo John Bicket, Robert Morris, A High-Throughput Path Metric for Multi-Hop Wireless Routing, ACM Mobicom 2003, Sept. 14-19, 2003, San Diego, California, USA, 2003.
    [22] S. Xu, T. Saadawi, Does the IEEE 802.11 MAC Protocol Work Well in Multihop Wireless Ad Hoc Networks, IEEE Communication Maganize, June, 2001.
    [23] John Bicket, Sanjit Biswas, Daniel Aguayo and Robert Morris, Architecture and Evaluation of the MIT Roofnet Mesh Network, in the Proceeding of International Conference on Mobile Computing and Networking (MobiCom), 2005
    [24] K.F. Man, K.S. Tang and S. Kwang: Genetic Algorithms: Concepts and Designs, Springer, 1999.
    [25] 陈国良,王煦法,庄镇泉,王东生,遗传算法及其应用,人民邮电出版社,1996.
    [26] S. Sivavakeesar, G.Pavlou and A. Liotta, Stable Clustering Through Mobility Prediction for Large Scale Multihop Intelligent Ad hoc Network, in the Proceeding of IEEE Wireless Communications and Networking Conference (WCNC), 2004.
    [27] Mainak CH. and Damla T., An On-demand Weighted Clustering Algorithm (WCA) for Ad hoc Networks, in the Proceeding of IEEE Globeconm, 2000.
    [28] Damla Turgut and Sajil K. Das, Optimizing Clustering Algorithm in Mobile Ad hoc Networks Using Genetic Algorithmic Approach, in the Proceeding of IEEE Globecom 2002.
    [29] Bruce McDonald and Taieb F., A Mobility-Based Framework for Adaptive Clustering in??Wireless Ad hoc Networks, IEEE Journal on Selected Areas in Communications (JASC),17(8), 1999.
    [30] TingChao Hou and YzuJane Tsai, An Access-Based Clustering Protocol for Multihop Wireless Ad hoc Networks. IEEE Journal on Selected Areas in Communications (JASC), 19(7), 2001.
    [31] Kaixin Xu and Xiaoyan Hong, An Ad hoc Network with Mobile Backbones, in Procedding of IEEE ICC, 2002
    [32] The Network Simulator, http://www.isi.edu/nsnam/ns/.[1] IEEE 802.16-2001: IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems", IEEE standard, Dec. 2001.
    [2] IEEE 802.16-2004: IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE standard, Oct., 2004.
    [3] IEEE 802.16a: IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems—Amendment 2: Medium Access Control Modifications and Additional Physical Layer Specifications for 2-11 GHz. IEEE standard, Oct., 2003.
    [4] IEEE 802.16e: IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, IEEE standard, Dec. 2005.
    [5] Mohammed Hawa and David W. Peter, Quality of Service Scheduling in Cable and Broadband Wireless Access Systems, the Tenth IEEE International Workshop on Quality of Service, 2002.
    [6] Kitti Wongthavarawat and Aura Ganz, IEEE 802.16 Based Last Mile Broadband Wireless Military Networks With Quality of Service Support, in Proceeding of IEEE Military Communications Conference (MILCOM), 2003.
    [7] Carl Eklund, Roger B. Marks, Kenneth L. Stanwood and Stanley Wang, IEEE Standard 802.16: A Technical Overview of the WirelessMAN Air Interface for Broadband Wireless Access, IEEE Communications Magazine, Vol. 40, No. 6, Jun., 2002
    [8] Howon Lee, Taesoo Kwon, and Dong-Ho Cho, An Enhanced Uplink Scheduling Algorithm Based on Voice Activity for VolP Services in IEEE 802.16d/e System, IEEE Communications Letters, Vol. 9, No, 8, Aug., 2005.
    [9] Kitti Wongthavarawatn,y and Aura Ganzz, Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems, International Journal of Communication Systems, Vol. 16, 2003.
    [10] Howon Lee, Taesoo Kwon, Dong-Ho Cho, An efficient uplink scheduling algorithm for VoIP services in IEEE 802.16 BWA systems, in Proceeding of IEEE 60th Vehicular Technology Conference, VTC2004-Fall, 2004.
    [11] Claudio Cicconetti, Luciano Lenzini, and Enzo Mingozzi, Quality of Service Support in IEEE 802.16 Networks, IEEE Network, Mar./Apr., 2006.
    [12] Jianfeng Chen, Wenhua Jiao and Hongxi Wang, A Service Flow Management Strategy for IEEE 802.16 Broadband Wireless Access Systems in TDD Mode, in Proceeding of IEEE ICC 2005, 2005.
    [13] Jianfeng Chen, Wenhua Jiao and Qian Guo, An Integrated QoS Control Architecture for IEEE 802.16 Broadband Wireless Access Systems, in Proceeding of IEEE Globecom 2005, 2005.
    [14] Sara Motahari, Ehsan Haghani, Shahrokh Valaee, Spatio-Temporal Schedulers in IEEE 802.16, in Proceeding of IEEE Globecom 2005, 2005.
    [15] Israel Koffman, Vincentzio Roman, Broadband Wireless Access Solutions Based on OFDM Access in IEEE 802.16, IEEE Communications Magazine, Vol. 40, No. 4, Apr., 2002.
    [16] Chi-Hong Jiang, Tzu-Chieh Tsai, Token Bucket Based CAC and Packet Scheduling for IEEE 802.16 Broadband Wireless Access Networks, in Proceeding of the IEEE CCNC'2006, 2006.
    [17] Yang Xiao, Performance Analysis of an Energy Saving Mechanism in the IEEE 802.16e Wireless MAN, in Proceeding of the IEEE CCNC'2006, 2006.
    [18] Daehyon Kim and Aura Ganz, Fair and Efficient Multihop Scheduling Algorithm for IEEE 802.16 BWA Systems, in Proceeding of the IEEE CCNC'2006, 2006.
    [19] Dong-Hoon Cho, Jung-Hoon Song, Min-Su Kim, and Ki-Jun Han, Performance Analysis of the IEEE 802.16 Wireless Metropolitan Area Network, in Proceeding of the IEEE First International Conference on Distributed Frameworks for Multimedia Applications (DFMA'05), 2005.
    [20] Ariton E. Xhafa, Shantanu Kangude, and Xiaolin Lu, MAC Performance of IEEE 802.16e, in Proceeding of IEEE 60th Vehicular Technology Conference, VTC2005, 2005.
    [21] Yang Xiao, Energy saving mechanism in the IEEE 802.16e wireless MAN, IEEE Communication Letters, Vol.9, no.7, pp. 595-597, July, 2005.
    [22] O. Gusak, N. Oliver, and K. Sohraby, Performance Evaluation of the 802.16 Medium Access Control layer, in Proceeding of ISCIS 2004, Kemer-Antalya, Turkey, Oct., 2004.
    [23] Arunabha Ghosh, David R. Wolter, Jeffrey G. Andrews and Runhua Chen, Broadband Wireless Access with WiMax/802.16: Current Performance Benchmarks and Future Potential, IEEE Communications Magazine, Vol. 43, No. 2, Feb., 2005.
    
    [24] D. Stiliadis and A. Varma, Latency-Rate Servers: A General Model for Analysis of Traffic Scheduling Algorithms, IEEE/ACM Transaction on Networking, Vol. 6, Oct. 1998.
    [25] M. Shreedhar and G. Varghese, Efficient Fair Queuing using Deficit Round Robin, IEEE/ACM Transaction on Networking, Vol. 4, No. 3, Jun., 1996.
    [26] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, Weighted Round-Robin Cell Multiplexing in a General-Purpose ATM Switch Chip, IEEE JSAC, Vol. 9, No. 8, Oct., 1991.
    [27] Lu S, Bharghvan V. Fair scheduling in wireless packet networks. IEEE/ACM Transactions on Networking, Vol.7, No.4, 1999.
    [28] Eugene TS, Stoica 1, Zhang H. Packet fair queuing algorithms for wireless networks with location-dependent errors. IEEE INFOCOM 98; Mar., 1998.
    [29] Ramanathan P, Agrawal P. Adapting packet fair queuing algorithms to wireless networks. ACM/IEEE MOBICOM 98, Dallas, 1998.
    [30] Gome J, Campbell AT, Morikawa H., The Havana framework for supporting application and channel dependant QoS in wireless networks. Proceedings of ICNP'99; Nov., 1999.
    [31] Parekh AK, Galager RG. A generalized processor sharing approach to flow control in integrated services networks: the single-node case. IEEE/ACM Transactions on Networking, Vol.1, No.3, 1993.
    [32] Cruz RL. A Calculus for network delay, Part I: Network elements in isolation. IEEE Transaction of Information Theory, Vol.37, No.1, 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700