用于核主泵屏蔽套的哈氏合金薄板激光焊接工艺基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第三代核电站(AP1000)用非能动式核主泵采用屏蔽式电机,而屏蔽式电机中屏蔽套的精密制造是保证核主泵正常工作的基础。套体材料为超薄哈氏合金(HastelloyC-276),制造过程包含对套体进行焊接加工,这是核主泵屏蔽套制造过程的难点和重点。本文针对超薄大长径比Hastelloy C-276合金屏蔽套的焊接要求,采用激光焊接技术,提出焊接参数优化准则,在减小焊接热影响区的基础上,对焊接区域进行显微组织观察分析,并结合原始材料的力学和耐腐蚀性能,对焊接区域进行针对性地性能检测,综合评估激光焊接过程对材料宏观、微观性能的影响,为核主泵屏蔽套的自主制造提供理论基础和工程支撑。主要研究内容及结果如下:
     (1)使用Nd:YAG脉冲固体激光器实现了0.5mm厚度Hastelloy C-276的焊接成形,讨论了单脉冲能量、焊接速度、脉冲频率、脉冲宽度和离焦量对焊缝上下表面宽度的影响规律,提出了焊接参数优化准则;根据焊缝平整性、内部存在横/纵向轮廓条纹以及特殊轮廓特征,结合浮力效应和玛尔戈尼对流熔池流动理论研究了上述现象与焊接工艺特征的关系;此外,采用X射线无损探伤和逐层抛光的方法分别对焊缝进行了宏观和微观焊接缺陷检测,检测结果说明脉冲激光焊接工艺能够得到近无缺陷的焊接接头。
     (2)利用扫描电镜、电子探针、X射线衍射仪和微观硬度计分别检测了焊缝微观组织、元素分布、相结构以及显微硬度特征。焊缝处发现了明显的次晶界和枝状晶,晶粒细化现象明显;激光焊接过程并未导致宏观偏析,但微观偏析现象明显;提出了分段修正k值的Brody-Flemings方程,揭示了Cr、Mo、W、Fe元素凝固过程扩散规律,证实了激光焊接工艺有利于抑制脆性相的生成;X射线衍射结果说明母材和焊缝处相组织均以面心立方奥氏体为主;微观硬度结果表明焊缝处微观硬度并未受到影响。
     (3)通过拉伸试验,发现焊接接头的屈服极限与母材基本相同,仅在室温条件下焊接接头的抗拉强度有所降低;母材断口形貌主要以较浅等轴韧窝断口为主,而焊缝断口呈现出较深细密等轴韧窝断口特征;XRD分析并未在常温焊缝断口处发现脆性相的富集;高温工程应力应变曲线结果表明拉伸试样均表现出均匀的塑性变形过程,高温真实应力应变曲线结果表明焊缝处极限应变与母材相当,具有相同的加工硬化趋势。
     (4)在王水溶液中母材主要发生均匀腐蚀,而焊缝处呈现出典型晶间腐蚀特征;电化学腐蚀结果说明激光焊接对Hastelloy C-276材料在中性溶液中的耐蚀性影响不大,但母材以选择性腐蚀为主,焊缝以晶间腐蚀为主,焊缝处腐蚀速度低于母材。
The canned motor was used in the nuclear reactor coolant pump of AP1000, and in the canned motor, the can, which was Hastelloy C-276alloy, was important to the work of nuclear main pump. During the manufacture of the can, the welding of can was critical. In this paper, based on the welding requirements of thin large draw ratio Hastelloy C-276alloy can, a laser welding method was proposed. Also, the optimized welding parameters were obtained, and the microstructure, mechanics property and corrosion resistant on the weld joint were investigated. Finally, the effect of welding method on the macro/micro characteristics of Hastelloy C-276was evaluated.
     (1) Using Nd:YAG laser achieved the well weld joint of Hastelloy C-276, and the effects of single energy, welding velocity, repetition and duration on the weld joint were discussed. Then, the optimization criterion of welding parameters was proposed. Aiming at the smooth, contour line and special profile of weld joint, the buoyancy effect and Marangoni convection was applied to explain the phenomena above. In addition, by the X-Ray nondestructive inspection and layer-by-layer polishing, nearly no any welding defect was found. Hence, it was concluded that the laser welding could achieve the well weld joint nearly without welding defect.
     (2) Using the SEM, EMPA, XRD and micro-sclerometer, the microstructure, element distribution, phase structure and microharness of weld were tested. In the weld, the obvious sub grain boundary and fined dendrite were found, and the macro segregation was not found, but the micro segregation was significant. A Brody-Flemings model with piecewise revised k was proposed to calculate the element distribution under the rapid cooling condition. The distribution of Cr, Mo, W and Fe during the laser welding was revealed, and it was indicated that the laser welding could restrain the forming of brittle phase. The results of XRD and microharness test indicated the phase structure of weld was the same as that of base metal, and the microharness of weld was not influenced by the laser welding.
     (3) The yield strength of the weld joint was the same as that of the base metal, but at room temperature, the tensile strength of weld joint was a little smaller than that of the base metal. There were many dimples in the fracture of base metal, and in the weld fracture, the tiny deep dimples were observed. In the fracture of weld, it was not found the enrichment of brittle phases by the XRD test. The engineering stress-strain curve showed all stretched samples presented the same plastic forming, and the true stress-strain curve showed the limiting strain and work hardening trend of weld were the same as that of base metal.
     (4) Under the corrosion of nitrohydrochloric acid condition, the even corrosion was observed in the base metal, and the intergranular corrosion was found in the weld. The electrochemical results indicated, in the neutral solution, the corrosion resistance of Hastelloy C-276was not affected by the laser welding, but the corrosion mechanisms of base metal and weld were different.
引文
[1]张华祝.第三代核电技术与中国核能行业的发展[J].国防科技工业,2007,(6):22-23
    [2]张明乾,刘昱,李承亮.浅谈压水堆核电站AP1000屏蔽式电动主泵[J].水泵技术,2008,(4):1-5
    [3]Matzie R.A.. AP1000 will meet the challenges of near-term deployment [J]. Nuclear Engineering and Design,2008,238:1856-1862
    [4]许连义.AP1000核岛主要设备的国产化[J].中国核工业,2007,(6):14-15
    [5]关锐,高永军.AP1000反应堆主泵屏蔽套制造工艺浅析[J].中国核电,2008,(1):49-53
    [6]庄亚平.AP1000屏蔽泵的应用分析[J].电力建设,2010,31(11):98-101
    [7]Khairullin T.V., Khairullin R.V., Stolbov V.I., et al. Effect of the thermophysical conditions of argon-shielded arc welding on the properties of welded sheet components [J]. Welding International,2012,26(12):949-953
    [8]Shtrikman M.M., Pinskii A.V., Filatov A.A., et al. Methods for reducing weld porosity in argon-shielded arc welding of aluminium alloys [J]. Welding International,2011,25(6):457-462
    [9]Kah P., Suoranta R., Martikainen J.. Advanced gas metal arc welding processes [J]. Int. J. Adv. Manuf. Technol., DOI 10.1007/s00170-012-4513-5
    [10]Balasubramanian V., Ravisankar V., Reddy G.M.. Effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded high strength aluminium alloy [J]. Materials Science and Engineering A,2007,459:19-34
    [11]Zhu T.P., Chen Z.W., Gao W.. Incipient melting in partially melted zone during arc welding of AZ91D magnesium alloy [J]. Materials Science and Engineering A,2006,416:246-252
    [12]Shen J., You G.Q., Long S.Y., et al. Abnormal macropore formation during double-sided gas tungsten arc welding of magnesium AZ91D alloy [J]. Materials Characterization,2008,59: 1059-1065
    [13]Liu L.M., Cai D. H., Zhang Z.D.. Gas tungsten arc welding of magnesium alloy using activated flux-coated wire [J]. Scripta Materialia,2007,57:695-698
    [14]周灿丰,焦向东,薛龙,等.以空气为舱内加压气体的钨极氩弧焊接[J].焊接学报,2007,28(2):5-8
    [15]Lu W., Shi Y.W., Lei Y.P., et al. Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy [J]. Materials and Design,2012,34:509-515
    [16]Steinhauser M., Korbs C., Bauer R.. Electron Beam Welding of Micro-Housings with Dissimilar Metals for Electronic Circuits [C]. IEEE:35th Int. Spring Seminar on Electronics Technology, 2012:161-163
    [17]Martynov V.N., Khokhlovskii A.S., Sliva A.P.. Electron-beam welding of thick components of steels, aluminium, and titanium alloys [J]. Welding International,2011,25(6):463-465
    [18]Reisgen U., Dorfmiiller T.. Micro-electron-beam welding with a modified scanning electron microscopy:Findings and prospects [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures,2009,27(3):1310-1314
    [19]Irisarri A.M., Barreda J.L., Azpiroz X.. Influence of the filler metal on the properties of Ti-6Al-4V electron beam weldments-Part Ⅰ:Welding procedures and microstructural characterization [J]. Vacuum,2009,84(3):393-399
    [20]王廷,张秉刚,陈国庆,等.TA15钛合金与304不锈钢的电子束焊接[J].焊接学报,2010,31(5):53-56
    [21]李晓延,巩水利,关桥,等.大厚度钛合金结构电子束焊接制造基础研究[J].焊接学报,2010,3 1(2):107-112
    [22]冯吉才,王廷,张秉刚,等.异种材料真空电子束焊接研究现状分析[J].焊接学报,2009,30(10):108-112
    [23]Shinoda K., Okubo M., Ito K., et al. The quality evaluation of advanced plasma welding technology [J]. Welding International,2012,26(7):511-515
    [24]Migiakis K., Daniolos N., Papadimitriou G. D.. Plasma Keyhole Welding of UNS S32760 Super Duplex Stainless Steel:Microstructure and Mechanical Properties [J]. Materials and Manufacturing Processes,2010,25:598-605
    [25]Urena A., Otero E., Utrilla M.V., et al. Weldability of a 2205 duplex stainless steel using plasma arc welding [J]. Journal of Materials Processing Technology,2012,182:624-631
    [26]Migiakis K., Papadimitriou G. D.. Effect of nitrogen and nickel on the microstructure and mechanical properties of plasma welded UNS S32760 super-duplex stainless steels [J]. J. Mater. Sci.,2009,44:6372-6383
    [27]Prasad K. S., Raob Ch. S., Raob D. N.. Prediction of Weld Pool Geometry in Pulsed Current Micro Plasma Arc Welding of SS304L Stainless Steel Sheets [J]. International Transaction Journal of Engineering, Management,& Applied Sciences & Technologies,2011,2(3):325-336
    [28]Kurt B., Orhan N., Somunkiran I.,et al.The effect of austenitic interface layer on microstructure of AISI420 martensitic stainless steel joined by keyhole PTA welding process [J]. Materials and Design,2009,30:661-664
    [29]Taban E., Dhooge A., Kaluc E.. Plasma Arc Welding of Modified 12% Cr Stainless Steel [J]. Materials and Manufacturing Processes,2009,24(6):649-656
    [30]Fuerschbach P.W.. Cathodic cleaning and heat input in variable polarity plasma arc welding of aluminum [J]. Welding Journal,1998,77(2):76s-85s
    [31]Akman E., Demir A., Canel T., et al. Laser welding of Ti6A14V titanium alloys [J]. Journal of materials processing technology,2009,209:3705-3713
    [32]Cao X., Jahazi M.. Effect of welding speed on butt joint quality of Ti-6Al-4V alloy welded using a high-power Nd:YAG laser [J]. Optics and Lasers in Engineering,2009,47(11):1231-1241
    [33]Chen H.C., Pinkerton A. J., Li L.. Fibre laser welding of dissimilar alloys of Ti-6Al-4V and Inconel 718 for aerospace applications [J]. Int. J. Adv. Manuf. Technol.,2011,52:977-987
    [34]段爱琴,陈俐,丁立民.YAG激光焊接钛合金TA15熔池特征[J].航空制造技术,2009,(10):73-76
    [35]程东海,黄继华,杨静,等.TC4钛合金激光焊接接头超塑性变形力学行为研究[J].稀有金属材料与工程,2010,39(2):277-280
    [36]张建勋,宋旭,郑莉.TC4钛合金CO2激光深熔焊接头非线性损伤研究[J].稀有金属材料与工程,2012,41(4):607-611
    [37]Chen W., Ackerson P., Molian P.. CO2 laser welding of galvanized steel sheets using vent holes [J]. Materials and Design,2009,30:245-251
    [38]Yan S., Hong Z., Watanabe T., et al. CW/PW dual-beam YAG laser welding of steel/aluminum alloy sheets [J]. Optics and Lasers in Engineering,2010,48(7-8):732-736
    [39]Torkamany M.J., Tahamtan S., Sabbaghzadeh J.. Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd:YAG pulsed laser [J]. Materials & Design,2010,31(1):458-465
    [40]李亚玲,黄坚,高志国,等.高功率激光焊接汽车用高强钢B450LAD组织与性能[J].中国激光,2008,35(12):2047-2051
    [41]石岩,张宏,渡部武弘,等.连续-脉冲双激光束焊接钢-铝合金[J].中国激光,2010,37(4):1132-1137
    [42]董丹阳,王观军,马敏,等.车用双相钢激光焊接接头组织性能研究[J].中国激光,2012,39(9):0903002
    [43]Miranda R.M., Quintino L., Williams S., et al. Welding with High Power Fiber Laser API5L-X100 Pipeline Steel [J]. Materials Science Forum,2010,636-637:592-596
    [44]Neves M. D. M., Lotto A., Berretta J.R., et al. Microstructure development in Nd:YAG laser weldingof AISI 304 and Inconel 600 [J]. Welding International,2010,24(10):739-748
    [45]Khan M.M.A., Romoli L., Fiasch M.. Laser beam welding of dissimilar stainless steels in a fillet joint configuration [J]. Journal of Materials Processing Technology,2012,212(4):856-867
    [46]马鸣亮.薄壁不锈钢管环缝全位置自动TIG焊[J].焊接技术,2009,38(6):60-62
    [47]甘洪岩,刘勇,徐志刚.工艺参数对不等厚板激光拼焊成形性能的影响[J].焊接技术,2011,40(3):22-26
    [48]孙中原.ASMESA-387MGR22CL2管线钢药芯焊丝打底焊接工艺[J].焊接技术,2012,39(10):63-65
    [49]Harinath Y.V., Gopal K.A., Murugan S., et al. Study on laser welding of fuel clad tubes and end plugs made of modified 9Cr-1Mo steel for metallic fuel of Fast Breeder Reactors [J]. Journal of Nuclear Materials,2013,435:32-40
    [50]Kim Jae-Do, Kim Cheol-Jung, Chung Chin-Man. Repair welding of etched tubular components of nuclear power plant by Nd:YAG laser [J]. Journal of Materials Processing Technology,2001, 114(1):51-56
    [51]Han W.J., Byeon J.G., Park K.S.. Welding characteristics of the Inconel plate using a pulsed Nd: YAG laser beam [J]. Journal of Materials Processing Technology,2001,113(1-3):234-237
    [52]张旭东,陈武柱,陈加瑞.锆-4合金的激光焊接研究[J].应用激光,1999,15(9):279-284
    [53]张友寿,王巍,郎定木,等.U-2.0Nb合金的脉冲激光焊接[G].中国工程物理研究院科技年报,2002:494-495
    [54]吴世凯,肖荣诗,陈铠.大厚度不锈钢板的激光焊接[J].中国激光,2009,36(9):2422-2425
    [55]Schober R., UlrichF., Sander T., et al. Laser-induced alteration of collagen substructure allows microsurgical tissue welding [J]. Science,1986,4756(32):1421-1422
    [56]Kevin X., Mckennan M.D.. "Tissue welding" with the argon laser in middle ear surgery [J]. The Laryngoscope,1990,100(11):1143-1145
    [57]Lawrence S.B., Moazami N., Pocsidio J., et al. Changes in type I collagen following laser welding [J]. Lasers in Surgery and Medicine,1992,12(5):500-505
    [58]Francesco S. P.. Laser Imaging and Manipulation in Cell Biology [M]. Weinheim: Wiley-VCH,2010:203-225
    [59]Matteini P., Ratto F., Rossi F., et al. Emerging concepts of laser-activated nanoparticles for tissue bonding [J]. J.Biomed. Opt.,2012,17(1):010701
    [60]Sriramoju V., Robert R. A.. Laser tissue welding analyzed using fluorescence, Stokes shift spectroscopy, and Huang-Rhys parameter [J]. Journal of Biophotonics,2012,5(2):185-193
    [61]郑启光.激光先进制造技术[M].武汉:华中科技大学出版社,2002:110-147
    [62]Poprawe R.著.张冬云译.激光制造工艺[M].北京:清华大学出版社,2008:200-207
    [63]威廉M.斯顿著.蒙大桥,张友寿,何建军,等译.材料激光工艺过程(原书第3版)[M].北京:机械工业出版社,2012:113-115
    [64]陈武柱.激光焊接与切割质量控制[M].北京:机械工业出版社,2010:7-11
    [65]Burton J.J., Berkowitz B.J., Kane R.D.. Surface Segregation in an Engineering Alloy:Hastelloy C-276 [J]. Metallurgical Transaction A,1979,10(6):677-682
    [66]Raghavan M., Berkowitz B.J., Scanlon J.C.. Electron Microscopic Analysis of Heterogeneous Precipitates in Hastelloy C-276 [J]. Metallurgical Transaction A,1982,13(6):979-984
    [67]Cieslak M.J., Headley T.J., Romig A.D., et al. The Welding Metallurgy of HASTELLOY Alloys C-4, C-22, and C-276 [J]. Metallurgical Transaction A,1986,17(11):2035-2047
    [68]Cieslak M.J., Knorovsky G.A., Headley T.J., et al. The Use of New PHACOMP in understanding the Solidification Microstructure of Nickel Base Alloy Weld Metal [J]. Metallurgical Transaction A,1986,17(12):2107-2116
    [69]Ogborn J.S., Olson D.L., Cieslak M.J.. Influence of solidification on the micro structural evolution of nickel base weld metal [J]. Materials Science and Engineering A,1995,203:134-139
    [70]Akhter J.I., Shaikh M. A., Ahmad M., et al. Effect of aging on the hardness and impact properties of Hastelloy C-276 [J]. Journal of Materials Science Letters,2001,20:333-335
    [71]Rebak R. B., Dillman J. R., Crook P., et al. Corrosion behavior of nickel alloys in wet hydrofluoric acid [J]. Materials and Corrosion,2001,52:289-297
    [72]Lu J., Choi E. S., Zhou H. D.. Physical properties of Hastelloy(?) C-276TM at cryogenic temperatures [J]. Journal of Applied Physics,2008,103:064908
    [73]Ahmad M., Akhter J.I., Iqbal M.,et al. Surface modification of Hastelloy C-276 by SiC addition and electron beam melting [J]. Journal of Nuclear Materials,2005,336:120-124
    [74]Ahmad M., Akhter J.I., Akhtar M., et al.Microstructure and hardness studies of the electron beam welded zone of Hastelloy C-276[J]. Journal of Alloys and Compounds,2005,390:88-93
    [75]Eijk C., Fostervoll H., Zuhair K., et al. Plasma Welding of NiTi to NiTi, Stainless Steel and Hastelloy C276 [C]. Pittsburgh:ASM Materials Solutions,2003
    [76]Rowe M.D., Crook P., Hoback G.L.. Weldability of a Corrosion-Resistant Ni-Cr-Mo-Cu Alloy [J]. Weld. J.,2003, (11):313S-320S
    [77]HAYNES international Inc.. Hastelloy C-276 Alloy (H-2002D) [M]. Kokomo:HAYNES international Inc.,2001:1-14
    [78]HAYNES international Inc.. Tech Brief (H-2032B) [M]. Kokomo:HAYNES international Inc., 2009:1-2
    [79]HAYNES international Inc.. Wire and Welding Products (H-2031) [M]. Kokomo:HAYNES international Inc.,2005:1-2
    [80]HAYNES international Inc.. Corrosion-Resistant Alloys-Fabrication of Hastelloy(?)(H-2010F) [M]. Kokomo:HAYNES international Inc.,2003:2-39
    [81]HAYNES international Inc.. Hastelloy C-22 Alloy (H-2019F) [M]. Kokomo:HAYNES international Inc.,2002:1-23
    [82]Special Metals Inc.. Corrosion-resistant alloys [J/OL]. Texas:Special Metals Inc.. http://www.specialmetals.com/documents/Corrosion%20Resistant%20Alloys.pdf
    [83]McCoy S. A., Shoemaker L. E., Crum J. R.. Corrosion Performance and Fabricability of the New Generation of Highly Corrosion-Resistant Nickel-Chromium-Molybdenum Alloys [J/OL]. Special Metals Inc.. http://www.specialmetals.com/documents/Corrosion%20Performance%20and%20Fabricability%2 0of%20the%20New%20Generation%20of%20Highly%20Corrosion%20Resistant%20NiCrMo%2 OAlloys.pdf
    [84]唐元生,郑顺贤.PTA工程中哈氏合金(Hastelloy-C-276)管道的焊接[J].安装,2008,(3):31-32
    [85]包国平.HastelloyC276合金的焊接[J].大型铸锻件,2008,(4):33-35
    [86]陶鹏,邢卓.哈氏合金C-276换热管与复合管板的焊接工艺[J].现代焊接,2007,(8):45-46
    [87]陈恭珉.制造哈氏合金管路系统时的焊接要求和背气保护[J].上海化工,2005,30(3):51-52
    [88]陈延艳.Hastelloy C-276合金的焊接性分析与焊接实践[J].安装,2001,(6):19-22
    [89]王平,裴峰,董力莎.哈氏C-276合金大型薄壁耐蚀构件的制造[J].化工设备与防腐,2002,5(2):103-106
    [90]王传友,唐元生,杨永强.镍基哈氏合金HastelloyC-276管道焊接[J].现代焊接,2012,(11):36-38
    [91]张东锡,李德华.哈氏合金管焊接[J].焊接,2005,5:36-38
    [92]哈氏国际.哈氏抗腐蚀合金的加工[M].上海:哈氏国际,2009:1-11
    [93]彭坤,芦凤桂,唐新华,等.激光焊对C-22哈氏合金焊缝抗腐蚀性能改进的研究[J].焊接,2009,(5):64-67
    [94]汪航,唐新华,俞海良,等.C-22哈氏合金激光焊焊缝成形影响因素分析[J].焊接,2009,(5):57-61
    [95]He X., Fuerschbach P. W., DebRoy T.. Heat transfer and fluid flow during laser spot welding of 304 stainless steel [J]. J. Phys. D:Appl. Phys.,2003,36:1388-1398
    [96]Kou S.. Welding Metallurgy [M]. New Jersey:John Wiley & Sons,2002:97-121
    [97]Limmaneevichitr C., Kou S.. Visualization of Marangoni Convection-in Simulated Weld Pools [J]. Welding Research Supplement,2000:127-135.
    [98]Limmaneevichitr C., Kou S.. Experiments to Simulate Effect of Marangoni Convection on Weld Pool Shape [J]. Welding Research Supplement,2000:231-237.
    [99]Ha E.J., Kim W.S.. A study of low-power density laser welding process with evolution of free surface [J]. Int. J. Heat and Fluid Flow,2005,26:613-621
    [100]David S.A.. Ferrite morphology and variations in ferrite content in austenitic stainless steel welds [J]. Weld.J.,1981,60:63S-71S
    [101]Dupont J.N., Lippold J.C., Kiser S.D.. Welding Metallurgy and Weldability of Nickel-Base Alloys [M]. New Jersey:John Wiley & Sons Inc.,2009:47-150
    [102]Brody H.D., Flemings M.C.. Solution redistribution in dendritic solidification [J]. Transactions of Metallurgical Society AIME,1966,236(5):615-624
    [103]Scheil E.. Comments on Crystallization [J]. Z.Metallkde,1942,34:70-72
    [104]Clyne T.W., Kurz W.. Solute redistribution during solidification with rapid solid state diffusion [J]. Metallurgical Transaction A,1981,12(6):965-971.
    [105]Joo H., Takeuchi H.. Cast structure of Inconel 713C alloy [C]. Tokai Daigaku Kiyo,1994,34(1): 203-209
    [106]Giovanola B., Kurz W.. Modeling of microsegregation under rapid solidification conditions [J]. Metallurgical Transaction A,1990,21(1):260-263
    [107]Aziz M.J.. Model for solute redistribution during rapid solidification [J]. J. Appl. Phys.,1982, 53(2):1158-1168
    [108]He B. B.. Introduction to two-dimensional X-ray diffraction [J]. Powder Diffraction,2003,18(2): 71-85
    [109]He B. B.. Two-dimensional X-ray diffraction [M]. Hoboken, N.J.:Wiley,2009:21-24
    [110]杨传铮,汪保国,张建.二维x射线衍射及其应用研究进展[J].物理学进展,2007,27(1):69-90
    [11 1]章熙康,王其闵.金属强度和晶粒大小的关系[J].物理,1965,(4):145-157
    [112]Hall O.E.. The Deformation and Ageing of Mild Steel-III Discussion of Results [J]. Proceedings of the Physical Society of London Section B,1951,64(381):747-753
    [113]Hall O.E.. Variation of Hardness of Metals with Grain Size [J]. Nature,1954,173:948-949
    [114]Petch N.J.. The Cleavage Strength of Polycrystals [J]. J. Iron Steel Inst.,1953,174:25-28
    [115]Roy A.K., Pal J., Mukhopadhyay C.. Dynamic strain ageing of an austenitic superalloy-Temperature and strain rate effects [J]. Materials Science and Engineering A,2003,474:363-370
    [116]Ma G.Y., Wu D.J., Guo D.M.. Segregation characteristics of pulsed laser butt welding of Hastelloy C-276 [J]. Metallurgical Transaction A,2011,42(13):3853-3857
    [117]Samuel K. G.. Limitations of Hollomon and Ludwigson stress-strain relations in assessing the strain hardening parameters [J]. J. Phys. D:Appl. Phys.,2006,39:203-212
    [118]Ludwigson D.C..Modified Stress-Strain Relation for FCC Metals and Alloys [J]. Metallurgical Transaction B,1971,2(10):2825-2828
    [119]刘永辉,张佩芬.金属腐蚀学原理[M].北京:航空工业出版社,1993:12-69
    [120]李荻.电化学原理[M].北京:北京航天航空大学出版社,1999:31-105
    [121]杨熙珍,杨武.金属腐蚀电化学热力学:电位-pH图及其应用[M].北京:化学工业出版社,1991:138-190
    [122]林玉珍,杨德钧.腐蚀和腐蚀控制原理[M].北京:中国石化出版社,2007:12-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700