重组质粒载体和禽腺联病毒介导的miRNA抑制IBDV复制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传染性法氏囊病(Infectious bursal disease,IBD)是由传染性法氏囊病病毒(Infectious bursal disease virus,IBDV)引起的一种鸡的高度接触性传染病,除引起鸡死亡和生产性能下降,还可导致感染鸡的免疫抑制和其它疫苗接种的免疫失败。IBD呈世界范围流行,尤其是近年来超强毒株和抗原变异株的出现,使得常规疫苗的免疫效果明显下降,给养鸡业造成的危害越来越大,迫切需要更为有效的新型防制措施。
     RNA干扰(RNA interference,RNAi)是近年来快速发展的一种转录后基因沉默技术,在功能基因组研究、肿瘤治疗和抗病毒感染等方面具有良好的应用前景,已被证明能抑制几乎所有种属病毒的复制。为探索用RNAi技术抑制IBDV复制的可行性,本研究在比较不同来源RNA聚合酶启动子转录活性基础上,选用禽源U6启动子构建短干扰RNA(short interference RNA,siRNA)表达载体,以绿色荧光蛋白(green fluorescent protein,GFP)基因为报告基因,证明在禽源细胞中能成功实现特异基因表达沉默;进而用专业软件预测IBDV VP2基因特异性siRNA,将人工合成的微小RNA(microRNA,miRNA)插入表达载体,以细胞转染法筛选出2个有效抑制IBDV VP2基因表达的miRNA,将其克隆入含neo基因的表达载体,经G418筛选获得抗性细胞克隆,用感染试验证明能显著抑制IBDV复制;最后将miRNA表达盒插入禽腺联病毒(avian adeno-associated virus,AAAV)转移载体,用重组病毒感染细胞进行的试验结果证明,表达的miRNA对IBDV复制不仅具有更为显著的抑制作用,而且对异源毒株复制也有类似的抑制效果,为IBD防制研究开辟了新的途径,现将试验结果总结如下。
     目前siRNA表达试验多用人或鼠源H1或U6启动子在哺乳动物细胞中进行,对于这些启动子能否在禽细胞中有效转录短发夹RNA(small hairpin RNA,shRNA)或miRNA仍有争议。我们利用siDirect软件预测GFP基因特异性siRNA,将人工合成的相应shRNA插入含人H1启动子的pSuper载体,获得重组载体pSuper-shRNA;再将shRNA表达盒插入含GFP基因的pEGFP-N1载体,获得重组载体pGFP-H1-shRNA。分别以pEGFP-N1、pSuper-shRNA+pEGFP-N1和pGFP-H1-shRNA转染哺乳动物源COS-1、293-T细胞和禽源鸡胚肝(CEL)、鸡胚成纤维(CEF)细胞,根据相同条件下转染细胞培养中荧光阳性细胞数及荧光强度的变化,比较人H1启动子在哺乳动物源和禽源细胞中转录shRNA的效率。结果显示,人H1启动子在哺乳动物细胞中能有效转录shRNA,但在禽源细胞中的转录效率很低。这些试验结果表明,开展禽源细胞siRNA表达研究应选用禽源启动子。
     为了开展禽源细胞RNAi研究,以含鸡U6启动子的pRFPRNAiC为miRNA表达载体,用Genscript软件预测GFP序列特异性siRNA,从10个潜在的siRNA中随机选择1个siRNA序列,用PCR合成双链寡核苷酸,将其插入表达载体pRFPRNAiC,用获得的重组载体pRFPRNAiGFP与报告质粒pEGFP-N1共转染COS-1、293-T、CEL和CEF细胞,根据相同条件下GFP阳性细胞数及荧光强度变化,比较哺乳动物和禽细胞中鸡U6启动子表达miRNA的效率。结果显示,pRFPRNAiGFP在哺乳动物和禽源细胞中都能表达抑制性miRNA,在禽源细胞中转录效率较高。这些试验结果表明,源禽U6启动子转录miRNA的细胞种属特异性相对较弱,pRFPRNAiC载体可用于禽源细胞的miRNA表达研究。
     为了探索用RNAi技术抑制IBDV复制的可行性,利用Genscript软件预测针对IBDV VP2基因的siRNA,从10个潜在的siRNA中选择5个siRNA序列,将PCR产生的双链寡核苷酸插入pRFPRNAiC载体,获得重组载体pRFPRNAmiVP2A、pRFPRNAmiVP2B、pRFPRNAmiVP2C、pRFPRNAmiVP2D、pRFPRNAmiVP2E;根据IBDV Lukert株VP2基因序列设计引物,用PCR扩增不含自身翻译终止码的VP2基因,将扩增产物与pEGFP-N1载体中GFP基因的N端融合,获得报告载体pVP2-GFP。分别将5个miRNA表达载体与报告载体共转染DF-1细胞,在转染后24h用Northern Dot Blotting确认miRNA表达,然后分别用荧光共聚焦显微镜和流式细胞术对转染细胞培养中的荧光阳性细胞数及荧光总量进行定性和定量分析。结果与报告载体单独转染细胞相比,5个miRNA表达载体与报告载体共转染细胞的荧光抑制效率在59.7%-78.5%之间;将抑制效果较好的miVP2A和miVP2E表达盒分别克隆入含neo基因的pTarget载体,用获得的重组载体转染DF-1细胞,经G418筛选后获得抗性细胞,用IBDV Lurket感染,感染三天后用半定量RT-PCR测定VP2基因表达,并测定IBDV半数组织细胞感染剂量(TCID_(50))。结果显示,miVP2A和miVP2E表达细胞中VP2基因表达抑制率分别为80.7%和75.0%,TCID_(50)分别下降6和5lgs。这些试验结果表明,针对VP2基因的两个miRNA对IBDV基因表达和复制均有显著的抑制作用。
     利用重组AAAV稳定表达外源基因的特点,用限制酶消化法去除含AAAV全基因组质粒载体pCR-AAAV中的Pep和Cap蛋白编码序列,获得AAAV转移载体pAITR;分别将miVP2E和针对VP1基因的miVP1表达盒连同红色荧光蛋白(redfluorescent protein,RFP)基因表达盒插入pAITR中左、右ITR之间,分别用获得的重组载体pAITR-RFP-miVP2E和pAITR-RFP-miVP1与AAAV包装载体pcDNA-ARC及腺病毒辅助载体pHelper共转染AAV-293细胞,经PCR检测证明获得的rAAAV中含有miRNA表达盒,纯化rAAAV感染性滴度为8×10~8TU/ml;用rAAAV转导DF-1细胞,转导后48h用3株IBDV感染,感染后不同时间用TCID_(50)测定法检测感染性病毒,用半定量RT-PCR检测病毒基因表达,。结果显示,在IBDV Lukert株感染后96h,miVP2E和miVP1表达细胞中VP2基因表达抑制率分别为85.2%和89.6%,TCID_(50)分别下降6和7lgs;用另两株IBDV感染miVP2E和miVP1表达细胞,感染性病毒测定结果显示,miVP2E表达细胞中2株IBDV的TCID_(50)分别下降7lgs(YEZ株)和2.5lgs(LYG株),miVP1表达细胞中2株IBDV的TCID_(50)分别下降7lgs(YEZ株)和6.5lgs(LYG株),基因表达和病毒复制抑制作用至少维持6天。
Infectious bursal disease virus(IBDV) is the causative agent of a highly contagious disease in young chickens known as infectious bursal disease(IBD).IBDV infections cause not only different degrees of mortality in chicks,but also vaccination failure to other diseases.Presently,IBD is controlled mainly by vaccination,but its protective effect is compromised by the apoptotic effect of live vaccines on the bursa of the vaccinated chickens and recent emergence of very virulent IBDV strains.Therefore, novel strategies are needed for effective control of the disease.
     RNA interference(RNAi) is a post-transcriptional gene silencing mechanism conserved in eukaryotes ranging from worms to humans,which has been shown to be a novel anti-viral strategy for a variety of viral infections.To investigate the feasibility of RNAi technology for suppressing IBDV infection,we in this study used the recently developed RNAi system tailored for chickens to drive miRNA expression.In both reporter vector-transfected and IBDV-infected cells,expressions of the two gene-specific miRNA resulted in significant but incomplete inhibition on VP2 gene expression and/or IBDV replication.These two miRNAs were then delivered by recombinant avian adeno-associated virus,showing significant inhibition on IBDV replication.These data demonstrate the highly effective inhibition of IBDV gene expression and viral replication by miRNAs targeting the VP2 gene.The more detailed experimental findings are summerized as follows.
     To investigate whether the human RNA polymerase H1 promoter can efficiently express small interference RNAs(siRNAs) in avian cells,10 siRNAs against green fluorescence protein(GFP) gene were predicted using the web-based siDirect software, one of which was selected for synthesis of short hairpin RNA(shRNA) by PCR.The shRNA was inserted into the RNAi vector pSuper containing the human H1 promoter, resulting in siRNA expression vector pSuper-shRNA.The H1-shRNA cassette was then subcloned into GFP gene expression vector pEGFP-H1,resulting in another expression vector pEGFP-H1-shRNA.The pEGFP-H1-shRNA or pSuper-shRNA+ pEGFP-N1 vector was transfected into simian COS-1 cells,human 293-T cells,chicken embryonic liver(CEL) cells and chicken embryonic fibroblast(CEF) cells and the transfected cells were submitted to fluorescence microscopy.Compared to pEGFP-N1-transfected cells, significant decreases in fluorescence density were evident in the mammalian cells transfected with pEGFP-H1-shRNA or pSuper-shRNA+ peGFP-N1 from 24 h after transfection,which was not seen in the avian cells transfected with the same vector(s). These data demonstrate that human H1 promoter can efficiently transcribe shRNA in the mammalian cells,but the transcription activity in the avian cells is relatively low, suggesting that the promoters of avian origin should be used for expression of shRNA in avian cells.
     To verify the miRNA expression system in avian cells using the avian U6 promoter -controlled pRFPRNAiC vector,10 siRNAs against GFP reporter gene were predicted using Genscript software,one ofwhich was selected for double-stranded oligonucleotide synthesis by PCR.The oligonucleotide was inserted into the miRNA expression vector, resulting in the recombinant vector pRFPRNAiGFP,pEGFP-N1 or pRFPRNAiGFP + pEGFP-N1 vector was transfeeted into COS-1 cells,293-T cells,CEL cells and CEF cells,respectively,and the transfected cells were submitted to fluorescence microscopy. The results showed that the total fluorescence of the pRFPRNAiGFP + pEGFP-N1-transfeeted cells was significantly lower than that of pEGFP-N1-transfected cells,especially in avian cells.These data demonstrate that avian U6 promoter can efficiently transcribe shRNAs in both mammalian and avian cells and the pRFPRNAiC vector is a suitable vector for miRNA expression in avian cells.
     To investigate the feasibility of inhibiting IBDV replication using the miRNA expression vector pRFPRNAiC,the VP2 gene without its stop codon was amplified from the total RNA extracted from IBDV Lukert strain-infected cells and fused to the N-terminal of GFP gene in pEGFP-N1 vector,resulting in a reporter vector pVP2-EGFP. Five potential miRNAs targeting the VP2 gene of IBDV were selected for double-stranded nucleotide synthesis by PCR and subcloned individually into the pRFPRNAiC vector,resulting in miRNA expression vectors pRFPRNAmiVP2A, pRFPRNAmiVP2B,pRFPRNAmiVP2C,pRFPRNAmiVP2D and pRFPRNAmiVP2E.
     Each of the five miRNA expression vectors was co-transfected into DF-1 cells with the reporter vector pVP2-EGFP and expression of the five miRNAs was demonstrated by Northern dot blotting.The transfected cells were first submitted to fluorescence microscopy,showing significant decreases in GFP-positive cell number.Flow cytometry showed significant decrease in total fluorescene ranging from 59.7%to 78.5%.The two more efficient miRNAs,miVP2A and miVP2E,were subcloned into a neo gene-containing RNAi vector individually or in combination and the resulting recombinant vectors were transfected individually into DF-1 cells.After selection with G418 for 1 week,the transfected cells were infected with IBDV Lukert strain,and gene silencing effects on the VP2 expression and viral replication were tested by semi-quantitative RT-PCR and virus titration assay,showing decreases in virus replication by 5-61gs of TCID_(50).These results provide strong evidence that miRNAs targeting the VP2 gene can efficiently inhibit gene expression and/or replication of IBDV.
     To further investigate the inhibitory effect of the miRNAs delivered recombinant AAAV,the miVP2E and miVP1(targeting the VP1 gene) together with RFP expression cassette were subcloned individually into AAAV transfer vector pAITR.The resulting vectors were co-transfected individually into AAV-293 cells with AAAV helper vector pcDNA-ARC and adenovirus helper vector pHelper.The presence of the miRNA expression cassettes in the recombinant AAAV particles was shown by PCR.DF-1 cells in each of 35-mm dishes were transducted with 8×10~8 rAAAV and then infected with 3 different IBDV isolates 48 h after transduction.Ninety six hours after infection, semi-quantitative RT-PCR showed an 85.2%(Lukert stain) decrease of the VP2 transcript in the miVPE-expressing cells,while an 89.6%decrease in the miVP1-expressing cells.Infectious virus titration showed an 61gs(Lukert stain),71gs (YEZ strain) or 2.51gs(LYG Strain) decrease of TCID_(50) in the miVP2E-expressing cells and 71gs(Lukert stain),71gs(YEZ strain) or 6.51gs(LYG Strain) decrease in the miVP1-expressing cells.The inhibitory effect remained for at least 6 days after IBDV infection.
引文
[1]Calnek BW主编,高福,苏敬良主译.禽病学(第10版)[M],北京:中国农业出版社,1999,914-937.
    [2]Bukkhardt,Muller H.Susceptility of chicken blood lymphoblass and monocytes to IBDV[J].Arch Virol,1987,34:237-303.
    [3]彭发泉。传染性法氏囊的病病毒的分群和免疫[J]。中国畜禽传染病,1995,3:55-58。
    [4]Lasher HN,Shane SM.Infectious bursal disease[J].World's Poultry Science Journal,1994,50:133-166.
    [5]安锡忠,王忠林等.传染性法氏囊病研究新进展.河北畜牧兽医,1997,13(4):21.
    [6]Bottcher B,Kiselev NA,Stel'Mashchuk VY,et al.Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy[J].Journal of virology,1997,71:325-330.
    [7]Kibenge FS,Qian B,Nagy,E,et ai.Formation of virus-like particles when the polyprotein gene (segment A)of infectious bursal disease virus is expressed in insect cells[J].Canadian Journal of Veterinary Research,1999,63:49-55.
    [8]Saijo K,Higashihara M,Fuyisaky Y,et al.Isolation and characterization of attenunated plague variants of infectious bursal disease virus[J].Vet Miicrol,1990,22:171-178.
    [9]蔡宝祥主编.家畜传染病学(第四版),中国农业出版社,321-322.
    [10]殷震,刘景华主编.分子病毒学(第二版),582-584.
    [11]Muller H.Replication oflBDV in lymphoid cell[J].Arch Viroi,1996,87:191-203.
    [12]Muller H,Lange H,Becht H,et al.Characterization and interfering capacity of a small plague mutant and of imcomplete virus particles of the infectious bursal disease virus(IBDV)[J].Virus Research,1996,4:297-309.
    [13]徐建生,成大荣.传染性法氏囊病病毒毒力变异的分子生物学基础.中国禽业导刊,2004,21(23):35.
    [14]张超范,曾祥卫,王笑梅等。鸡传染性法氏囊病病毒毒力变异的分子基础研究进展。畜牧与兽医.2004.1:38-40。
    [15]Spies U,Muller H,Bechi H.Properties of RNA polymerase activity associated with infectious bursal disease virus and characterization of its reaction products.Virus Res.,1987,8:127-140.
    [16]Spies U,Muller H.Demonstration of enzyme activities required for cap structure formation in infectious bursal disease virus,a member of the bimavirus group[J].Gen.Virol.,1990,71(pt 4):977-981.
    [17]KJbenge FS,Nagarajan MM,Qian B.Determination of the 5' and 3' terminal noncoding sequences of the bisegmented genome of the avibirnavirus infectious bursal disease virus.Arch Virol.,1996,141:1133-1141.
    [18]Lombardo E,Maraver A,Casten JR,et al.VP1,the putative RNA-dependent RNA polymerase of infectious bursal disease virus,forms complexes with the capsid protein VP3,leading to efficient encapsidation into virus-like particles[J].Journal of Virology,1999,73:6973-6983.
    [19]Boot HJ,Dokic K,Peeters BP.Comparison of RNA and cDNA transfection methods for rescue of infectious bursal disease virus[J].Virol Methods,2001,97:67-76.
    [20]Fernandez-Arias A,Risco C,Martinez S,et al.Expression of ORF At of infectious bursal disease virus results in the formation of virus-like particles[J].Journal of General Virology,1998,79:1047-1054.
    [21]Yehuda HJ,Pitcovski A,Michael B,et al.Viral protein 1 sequence analysis of three infectious bursal disease virus strains:a very virulent virus,its attenuated form,and an attenuated vaecine[J].Avian Dis.,1999,43:55-64.
    [22]Mundt E,Beyer J,Muller H.Identification of a novel viral protein in infectious bursal disease virus-infected cells[J].J Gen.Virol.,1995,76(pt 2):437-443.
    [23]Azad AA,Fahey KJ,Barrett SA.Expression in Eschefichiacoli of cDNA fragments encoding the gene for the host-protective antigen of infectious brusal disease virus[J].Virology,1986,149:190-198.
    [24]Fahey KJ,Emy K,Crooks J.Aconformational immunogen on VP-2 of infectious bursal disease virus that induces virus-neutralizing antibodies that passively protect chickens.J Gen.Virol,1989,70(PT6):1473-1481.
    [25]Reddy SK,Silim A,Ratcliffe MJ.Biological roles of the major capsid proteins and relationships between the two existing serotypes of infectious bursal disease virus[J].Arch Virol.,1992,127:209-222.
    [26]Yamaguchi T,Iwata K,Kobayashi M,et al.Epitope mapping of capsid proteins VP2 and VP3 of infectious bursal disease virus[J].Arch Virol,1996,141:1493-1507.
    [27]Mundt E.Tissue culture infectivity of different strains of infectious bursal disease virus is determined by distinct amino acids in VP2[J].J Gen.Virol,1999,80(pt 8):2067-2076.
    [28]周蛟.北京地区鸡传染性法氏囊病病原的分离[J].中国兽医杂志,1982,7:25-26.
    [29]Fabey K J,Emy K,Crooks J,et al.Aconformational immunogen on VP2 of infectious bursal disearse virus that induces virus-neutralizing antibodies that passively protect chickens[J].J.Gen Virol,1989,70:1473-1481.
    [30]Fahey KJ,et al.Virus-neutralizing and passively protective monocloual antibodies to infectious bursal disease virus of chickens[J].Avian Dis,1991,35:365-373.
    [31]Fermandez A,Martinez AS,Rodriguez JF.The major antigenic protein of infectious bursal disease virus,VP2,is an apoptotic inducer[J].J Virol,1997,71:8014-8018.
    [32]Eterradossi ND,Toquin G,Rivallan,et al.Modified activity of a VP2-located neutralizing epitope on various vaccine,pathogenic and hypervirulent strains of infectious bursal disease vires[J].Arch Virol,1997,142:255-270.
    [33]Boot H J,Huume AA,Hoekman AJ,et al.Rescue of very virulent and mocaic infectious bursal disease virus from cloned cDNA:VF2 is not the sole determinant of the very virulent phenotype[J].J.Virol,,2000,74:8701-8711.
    [34]Jagadish MN,Azad AA.Localization of a VP3 epitope of infectious bursal disease virus[J].Virology,1991,184:805-807.
    [35]Mahardika GN,Becht H.Mapping of cross-reaction and serotype-specific epitopes on the VP3structural protein of the infectious bursal disease virus(IBDV)[J].Arch virol.1995,140:765-774.
    [36]Hudson PJ,Mckem NM,Power BE,et al.Genomic structure of large RNA segment of infectious bursal disease virus[J].Nucleic Acids Res,1986,14:5001-5012.
    [37]Anchez AB,Rodriguez JF.Proteolytic processing in infectious bursal disease virus:identification of the polyprotein cleavage sites by site-directed mutagenesis[J].Virology,1999,262:190-199.
    [38]Wbetzel PL,Jackwood DJ.Comparison of neutralizing epitopes among infectious bursal disease viruses using radio immunoprecipitation[J].Avian Dis.,1995,39:499-506.
    [39]Pitcovski J,Levi BZ,Maray T,et al.Failure of viral protein 3 of infectious bursal disease virus produced in prokaryotic and eukaryotic expression systems to protect chickens against the disease[J].Avian Dis.,1999,53:8-15.
    [40]Martinez-Torrecuadrada JL,Caston JR,Castro M,et al.Different architectures in the assembly of infectious bursal disease virus capsid proteins expressed in insect cells[J].V'trology,2000,278:322-331.
    [41]Tacken MG,Rottier PJ,Cleghom JR,et al.Interactions in vivo between the proteins of infectious bursal disease virus:capsid protein VP3 interacts with the RNA-dependent RNA polymerase,VPI[J].Gen.Virol,2000,81:209-218.
    [42]Kibenge FS,Qian B,Cleghom JR et al.Infectious bursal disease virus polyprotein processing does not involve cellular proteases[J].Arch Virli,1997,142:2401-2419.
    [43]Brown MD,Skinner MA.Coding sequences of both genome segments of a European "very virulent" infectious bursal disease virus[J].Virus Res,1996,40:1-15.
    [44]Lejal hi,Costa BD,Huet JC,et al.Role of Ser-652 and Lys-692 in the protease activity of infectious bursal disease virus VP4 and identification of its substrate cleavage sties[J].J.Gen.Virol.,2000,81:983-992.
    [45]Lukert PD,Davis RB.Infectious bursal disease virus:Growth and characterization in cell cultures[J].Avian Dis.,1974,18:243-250.
    [46]Granzow H,Birghan C,Mettenleiter TC,et al.A second form of infectious bursal disease virus-associated tubule contains VP4[J].Journal of virology,1997,71:8879-8885.
    [47]Mundt E,Beyer J,Muller H.Identification of a novel viral protein in infectious bursal disease virus-infected cell[J].Gen Virol,1995,76:437-443.
    [48]Lasher HN,Davis VS.History of infectious bursal disease in the USA-The first two decades[J].Avian Dis,1997,41:11-19.
    [49]Istam MR,Zierenberg K,Muller H.The genome segment B encoding the RNA-dependent RNA polymerase protein VP1 of very virulent infectious bursal disease virus(IBDV) is phylogenetically distinct from that of all other IBDV strains[J].Arch.Virl.,2001,146:2481-2492.
    [50]Yao K,Vakharia VN.Induction of apoptosis in vitro by the 17-5Da nonstructural protein of infectious bursal disease virus:possible role in viral pathogenesis[J].Virology,2001,285:50-58.
    [51]Mundt E,Muller H.Complete nucleotide sequences of 5'-and 3'-noncoding regions of both genome segments of infectious bursal disease virus[J].Virology,1995,290:10-18.
    [52]Boot H J,Huurne AH,Peeters M,et al.Generation of full-length cDNA of the two genomic dsRNA segments of Infectious Bursal Disease virus[J].Journal of Virological Methods,2000,84:49-58.
    [53]Nagarajan M M,Kibenge F S.A novel technique/'or in-vivo assay of viral regulatory regions in genomes of animal RNA viruses[J].Virol Methods,1998,72:51-58.
    [54]Kibenge IS,Nagarajan MM,Qian B.Determination of the 5'and 3'terminal noncoding sequences of the bisegmented gcnome of the avibimavirus infectious bursal disease virus[J].Arch Virol,1996,141:1133-1141.
    [55]Nagarajan MM,Kibenge IS.The 5'-terminal 32 basepairs conserved between genome segments A and B contain a major promoter element of infectious bursal disease virus[J].Arch Virol,1997,142:2499-2514.
    [56]Boot HJ,Huurne AHM,Hoekman AJW,et al.Rescue of very virulent and Mosaic infectious bursal disease virus from cloned cDNA:VP2 is not the sale deterrninent of the very virulent phenotype[J].J Gen Virol,2000,74(15):6701-6711.
    [57]Schorder A,Van LAA,Goovaerts D,et al.Chimeras in noncoding regions between serotypes Ⅰand Ⅱ of segment A of infectious bursal disease virus are viable and show pathogenic phenotype in chickens[J].Gen.Virol,2000,81:533-540.
    [58]Jagdev MS,Silke R,et al.Infectious bursal disease virus of chickens:pathogenesis and immunosuppression[J].Developmental and Comparative Immunology 2000(24):223-235.
    [59]Kim IJ,Jagdev MS.IBDV-induced bursal T lymphocytes inhibit mitogenic response of normal splenocytes.Veterinary Immunology and Immunopathology.2000(74):47-57.
    [60]Silke R,Yeh HY,Sharma JM.The role of T cells in protection by an inactivated infectious bursal disease virus vaccine[J].Veterinary Immunology and Immunopathology,2002,(89):159-167.
    [61]Chettle NJ,Stuart JC,Wyeth EJ.Outbreaks of virulent infectious bursal disease in East Angiia[J].Veterinary Record,1989,125:271-272.
    [62]Eterradossi N,Arnauld C,Toquin D,et ai.Critical amino acid changes in VP2 variable domain are associated with typical and a typical antigenicity in very virulent infectious bursal disease viruses[J].Arch Virol,1998,143(8):1627-1636.
    [63]曹永长,毕英佐。梁志清等.超强IBDV毒株宿主保护性抗原的分子特征.第二届海峡两岸禽 病防治研讨会论文集,1997,48-56.
    [64]李德山,武志强,陈冠春等.鸡传染性法氏囊病超强毒毒株的分离与鉴定[J].中国畜禽传染病,1991,6(6):3-6.
    [65]Muller H,Schnitzler D,Bemstein F,et al.Infectious bursal disease of poultry:antigenic structure of the virus and control[J].Vet Microbiol.,1992,33:175-183.
    [66]Cui.Bioloeical characterization of a very virulent infectious bursal disease virus isolated in China(Abstract)Proceedings Ⅻinternational congress of the world veterinary poultry association.Cairo-Egypt,2001.
    [67]Oppling V,Muller H,Becht H.Heterogeneity of the antigenic site responsible for the induction of neutralizing antibodies in infectious bursal disease virus[J].Arch Virol,1991,199:211-223.
    [68]乔素兰。中国传染性法氏囊病病毒分子流行病学及其毒力的研究[D].中国农业大学博士学位论文,2002.
    [69]Snyder DB,Vakharia VN,Savage PK.Naturally occuring-neutralizing monoclonal antibody escape variants define the epidemiology of infectious bursal disease viruses in the United States[J].Archives of urology,1992,127:89-101.
    [70]Jack'wood D J,Salf YM,Hughes HJ.Replication of infectious bursal disease virus in continuous cell lines[J].Avian Diseases,1987,31:370-375.
    [71]Schnitzler D,Bernstein F,Muller H,et al.T he genetic basis for the antigenicity of the VP2protein of the infectious bursal disease virus[J].J Gen Virol,1993,74:1563-1571.
    [72]Varharia VN,He J,Ahamed B,et al.Molecular basis of antigenic variation in infectious bursal disease virus[J].Virus Res,1994,31(2):265-273.
    [73]Vanden BTP,Gonze M,Morales D,et al.Relevance of antigenic variation for protection in infectious bursal disease.Proceedings of the International symposium on infectious bursal disease and chicken infectious anaemia.,Rauischholzhausen,Germany,1994,22-36.
    [74]Yamaguchi T,Kondo T,Inoshima Y,et al.In vitro attenuation of highly virulent infectious bursal disease virus:some characteristics of attenuated strains[J].Avian Diseases,1996,40:501-509.
    [75]Yamaguchi T,Ogawa M,lnoshima Y,et al.Identification of sequence changes responsible for the attenuation of highly virulent infectious bursal disease virus[J].Vitrology,1996,223:219-223.
    [76]Hassan MK Nielsen CK,Ward LA,et al.Antigenicity,pathogenicity and immunogenicity of small&large plaque infectious bursal disease virus clones[J].Avian Diseases,1996,40:832-836.
    [77]Kibenge FS,Jackwood DJ,Mercado CC.Nucleotide sequence analysis of genome segment A of IBDV[J].General Virology,1990,71:569-577.
    [78]Mundt E.Tissue culture infectivity of different strains of infections bursal disearse virus is determined by distinct amino acids in VP2[J].Gen.Virol,1999,80:2067-2076.
    [79]Vender MP,Snyder D,Lutticken D.Antigenic characterization of IBDV field isolates by their reactivity with a panel of monoclonal antibodies[J].Deutsch Tierarztl Wochenschrifl,1990,97:81-83.
    [80]Birghan C,Mundt E,Gorbalenya AE.A non-canonical Lon proteinase lacking the ATPase domain employs the Ser-Lys catalytic dyad to exercise broad control over the life cycle of a double-stranded RNA virus[J].EMBO Journal,2000,4:114-123.
    [81]Jagadish MN,Station V J,Hudson P J,et al.Birnavirus precursor polyprotein is expressed in Escherichia coli by its own virus-encoded polypeptide[J].Virology,1988,62:1084-1087.
    [82]Azad AA,Mekem NM,Macreadie IG,et al.Physicochemical and immunologica characterization of recombinant host-protective antigen(VP2)of infectious bursal disease virus[J].Vaccine,1991,9:715-722.
    [83]Vakharia VN,Snyder DB,He J,et al.Infectious bursal disease virus structural proteins expressed in a baculovirus recombinant confer protection in chickens[J].Gen Viral,1993,74:1201-1206.
    [84]Snyder DB,Vakharia VN,Savage PK.Naturally occuring-neutralizing monoclonal antibody escape variants define the epidemiology of infectious bursal disease viruses in the United States[J].Archives of urology,1992,127:89-101.
    [85]Bayliss CD,Peters RW,Cook JKA,et al.A recombinant fowlpox virus that expresses the VP2antigen of infectious bursal disease virus induces protection against mortality caused by the virus[J].Archives of Virology,1991,120:193-205.
    [86]Heine HG,Boyle DB.Infectious bursal disease virus structural protein VP2 expressed by a fowlpox virus recombinant confers protection against disease in chickens[J].Archives of Virology.1993,131:277-292.
    [87]姜平,陈溥言,蔡宝祥.传染性法氏囊病病毒VP2和VP3结构蛋白基因及其基因工程表达产物免疫学试验.第二界海峡两岸禽病防治研讨会论文集。1997,65-69.
    [88]Foder I,Horvath,E,Foder N,et al.Induction of protective immunity in chickens immunised with plasmid DNA encoding infectious bursal disease virus antigens.Acta Vet Hung,1999,47(4):481-92.
    [89]Yulong G,Wei L,Hung LG,et al.Effective inhibition of infectious bursal disease virus replication in vitro by DNA vector-based RNA interference[J].Antivirai Research,2007(accepted).
    [1]Sijen T,Fleenor J,Simmer F,et al.On the role of RNA amplification in dsRNA-triggered gene silencing[J].Cell,2001,107(4):465-476.
    [2]Hammond SM.Post-transcriptional gene silencing by double-stranded RNA[J].Nat Bey Genet,2001,2(2):110-119.
    [3]Jorgensen R.Altered gene expression in plants due to trans- or inter-action between homologous genes[J].Trends Biotechnol,1990,8(12):340-344.
    [4]Guo S,Kemphues KJ.Par-1,a gene required for establishing polarityin C.elegans embryos,encodes a putative Ser/Thr kinase that is asymmetrically distributed[J].Cell,1995,81(4):611-620.
    [5]Fire A,Xu S,Montgomery MK,et al.Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans[J].Nature,1998,391(6669):806-811.
    [6]Wasseneger M,Pelissier T.A model for RNA-mediated gene silencing in higher plants[J].Plant Mol Biol,1998,37(2):b349-362.
    [7]Smardon A,Spoerke JM,Stacey SC,et al.GO-1 is related to RNA-directed RNA polymerase and function in germ-line development and RNA interference in C.elegans[J].Curt Biol,2000,10(4):169-178.
    [8]Chades ES.Knock down by RNAi-proceed with caution[J].Naturebiotech-nology,2004,22(3):280-282.
    [9]Harmon GJ.RNA interference[J].Nature,2002,418(6894):244-251.
    [10]Tomari Y,Zamore PD.Pempective:machines for RNAi[J].Genes Dev,2005,19(5):517-529.
    [11]Reinhart B J,Barrel DP.Small RNAs correspond to centromere hetero-chromatic repeats[J].Science,2002,297(5588):1831.
    [12]Medema R.H.Optimizing RNA interference for application in mammalian cells[J].Biechem J, 2004,380(Pt3):593-603.
    [13]Tang G,Reinhart BJ,Barrel DP,et al.A biochemical framework for RNA silencing in plants [J].Genes Dev,2003,17(Ⅰ):49-63.
    [14]Scott KC,Merrett SL,Willard HF.A hetemchromatin barrier partitions the fission yeast centromere into discrete chromatin domains[J].CurrBiol,2006,16(2):119-129.
    [15]Wagner EJ,Gareia-Blanco MA.RNAi-mediated PTB depletion leads to enhanced exon definition[J].Mol Cell,2002,10(4):943-949.
    [16]Bagga S,Brachr J,Hunter S,et al.Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation[Y].Cell,2005,122(4):553-563.
    [17]Bracht J,Hunter s,Eachus R,et al.Trans-splicing and polyadenylafion of let-7 microRNA primary transcripts[J].RNA,2004,10(10):1586-1594.
    [18]Bartel DP.MicroRNAs:genomics,biogenesis,mechanism,and function.Cell,2004,116:281-297.
    [19]Li JX,Zhou KY.Recent advance of microRNA[J].Ping Biochem Biophys,2003,5:702-705.
    [20]Miller MA.Sperm and oocyte isolation methods for biochemical andproteomic analysis[J],Methods Mol Biol,2006,51:193-201.
    [21]Dickins RA,Hemann MT,Zilfou JT,et ai.Probing tumor phenotypes using stable and regulated synthetic microRNA precursors[J].Nat Genet,2005,37:1289-1295.
    [22]Ui-Tei,Naito K,Takahashi F,et ai.Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference.Nucleic Acids Res.2004,32(3):936-48.
    [23]Gidin L,Karelsky S,Andino R.Short interfering RNA confers intracellular antiviral immunity in human cells[J].Nature,2002,418(6896):430-434.
    [24]Shove O Jr,Rossi JJ.Expressing short hairpin RNAs in vivo[J].NatMethods,2006,3(9):689-695.
    [25]Rausch O.High content cellular screening[J].Curt Opin Chem Biol,2006,0(4):316-320.
    [26]Brummelkamp TR,Bemards R Agami R A system for stable expression of short interfering RNAs in mammalian cells[J].Science,2002,296(5567):550-553.
    [27]Gilmore IR,Fox SP,Hollins AJ,et al.Delivery strategies for siRNA bmediated gene silencing[J].Curr Drug Deliv,2006,3(2):147-145.
    [28]Gilmore IR,Fox SP,Hollins A J,et al.The design and exogenous delivery of siRNA for post-transcriptionai gene silencing[J].J Drug Target,2004,12(6):315-340.
    [29]Whitehouse A.Herpesvirus saimiri:a potential gene delivery vector(review)[J].Int J Mol Med,2003,11(2):139-148.
    [30]Simeoni F,Morris MC,Heitz F,et al.Insight into the mechanism of the peptide-based gene delivery system MPG:im plications for delivery of siRNA into mammalian cells[J].Nucleic Acids Res,2003,31(11):2717-2724.
    [31]He A,Schwarze SR,Mermelstein SJ,et al.Synthetic protein transduction domains:enhanced transduction potential in vitro and in vivo[y].Cancer Res,2001,61(2):474-477.
    [32]Richard JP,Melikov K,Vires E,et al.Cell-penetrating peptides,A reevaluation of the mechanism of cellular uptake[J].JBiol Chem,2003,278(1):585-590.
    [33]Thakker DR,Natt F,Husken D,et al.siRNA-mediated knock-down of the serotonin transporter in the adult mouse brain[J].Mol Psychiatry,2005,10(8):782-789,714.
    [34]McManus MT,Sharp PA.Gene silencing in mammals by small interference RNAs[J].Nat Rev Genet,2002,3(10):73%747.
    [35]Zhao LQ,Ping Z,Ming MC,et ai.siRNAs targeting terminal sequences of the SAgS-associated coronavirus membrane gene inhibit M protein expression through degradation of M mRNA[J].Journal of Virological Methods.2007,145(2):146-154.
    [36]Ibrahim F,Rohr J,Jeong WJ,et al.Untemplated oligoadenylation promo-tes degradation of RISC-cleaved transcripts[J].Science,2006,314(5807):1893.
    [37]Carpenter AE,Sabatini DM.Systematic genome-wide screens of gene function[J].Nature Rev Genet,2004,5(1):11-22.
    [38]Ambros V.The temporal control of cell cycle and cell fate in Caenorhabditis elegans[J].Novartis Found Symp,2001,237:203-214.
    [39]Wianny F,Zemicka-Goetz M.Specific interference with gene functionhy double-stranded RNA in early mouse development[J].Nat Cell Biol,2000,2(2):70-75.
    [40]Svoboda P,Stein P,Hayashi H,et al.Selective reduction of dormant matemal mRNAs in mouse oocytes by RNA interference[J].Development,2000,127(19):4147-4156.
    [41]Yakub 1,Lillibridge KNI,Moran A,et al.Single nucleotide polymorphisms in genes for 2' -5 '-oligoadenylate synthetase and RNase L inpatients hospitalized with West Nile virus infection[J].J Infect Dis,2005,192(10):1741-1748.
    [42]Elbashir SM,Harborth J,Lendeckel W,et al.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J].Nature,2001,411(6836):494-498.
    [43]Harborth J,Martinez J,Elbashir SM,et al.Analysis of mammalian gene function using small interfering RNAs[J].Nucleic Acids Res Suppl,2003,(3):333.
    [44]Akashi H,Matsumoto S,Miyagishi M,et al.Chemistry-based RNA technologies:demonstration of usefulness of libraries of ribozymes and short hairpin RNAs(StLRNAs)[J].Nucleic Acids Syrup Ser,2005,(49):91-92.
    [45]Miyagishi M,Taira K.U6 promoter-driven siRNAs with four uridine 3'over hangs efficiently suppress targeted gene expression in mammalian cells[J].Nat Biotech,2002,20(5):497-500.
    [46]Nieth C,Priebsch A,Stege A,et al.Modulation of the classical multidrug resistance(MDR)phenotype by RNA interference(RNAi)[J].FEBS Lett,2003,545(2-3):144-150.
    [47]Makinen P1,Koponen JK,Karkkainen AM,et al.Stable RNA interference:comparison of U6and H1 promoters in endothelial cells and in mouse brain[J].J Gene Med,2006,8(4):433-441.
    [48]Helle L,Hicks L,Song W,et al.Bcl-2 targeting siRNA expressed by a T7 vector system inhibits human tumor cell growth in vitro[J],lnt J Oncol,2004,24(3):615-621.
    [49]Miller VM,Xia H,Man's GL,et al.Allele-specific silencing of dominant disease genes[J].Proc Natl Acad Sci USA,2003,100(12):7195-7200.
    [50]Zender L,Hutker S,Liedtke C,et al.Caspase 8 small interfering RNA prevents acute liver failure in mice[J].Proe Natl Acad Sci USA,2003,100(13):7797-7802.
    [51]Song E,Lee SK,Wang J,et al.RNA interference targeting Fas protects mice from fulminant hepatitis[J].Nat Me,d,2003,9(3):347-351.
    [52]Sorensen DR,Lelrdal M,Sioud M.Gene silencing by systemic delivery of synthetic siRNAs in adult mice[J].J Mol Biol,2003,327(4):761-766.
    [53]Mackey ZB,O'Brien TC,Greenbaum DC,et al.A cathepsin B-like protease is required for host protein degradation in Trypanosoma brucei[J].J Biol Chem,2004,279(46):48426-48433.
    [54]McRobert L,McConkey GA.RNA interference inhibits growth of Plasmodium falcipamm[J].Mol Bioehem Parasitol,2002,119(2):273-278.
    [55]Bmmmelkamp TR.,Bernards R,Agami R.Stable suppression of tumorigenicity by virus-mediated RNA interference[J].Cancer Cell,2002,2(3):243-247.
    [56]Wang YH,Liu S,Zhang G,et al.Knockdown of c-myc expression by RNAi inhibits MCF-7breast tumor cells growth in vitro and in vivo[J].Breast Cancer Res,2005,7(2):R220-228.
    [57]Hemann MT,Fridman JS,Zilfou JT,et al.An epi-alhlic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo[J].Nat Genet,2003,33(3):396-400.
    [58]Jiang M,Milner J.Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells[J].Genes Dev,2003,17(7):832-837.
    [59]Zhang L,Yang N,Mohamed-Hadley A,et al.Vector-based RNAi,a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer[J].Biochem Biophys Res Commun,2003,303(4):1169-1178.
    [60]Fiileur S.siRNA-mediated inhibition of vascular endothelial growthT factor severely limits tumor resistance to antiangiogenic thromb-ospondin-1 and slows tumor vascularization and growth[J].Cancer Res,2003,63(14):3919-3922.
    [61]Storvold GL,Andemen TI,Perou CM,et al.siRNA:a potential tool for future breast cancer therapy?[J].Crit Rev Oncog,2006,12(1-2):127-150.
    [62]Belguise K,Kemual N,Galtier F,et al.FRA-1 expression level regulates proliferation and invasiveness of breast cancer cells[J].Oncogene,2005,24(8):1434-1444.
    [63]VanNoesel MM,Vemteeg R.Pediatric neuroblastomas:genetic and epigenetic'danse macabre [J].Gene,2004,325:1-15.
    [64]Witda M,Fuchs U,Wossmann W,et al.Killing of leukemic cells with a BCR/ABL fusion gene by KNA interference(RNAi)[J].Oncogene,2002,21:5716-5724.
    [65]Scher M,Battmer K,Winkler T,et al.Specific inhibition of bcr-abl gene expression by small interfering RNA[J].Bled,2003,101(4):1566-1569.
    [66]Yin JQ,Gao J,Shao R,et al.siRNA gents inhibit oncogene expression and attenuate haman tumor cell growth[J].J Exp TherOncol,2003,3(4):194-204.
    [67]Santoro M,Carlomagno F.Drug insight:Small-molecule inhibitors of protein kinases in the treatment of thyroid cancer[J].Nat Clin Pract Endocrinol Metab,2006,2(1):42-45.
    [68]Lan L,Hayashi T,Rabeya RM,et al.Functional and physical interactions between ERCCI and MSH2 cmplexes for resistance to cis-diamminedi-chloroplatinum(Ⅱ) in mammalian cells[J].DNA Repair(Amst),2004,3(2):135-143.
    [69]Brummelkamp TR,Nijman SM,Dirac AM,et al.Loss of the cylindromatosis turnout suppressor inhibits apoptosis by activating NF-κB[J].Nature,2003,424(6950):797-801.
    [70]Siegmund D,Begue B,Wajant H,et al.Implication of TNF-related apoptosis-inducing ligand in inflammatory intestinal epithelial lesions[J].Gastroenterology,2006,130(7):1962-1974.
    [71]Jacque JM,Stevenson M.The inner-nuclear-envelope protein emerin regulates HIV-Ⅰinfectivity[J].Nature,2006,441(7093):641-645.
    [72]Andemon J,Akkina R.HIV-Ⅰ resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector[J].AIDS Res Ther,2005,2(1):1.
    [73]Lee NS,Dohjima T,Bauer G,et al.Expression of small interfering RNAs targeted against HIV-1 rev transcripts in haman cells[J].Nat Biotechnol,2002,20(5):500-505.
    [74]Hung L,Kumar V.Specific inhibition of gene expression aid trans-activation functions of hepatitis B virus X protein and c-myc by small interfering RNAs[J].FEBS Lett,2004,560(1-3):210-214.
    [75]Randall G,Rice CM.Interfering with hepatitis C virus RNA replication[J].Virus Research,2004,102(1):19-25.
    [76]Jiang M,Milner J.Selective silencing of virual genen expression inHPV-positive haman cervical carcinoma cells treated with siRNA,a primer of RNA interference[J].Oncogene,2002, 21(39):6041-6048.
    [77]Lee NS,Rossi JJ.Control of HIV-Ⅰ replication by RNA interference[J].Virus Research,2004,102(1):53-58.
    [78]Baldwin CE,Berkhout B.Second site escape of a T20-dependent HIV-Ⅰ variant by a single amino acid change in the CD4 binding region of the envelope glycoprotein[J].Retrovirology,2006,3:84.
    [79]Ge Q,McManus MT,Nguyen T,et al.RNA interference of influenza virus production by directly targeting mRNA for degradation and indireedy inhibiting all viral RNA transcription[J].Proc Natl Acad Sci USA,2003,100(5):2718-2723.
    [80]Boudreau RL,Davidson BL.RNAi therapy for neumdegenerative diseases[J].Curt Top Dev Bioi,2006,75:73-92.
    [81]Smith C.Drug target validation:Hitting the target[J].Nature,2003,422(20):341-347.
    [82]Dykxhom DM.,Lieberman J.Running interference:prospects and obstacles to using small interfering RNAs as small molecule drugs[J].Annu Rev Biomed Eng,2006,8:377-402.
    [83]Shirane D,Sugao K,Namiki S,et al.Enzymatic production of RNAi libraries from cDNAs[J].Nat Genet,2004,36(2):190-196.
    [84]Lau NC,Seto AG,Kim J,et al.Characterization of the piRNA Complex from Rat Testes[J].Science,2006,21:363-367.
    [85]Girard A,Sachidanandam R,Harmon GJ,et al.A germline-specific class of small RNAs binds mammalian Piwi proteins[J].Nature,2006,442:199-202.
    [86]Aravin A,Gaidatzis D,Pfeffer S,et al.A novel class of small RNAs bind to MIL1 protein in mouse testes[J].Nature,2006,442:203-207.
    [87]付洁。宋海峰,钱小红.siRNA作为基因治疗药物的研究难题[J].中国新药杂志,2007,16(7):506-510.
    [1]Fire A,Xu S,Montgomery M K,et al.Potent and specific genetic interference by double-stranded RNA in Caenothabditls elegans[J].Nature,1998,391:808-811.
    [2]信吉阁,王晓洪,韩佃刚等.RNA干扰技术的应用研究进展[J].动物医学进展,2006,27(2):30-33。
    [3]Tijsterman M,Plasterk R.H.Dicer at RISC:the mechanism of RNAi[J].Cell.2004,17(1):1-3.
    [4]Elbashir S M,Harborth J,Lendeckel W,et al.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J].Nature,2001,411:494-498.
    [5]Donz O,Picard D.RNA interference in mammalian cells using siRNAs synthesized with T7RNA polymerese[J].Nucl Acid Res,2002,30(10):e46.
    [6]Yang D,Buchholz F,Huang Z D,et al.Short RNA duplexes produced by hydrolysis with Escherichia coli RNase Ill mediated effective RNA interference in mammalian cells[J].Proc Natl Acad Sci USA,2002,99(15):9942-9947.
    [7]Miyagishi M,Talra K.U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells[J].Nat Biotech,2002,19:497-500.
    [8]Castanotto D,Li H T,Rossi J J.Functional siRNA expression from transfected PCR products[J].RNA,2002,8:1454-1460.
    [9]张中华,侯永泰.siRNA制备技术的研究进展.生命科学[J],2004,16(4):231-235.
    [10]Brummelkarmp T R,Bernards R,Agami R.A system for stable expression of short interfering RNAs in mammalian cells[J].Science,2002(296):550-552.
    [11]Kudo T,Sutou S.Usage of putative chicken U6 promoters for vector-based RNA interference[J].Journal of reproduction and development,2005,51(3):411-417.
    [12]Sambrook J,Russel D W.Molecular Cloning A Laboratory Manual[M].Third Edition,New York:Cold Spring Harbor Laboratory Press,2002:73-76,96-99.
    [13]薛庆善主编.体外培养的原理与技术[M],科学出版社,2001:90-94.
    [14]Durocher Y,Perret S,Kamen A.High-level and high-throughout recombinant protein production by transient transfeetion of suspension-growing human 293-EBNAI cells[J].Nucleic Acids Research,2002,30(2) e9.
    [15]Bantounas I,Phylactou L A,Uney J B.RNA interference and the use of small interfering RNA to study gene function in mammalian systems[J].Molecular Endocrinology,2004,33:545-557.
    [16]Katahira T,Nakamura H.Gene silencing in chick embryos with a vector-based small interfering RNA system[J].Development Growth & Differentiation.2003 Aug;45(4):361-7.
    [17]Chesnutt C,Niswander L.Plasmid-based short-hairpin RNA interference in the chicken embryo [J].Genesis.2004,39:73-78.
    [18]Dai F,Yusuf F,Farjah G H,et al.RNAi-induced targeted silencing of developmental control genes during chicken embryogenesis[J].Developmental Biology.2005,285:80-90.
    [19]Das R M,Van Hateren N J,Howell G R,et AL.A robust system for RNA interference in the chicken using a modified microRNA operon[J].Developmental Biology.2006,294,(6):554-563.
    [20]Omi K,Tokunaga K.and Hohjoh H.Long-lasting RNAi activity in mammalian neurons[J].FEBS Lett.2004,558(1-3):89-95.
    [1]Fire A,Xu S,Montgomery M K,et al.Potent and specific genetic interference by double-stranded RNA in Caenothabditls elegans.Nature,1998,391:808-811.
    [2]信吉阁,王晓洪,韩佃刚等.RNA干扰技术的应用研究进展[J].动物医学进展,2006,27(2):30-33。
    [3]Tijsterman M,Plasterk R.H.Dicer at RISC:the mechanism of RNAi.Cell.2004,117(1):1-3
    [4]Elbashir S M,Harborth J,Lendeckel W,et al.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature,2001,411:494-498.
    [5]Donz O,Picard D.RNA interference in mammalian cells using siRNAs synthesized with T7RNA polymerase.Nucl Acid Res,2002,30(10):e46.
    [6]Yang D,Buchholz F,Huang Z D,et al.Short RNA duplexes produced by hydrolysis with Escherichia coli RNase Ⅲ mediated effective RNA interference in mammalian cells.Proc Natl Acad Sci USA,2002,99(15):9942-9947.
    [7]Miyagishi M,Talra K.U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells.Nat Biotech,2002,19:497-500.
    [8]Castanotto D,Li H T,Rossi J J。Functional siRNA expression from transfected PCR products.RNA,2002,8:1454-1460。
    [9]张中华,侯永泰.siRNA制备技术的研究进展。生命科学[J],2004,16(4):231-235.
    [10]Brummelkarmp T R,Bernards R,Agami R.A system for stable expression of short interfering RNAs in mammalian cells.Science,2002(296):550-552.
    [11]Kudo T,Sutou S.Usage of putative chicken U6 promoters for vector-based RNA interference.Journal of reproduction and development,2005,51(3):411-417.
    [12]Das R M,Van Hateren N J,Howell G R,et AL.A robust system for RNA interference in the chicken using a modified microRNA operon.Developmental Biology.2006.294,554-563.
    [13]Sambrook J,Russel D W.Molecular Cloning A Laboratory Manual.Third Edition,New York:Cold Spring Harbor Laboratory Press,2002:1.86-1.87,0.105-0.111,6.4-6.11.
    [14]Durocher Y,Perret S,Kamen A.High-level and high-throughout recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells.Nucleic Acids Research,2002,30(2) e9.
    [15]Bantounas I,Phylactou L A,Uney J B.RNA interference and the use of small interfering RNA to study gene function in mammalian systems.Molecular Endocrinology,2004,33:545-557.
    [16]Katahira T,Nakamura H.Gene silencing in chick embryos with a vector-based small interfering RNA system.Development Growth & Differentiation.2003 Aug;45(4):361-7.
    [17]Chesnutt C,Niswander L.Plasmid-based short-hairpin RNA interference in the chicken embryo.Genesis.2004,39:73 -78.
    [18]Dai F,Yusuf F,Farjah G H,et al.RNAi-induced targeted silencing of developmental control genes during chicken embryogenesis.Developmental Biology.2005,285:80-90.
    [19]Celia J,Diane F,Annie B,et al.Systematic Analysis of the Protein Interaction Network for the Human Transcription Machinery Reveals the Identity of the 7SK Capping Enzyme.Molecular cell.2007,27:262-274.
    [20]Kobayashi N,Matsui Y,Kawase A,et al.Vector-based in vivo RNA interference:dose- and time-dependent suppression of transgene expression.Journal of Pharmacology And Experimental Therapeutics.2004,308:688-693.
    [21].Inho Choi,Bum-Rae Cho,Donghee Kim,et al.Choice of the adequate detection time for the accurate evaluation of the efficiency of siRNA-induced gene silencing.Journal of Biotechnology.2005,120(3):251-261
    [1]Brummelkarmp T R,Bemards R,Agami R.A system for stable expression of short interfering RNAs in mammalian cells[J].Science,2002(296):550-552.
    [2]Paddison P J,Caudy AA,Bemstein E,et al.Short hairpin RNAs(shRNAs) induce sequence-specific silencing in mammalian cells[J].Genes Dev,2002,16:948-958.
    [3]Miyagishi M,Talra K.U6 promoter-driven siRNAs with four uridine 3'over hangs efficiently suppress targeted gene expression in mammalian cells[J].Nat Biotech,2002,20(5):497-500.
    [4]Lee NS,Dohjima T,Bauer G,et al.Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells[J].Nat Biotechnol,2002,20(5):500-505.
    [5]Paul CP,Good PD,Winer I,et al.Effective expression of small interfering RNA in human calls[J].Nat Biotechnol,2002,20:505-505.
    [6]Sui G.A DNA vector-based RNAi technology to suppress gene expression in mammalian cells[J].Proc.Natl.Acad.Sci,2002,99(8):5515-5520.
    [7]Sui G,Soohoo C,Affar el.B,et al.A DNA based RNAi technology to suppress gene expression in mammalian cells[J].Proc Natl Acad Sci USA,2002,99:6047-6052.
    [8]Kawasaki H,Taira K.Short hairpin type of dsRNAs that are controlled by tRNA~(val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cell[J].Nucleic Acids Res,2003,31:700-707.
    [9]Chesnutt C,Niswander L.Plasmid-based short-hairpin RNA interference in the chicken embryo [J].Genesis.2004,39:73-78.
    [10]Dal F,Yusuf F,Farjah G H,et al.RNAi-induced targeted silencing of developmental control genes during chicken embryogenesis[J].Developmental Biology.2005,285:80-90.
    [11]Katahira T,Nakamura H.Gene silencing in chick embryos with a vector-based small interfering RNA system[J].Development Growth & Differentiation.2003 Aug;45(4):361-7.
    [12]Bron R,Eickholt BJ,Vermeren M,Fragale N,et al.Functional knockdown of neuropilin-1 in the developing chick nervous system by siRNA hairpins phenocopies genetic ablation in the mouse[J].Dev Dyn.2004,230:299-308.
    [13]Das R M,Van Hateren N J,Howell G R,et AL.A robust system for RNA interference in the chicken using a modified microRNA operon[J].Developmental Biology.2006,294,(6):554-563.
    [14]王永娟,王安平。孙怀昌.人H1启动子转录shRNA的细胞种属特异性研究[J].扬州大学报.2007。28(3):1-5。
    [15]Ambro V,Bartel B,Bartel DP,et al.A uniform system for microRNA annotation[J].RNA,2003,9:277-299.
    [16]Bartel DP.MicroRNAs:genomics,biogenesis,mechanism,and function.Cell,2004,116:281-297.
    [17]Cullen BR.Transcription and processing of human microRNAs precursor[J].Mol Cell,2004,16:861-865.
    [18]Li JX,Zhou KY.Recent advance of microRNA[J].Pmg Biochem Biophys,2003,5:702-705.
    [19]Boden D,Pusch O,Silbermann R et al.Enhanced gone silencing of HIV-1 specific siRNA using microRNA designed hairpius[J].Nucleic Acid Res,2004,32:1154-1158.
    [20]Dickins RA,Hemann MT,Zilfou JT,et al.Probing tumor phenotypes using stable and regulated synthetic microRNA precursors[J].Nat Genet,2005,37:1289-1295.
    [21]Silva JM,Li MZ,Chang K,etal.Second-generation shRNA libraries covering the mouse and human genomes[J].Nat Genet,2005,37:1281-1288.
    [22]薛庆善主编。体外培养的原理与技术[M],科学出版社,2001:90-94.
    [23]Mcmanus MT,Petersen CP,Haines BB,et al.Gone silencing using micro-RNA designed hairpins[J].RNA,2002,8:842-850.
    [1]Sharma,J.M.,Kim,I.J.,Rautenschlein,S.,Yeh,H.Y.,2000.Infectious bursal disease virus of chickens:pathogenesis and immunosuppression.Dev.Comp.Immunol.24,223-235.
    [2]Snyder,D.B.,1990.Changes in the field status of infectious bursal disease virus.Avian Pathol.19:419-423.
    [3]Fire,A.,Xu,S.,Montgomery,M.K.,1998.Potent and specific genetic interference by double-stranded RNA in Caenothabditls elegans.Nature 391,806-811.
    [4]Meister,G.,Tuschl,T.,2004.Mechanisms of gene silencing by double-stranded RNA.Nature 431,343-349.
    [5]Martineau H.M.,2007.Invited review:Review of the application of RNA interference technology in the pharmaceutical industry.Toxicologic Pathology No.3,327-336.
    [6]Hung,C.F.,Lu,K.C.,Cheng,T.L.,Wu,R.H.,Huang,L.Y.,Teng,C.F.,Chang,W.T.,2006.A novel siRNA validation system for functional screening and identification of effective RNAi probes in mammalian cells.Biochemical and Biophysical Research Communication 346,707-720.
    [7]Murphy,F.A.,Fauquet,C.M.,Bishop,D.H.,1995.Virus taxonomy,classification and nomenclature of viruses.Sixth Report of the International Committee on Taxonomy of Viruses (Arch Virol Suppll0).New York:Springer Verlag.
    [8]Boot,H.J.,ter-Huurne,A.H.,Peeters,B.P.,2000.Generation of full-length cDNA of the two genomic dsRNA segments of infectious bursal disease virus.Virol.Methods 84,49-58.
    [9]Bottcher,B.,Kiselev,N.A.,Mashchuk,V,Y.,1997,Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy.J.Virol.71,325-330.
    [10]Caston,J.R.,Martinez,J.L.,Lombardo,E.,2001.C-terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the T number for capsid assembly.J.Virol.75,10815-10828.
    [11]Becht,H.,MOiler,H.,MOiler,H.K.,1998.Antigenic structure of the two serotypes of infectious bursal disease virus.J.Gen.Virol.69,631-640.
    [12]殷震,刘景华主编。分子病毒学(第二版).
    [13]Chert,P.Y.,Lu,Ch.,1996.Purification of dsRNA from infectious bursal disease virus.Journal of Nanjing Agricultural University 19,73-76.
    [14]萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯T,著.分子克隆实验指南。金冬雁,黎孟枫,译. 北京:科学出版社,1992.
    [15]Durocher,Y.,Petter,S.,Kamen,A.,2002.High-level and high-throughout recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells.Nucleic Acids Research 30,e9.
    [16]Micheal,T.,Mcmanus,P.,Christian,2002 Gene silencing using micro-RNA designed hairpins.RNA 8,842-850.
    [17]Rausch O.High content cellular screening[J].Curr Opin Chem Biol,2006,0(4):316-320.
    [18]Das,R.M,Van Hateren,N.J,Howell,G.R.,Farrell,E.R,Bangs,F.K.,2006.A robust system for RNA interference in the chicken using a modified microRNA operon.Developmental Biology 294,554-563.
    [19]Gao,Y.L.,Liu,W.,Gao,H.L.,Qi,X.L.,Wang,X.M.,Shen,R.X.,2007.Effective inhibition of infectious bursal disease virus replication in vitro by DNA vector-based RNA interference.Antiviral Research,accepted manuscript.
    [20]Giladi,H.,Ketzinel-Gilad,M.,Rivkin,L.,2003.Small interfering RNA inhibits hepatitis B virus replication in mice.Mol ther.8,769-876.
    [21]Hong,J.,Qian,Z.,Shen,S.,2005.High doses of siRNAs induce eri-1 and adar-1 gene expression and reduce the efficiency of RNA interference in the mouse.Biochem.390,675-679.
    [22]Peng,J.,Zhao,Y.,Mai,J.,2005.Inhibition of hepatitis B virus repli~tion by various RNAi constructs and their pharmacodynamic properties.Virol.86,3227-3234.
    [1]During MJ.Adeno-associated virus as a gene delivery system[J].Advanced Drug Delivery Reviews,1997,27:83-94.
    [2]Koeberl DD,Alexander IE,Halbert CL,et al.Persistent expression of human clotting factor Ⅸfrom mouse liver after intravenous injection of adeno-associated virus vectors[J].Proc Natl Acad Sci USA,1997,94:1426-1431.
    [3]Afione SA,Conrad CK,Kearns WG,et al.In vivo model of adeno-associated virus persistence and rescue[J].J Virol,1996,70:3235-3241.
    [4]Harrison PT,Dalziel RG,Ditchfield NA,et al.Neuronal-specific and nerve growth factor-inducible expression directed by the preprotachykinin-A promoter delivered by an adeno-associated virus vector[J].Neuroscience,1999,94:997-1003.
    [5]Rolling F,Shen WY,Tabarisa H,et al.Evaluation of adeno-associated virus-mediated gene transfer into the rat retina by clinical fluorescence photography[l].Hum Gene Ther,1999,10:641-648.
    [6]Xiao X,Li J,Samulski RJ.Efficient long term gene transfer into muscle tissue of immunocompetent mice by adeno-assooiated virus vector[J].J Virol,1996,70:8098-8108.
    [7]Bauer HJ,Monreal G.Herpesviruses provide helper functions for avian adeno-associated parvovirus[J].J Gen Vorol,1986,67:181-185
    [8]Bauer HJ,Schneider R,Gelderblom HR,et al.Biological and physicochemical characterization of the major(1.40) and minor(1.45) component of infectious avian adeno-associated virus[J].Arch Virol,1991,120:123-133.
    [9]Elbashir S M,Harborth J,Lendeckel W,et al.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J].Nature,2001,411:494-498.
    [10]Donz O,Picard D.RNA interference in mammalian cells using siRNAs synthesized with T7RNA polymerase[3].Nucl Acid Res,2002,30(10):e46.
    [11]Yang D,Buchholz F,Huang Z D,et al.Short RNA duplexes produced by hydrolysis with Escherichia coli RNase Ⅲ mediated effective RNA interference in mammalian cells[J].Proc Natl Acad Sci USA,2002,99(15):9942-9947.
    [12]Miyagishi M,Talra K.U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells[J].Nat Biotech,2002,19:497-500.
    [13]Castanotto D,Li H T,Rossi J J.Functional siRNA expression from transfected PCR products[J].RNA,2002,8:1454-1460.
    [14]张中华,侯永泰。siRNA制备技术的研究进展.生命科学[J],2004,16(4):231-235。
    [15]王安平。孙怀昌,王建业,王永娟等。表达绿色荧光蛋白报告基因重组禽腺联病毒的构建与鉴定[J].病毒学报.2007,23(4):292-297.
    [16]王建业,孙怀昌,朱国强。禽腺联病毒的分离及基因组鉴定[J].扬州大学学报,2005,26(2):1-4。
    [17]Yulong G,Wei L,Hong LG,et al.Effective inhibition of infectious bursal disease virus replication in vitro by DNA vector-based RNA interference[J].Antiviral Research,2007(accepted).
    [18]萨姆布鲁克,J,弗里奇E F,曼尼阿蒂斯T,著.分子克隆实验指南[M].金冬雁。黎孟枫,译.北京:科学出版社,1992.
    [19]Mizukami H,Okada T,Matsushita T,et al.A protocol for AAV vector production and purification.Division of Genetic Therapeutics[J],Center for Molecular Medicine,1998.
    [20]吴小兵,董小岩,伍志坚,等.一种快速高效分离和纯化重组腺病毒伴随病毒载体的方法 [J]。科学通报,2000,45(19):2071-2075.
    [21]Synder RO,Xiao X,Samulski RJ.Production of recombinant adeno-associated viral vectors.In:Dracopoli N,ed[J].Current Protocols in Human Genetics.New York:John Wiley,1996.
    [22]伍志坚,吴小兵,曹晖,等.一种高效的重组腺伴随病毒载体生产系统[J].中国科学,C辑,2001,31(5):423-429.
    [23]冯志新.南京农业大学博士论文.2007
    [24]甘肃农业大学主编.兽医微生物学实验指导[M].中国农业出版社,1979.
    [25]Nakai H,Herzog R W,Hagstrom J N,et al.Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver[J].Blood,1998,91:4600-4607
    [26]Qing K,Mah C,Hansen J,et al.Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2[.1].Nature Med,1999,5:71-77
    [27]Bossis I,Chiorin JA.Cloning of an avian adeno-associated virus(AAAV) and generation of recombinant AAAV particles[J]..1 Virol,2003,77(12):6799-6810.
    [28]Estevez C,Villegsa P.Sequence analysis,viral rescue from infectious clones and generation of recombinant virions of the avian adeno-associated virus[J].Virus Research,2004,105:195-208.
    [29]AP.Wang,HC.Sun,JY.Wang,YJ.Wang,WF.Yuan.Recombinant avian adeno-associated virus-mediated oviduct-specific expression of recombinant human tissue kallikrein[J].Poultry Science,2008,accepted.
    [30]During MJ.Adeno-associated virus as a gene delivery system[J].Advanced Drug Delivery Reviews,1997,27:83-94.
    [31]Michel U,Malik I,Ebert S,et al.Long-term in vivo and in vitro AAV-2-mediated RNA interference in rat retinal ganglion cells and cultured primary neurons[J].Biochemical and Biophysical Research Communications,2005,326(2):307-312.
    [32]金奇.医学分子病毒学.北京:科学出版社,2001.
    [33]Collaco RF,Cao X,Trempe JP.A belier virus-free packaging system for recombinant adeno-associated virus vectors[J].Gene,1999,238(2):397-405.
    [34]Jackwood D J,Sommer-Wagner SE.Molecular epidemiology of infectious bursal disease viruses:distribution and genetic analysis of newly emerging viruses in the United States.Avian Dis,2005,49(2):220-226.
    [35]Kibenge FS,Nagarajan MM,Qian B.Determination of the 5' and 3' terminal noncoding sequences of the bisegmented genome of the avibimavirus infectious bursal disease virus.Arch Virol.,1996,141:1133-1141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700