小麦全蚀病菌的遗传组成和病害的防治技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,小麦全蚀病和纹枯病在我国黄淮和长江下游麦区的发生呈上升趋势,现已成为该地区小麦上的主要病害。了解该地区小麦全蚀病菌组成、分布,对了解病害的发展和预测病害发生具有重要意义。为减少病害的危害,目前也急需对病害的控制技术进行筛选。
     为此,首先从黄淮麦区的河南、山东、安徽和江苏4省采集和分离了104株小麦全蚀病病菌,采用GGT-RP:NS5和GGA-RP:NS5两对特异性引物对病菌基因组DNA进行PCR扩增,从而鉴定这些菌株的变种类型。结果表明,所分离菌株都为禾顶囊壳小麦变种。对3种小麦全蚀病菌基因型的分析方法进行了比较,发现ITS序列分析的方法是禾顶囊壳小麦变种下分型的可靠方法。对核糖体rDNA部分序列进行的系统发育学分析结果表明,根据rDNA ITS1区的序列,供试菌株可划分为两个基因型,与国外小麦全蚀病菌基因型的分类描述有所不同,我们暂将这两个基因型命名为Q1和Q2型。所分离菌株中,Q1型菌数量高于Q2型。河南菌株中,2010年和2011年两种基因型菌株的比例不同,这种变化与病害发展和防控措施的实行有无关系还需进行进一步的研究。
     为了解该区域病菌的致病力,首先比较了小麦全蚀病菌致病力的3种接种测定方法和2种病情分级标准。比较结果表明,以蛭石为培养基质、麦种下2cm接种菌丝块的接种方法和0-6级的分级标准,可比较有效和准确的测定小麦全蚀病菌的致病力。对2010年和2011年分离自黄淮麦区的104株小麦全蚀病菌进行了致病力测定,结果表明供试菌株的致病力存在明显差异。不同地区菌群间致病力差异不显著,Q1型和Q2型菌株间的致病力没有显著差异。
     利用公共的真菌基因组数据库资源,对小麦全蚀病病菌G. graminis及与其亲缘关系较近的M. oryzae和M. poae三种真菌基因组中SSRs的结构类型、分布、丰度及最长序列等进行了系统分析并做了比较。结果表明:这三种真菌基因组中的SSRs非常丰富,分别为13221、9977和11422个。编码基因的序列中二、四、五核苷酸重复基序的SSRs丰富度要低于全基因组中SSRs的丰富度,而三、六核苷酸重复基序的SSRs丰富度要高于全基因组中SSRs的丰富度。G. graminis基因组中二、三、四、五、六核苷酸重复基序的SSRs丰富度要远高于M. oryzae和M. poae基因组中的同类SSRs,说明G. graminis基因组可能具有较高的变异度。本研究对禾谷顶囊壳小麦变种基因组中SSRs的丰度、出现频率及最长基序的分析为快速、便捷地设计多态性丰富的SSRs引物提供了有益的信息。
     在对已公布的禾顶囊壳小麦变种菌株R3-111a-1基因组中SSR组成和结构分析的基础上,选取不同核苷酸重复方式的较长重复基序,根据其两端的保守序列设计17条引物。利用2010年分离菌株对这些引物进行筛选,获得4对扩增多态性较好的引物G7、G9、G14、G17。这4个SSR标记共可以获得50个等位基因,每个基因座的等位基因数为2-7个,平均数为5个。应用以上的4个SSR标记对2010年从黄淮麦区分离的52个菌株进行了遗传分析。4个标记可把52个菌株分为两个大的簇。群体遗传分析的结果表明,江苏病菌群体的遗传多样性水平最高,其次为山东群体,河南和安徽群体的多样性水平最低。84%的变异来自于群体内,只有16%的变异来自于群体间,4个群体间的基因流(Nm)为2.604。以安徽和山东群体的遗传相似性最高。群体分析的结果说明,安徽和河南的小麦全蚀病菌可能分别来自于山东病区。
     杀菌剂种子处理是目前小麦全蚀病防治的主要方法,为了筛选高效安全的药剂。首先测定了多种杀菌剂对小麦全蚀病菌的抑菌活性,并对杀菌剂在不同浓度下的防效以及对小麦的安全性进行了盆栽试验。室内毒力测定结果表明:甾醇脱甲基化抑制剂类杀菌剂(DMIs)对小麦全蚀病病菌菌丝生长有显著的抑制作用,其中氟喹唑、氟环唑、三唑醇、咪鲜胺、戊唑醇和苯醚甲环唑的平均EC50值分别为0.03,0.03,0.06,0.07,0.10和0.24mg/L。盆栽试验结果表明:硅噻菌胺和苯醚甲环唑在推荐浓度下对小麦全蚀病有很好的防治效果,并且对小麦出苗、苗高没有显著影响;咯菌腈的防效与苯醚甲环唑相似,但对小麦出苗有轻微的抑制作用;其它几种杀菌剂对小麦全蚀病也能起到很好的防治效果,但是对小麦的生长有一定的抑制作用。从防治效果、对小麦安全性以及抗药性治理方面综合考虑,将硅噻菌胺、苯醚甲环唑和咯菌腈等交替或混合使用是防治小麦全蚀病比较好的策略。
     纹枯病是长江中下游小麦上的重要病害,稻秸秆还田是该地区广泛推广的农业栽培措施。为了解稻秸秆还田对小麦根围拮抗细菌和小麦纹枯病发生的影响,本研究通过多年的田间试验,利用基于培养的方法比较了稻秸秆还田2年和3年小区小麦根围和非根围的细菌和真菌群体。结果表明,稻秸秆还田可增加小麦根围和非根围的产荧光假单胞菌菌落形成单位的数量。稻秸秆还田土壤中的产荧光假单胞菌在总细菌中的比例高于非覆盖土壤。利用平板对对峙法测定了分离细菌菌株对禾谷丝核菌Rhizoctonia cerealis的拮抗作用,并根据16s rDNA的部分序列对菌株进行了鉴定。测定结果表明,与其他种的细菌相比,假单胞杆菌对禾谷丝核菌具有较强的拮抗作用,80%以上的小麦根围发荧光假单胞菌对禾谷丝核菌具有拮抗作用。稻秸秆还田小区的小麦纹枯病病情指数低于未还田小区。研究结果表明,稻麦轮作地区的稻秸秆还田可以增加土壤中的产荧光假单胞菌的群体数量,同时产荧光假单胞菌可以对小麦纹枯病的发生起控制作用。
The incidence of take-all caused by Gaeumannomyces graminis var. tritici (Ggt) and sharp eyespot caused by Rhizoctonia cerealis has been increasing in wheat growing areas of Huang-Huai and lower reaches of Yangtze river and becoming the important diseases of wheat recently. In order to predict and control the occurrence of wheat take-all, it is necessary to understand the genetic structure of the pathogen and the trend of population structure changes. It is also urgently needed to find the effective fungicides and other measures to prevent the disease.
     In the present study,104isolates of G graminis collected from Henan, Shandong, Anhui, and Jiangsu province in Huang-Huai wheat growing area were identified by amplifying the genomic DNA with two specific primers GGT-RP:NS5and GGA-RP:NS5, respectively. The results showed that all the isolates were G graminis var. tritici (Ggt) genotype. ITS sequencing was the most reliable method to analyze Ggt genotype. All tested isolates were distributed into two main genetic groups, named as Q1and Q2, respectively. Both of which were different from any isolates out of China. The genetic frequency in Q1was higher than that of in Q2. Q1/Q2frequencies in Henan province were different during2years. What resulted in the diffenence of Q1/Q2frequency in Henan province needs further study.
     To determine the virulence of Gaeumannomyces graminis isolates, three inoculation and two investigation methods were compared. The results suggested that the method with fungal-colonized agar plugs2cm below the wheat seeds combined with the0-6disease grade standard was better than the others, which presented appropriate disease severity and less standard error. The virulence of104G. graminis isolates collected from Henan, Jiangsu, Anhui, and Shandong province in2010and2011was then tested using the method mentioned above. The results showed that the virulence was different significantly among the isolates. There is no significant difference on virulence between populations collected from different provinces. The virulence between genotypes Q1and Q2has also no significant difference.
     Base on the public genome database, we examined the SSRs in the completely sequenced G. graminis var. tritici genome. The occurrences, relative abundance, relative density, the commonest, and the longest SSRs were analyzed, and compared with other plant pathogenic fungal species:Magnaporthe oryzae and M. poae. The results revealed that the SSRs were abundant in these three genomes, total of13221,9977and11422respectively. In the gene sequences, the Di-, Tetra-and Pentanucleotide repeats were less abundant than in the total genome sequences, while the Tri-and Hexanucleotide repeats were more abundant than in the total genome sequences. In the G. graminis var. tritici genome sequence, Di-, Tri-, Tetra-, Penta-and Hexanucleotide repeats were more abundant than the same repeats in M. oryzae and M. poae genome sequences, indicated that the G. graminis var. tritici maybe is a species with more genetic diversity. The analysis in this study provided new information that could be useful for a variety of applications in population genetics of G. graminis var. tritici.
     For analysis of genetic diversity and genetic structure of the take-all pathogen, based on the analysis of simple sequence repeats in genomes of Gaeumannomyces graminis var. tritici, we isolated longer SSR motifs of different repeat types and designed17primers for screening. Four SSRs markers with reproducible patterns and diversity between different Ggt isolates were developed. Their usefulness for gentic analysis was assessed on52isolates collected in2010from Huang-Huai wheat growing areas. Four markers displayed each from2to7alleles, with an average of5alleles per locus. Phylogenetic analysis based on these markers showed that55isolates could be clustered into2large clusters. Jiangsu population showed the highest level of genetic diversity, followed by Shandong, Henan and Anhui population.84%genetic variance was within populations. The gene flow (Nm) among populations was2.604.The genetic identities between Anhui and Shandong population was the highest.
     In order to screening the effective and safe fungicides for the control of wheat take-all, the inhibitory activity of different fungicides in vitro against the pathogen Gaeumammomyces graminis causing wheat take-all was tested, and control efficacy and safety of fungicides at different concentrations were also investigated in pot experiments. In vitro, sterol demethylation inhibitors fungicides (DMIs) exhibited better inhibitory activity in hypha growth of G. graminis, and the EC50values of fluquinconazole, flusilazole, riadimenol, prochloraz, tebuconazole and difenoconazole were0.03,0.03,0.06,0.07, 0.10and0.24mg/L, respectively. The results of pot experiments indicated that silthiopham and difenoconazole exhibited good control efficacy in controlling wheat take-all, and did not affect the emergence and height of seedlings. The control efficiency of fludloxonll was similar to that of difenoconazole, but slightly inhibited the emergence of seedling. The others also provided good control efficacy, but significantly inhibited the growth of the wheat seedlings. Taken together with the aspects of safety to wheat and resistance management, silthiopham, difenoconazole and fludloxonll were considered suitable for the control of wheat take-all, and should be used alternatively.
     Wheat sharp eyespot caused by Rhizoctonia cerealis is one of the main diseases in the lower reaches of the Yangtze River, where rice-wheat rotation has been adopted. To assess the effect of rice straw mulching on changes of antagonistic bacteria and the incidence of wheat sharp eyespot, a multi-year field study was performed to compare unmulched plots and plots mulched with rice straw for two or three years. Bacterial and fungal populations were evaluated in the cultures prepared from the wheat rhizosphere and bulk soil. Rice straw mulching increased the number of pseudomonas colony forming units (cfu) in wheat rhizosphere and bulk soil. The proportion of total bacteria that were fluorescent pseudomonads was higher in mulched than in unmulched soil. Bacterial isolates antagonistic to R. cerealis were identified using an inhibition zone test. A series of these isolates were typed by partial sequencing of the16S rRNA gene. Pseudomonads had higher antagonistic activity against R. cerealis than other species, and more than80%of rhizosphere fluorescent pseudomonads were antagonistic to R. cerealis. The disease indices in the mulched plots were lower than in the unmulched control. These suggest that rice straw mulching in a rice-wheat rotation increases the number of fluorescent pseudomonads. Additionally, these fluorescent pseudomonads may contribute to the control of wheat sharp eyespot.
引文
1. 曹启光,陈怀谷,杨爱国,等.秸秆覆盖对麦田细菌种群数量及小麦纹枯病发生的影响[J].土壤,2006,38(4):459~464.
    2. 陈怀谷,王裕中,史建荣,等.小麦全蚀病菌的生物学特性及其分离技术[J].江苏农业科学,1998:41-42.
    3. 陈怀谷,王裕中,史建荣,等.小麦全蚀病菌的致病力及寄主范围测定[J].江苏农业学报,2000,16:22-24.
    4. 陈厚德,王彰明,王裕中,等.江苏小麦全蚀病田间消长规律及轮作控病效果[J].江苏农学院学报,1995,16:35-38.
    5. 陈荣振,井长勤,冯国华,等.不同施肥方式对小麦纹枯病发生规律的影响[J].安徽农业科学,2003,31:275-276.
    6. 陈延熙,唐文华,张敦华,等.我国小麦纹枯病病原学的初步研究[J].植物保护学报,1986,13:39-44.
    7. 程水明,宋家永.复方适乐时拌种防治小麦纹枯病和全蚀病的试验研究.麦类作物学报,2002,22:76-79.
    8. 刁春友,缪荣蓉,陆云梅.江苏省小麦纹枯病发生区域分布原因探析[J].江苏农业科学,1998,(2):38-40.
    9. 刁春友,李希平,韩梅,等.江苏省麦类纹枯病发生情况回顾和影响因素探析.植保技术与推广,1999,(1):11-14.
    10.董建力,惠红霞,黄丽丽,等.小麦全蚀病抗性鉴定方法的优化及抗源筛选研究[J].西北农林科技大学学报、(自然科学版),2009,37:159-162.
    11.方正,陈怀谷,陈厚德,等.江苏省小麦纹枯病病原组成及其致病力研究[J].麦类作物学报,2006,26(1):117-120.
    12.高小宁,刘起丽,黄丽丽,等.超高产小麦品种(系)对全蚀病的抗性鉴定[J].云南农业大学学报,2002,17,426-427.
    13.高照良,商鸿生.小麦全蚀病发病因素研究进展[J].麦类作物,1999,19:63-63.
    14.郭春强,廖平安,葛昌斌,等[J].农艺措施对降低小麦纹枯病病情指数的效应[J].麦类作物学报,2008,28(3):537-540.
    15.郝详之,段剑勇,李林.小麦全蚀病及其防治[M],上海:上海教育出版社,1982.
    16.何中虎,夏先春,陈新民,等.中国小麦育种进展与展望.作物学报,2011,37:202-215.
    17.胡广淦.江苏省小麦纹枯病的研究现状[J].植物保护,1990,16(1):41-42.
    18.贾廷祥,吴桂本,叶学昶,等.我国小麦全蚀病的初步研究[J].中国农业科学,1982,15:65-73.
    19.贾廷祥,吴桂本,叶学昌,等.我国小麦全蚀病菌变种类型及其分布的初步研究[J].浙江大学学报(农业与生命科学版),1986,12:166-175.
    20.贾廷祥,吴桂本,刘传德,等.小麦纹枯病病原、发生规律及其防治研究[J].山东农业科学,1995,(5):36-38.
    21.李洪连,宋家永,吕国强,等.河南省小麦纹枯病发生规律及其综合防治技术研究[J].麦类作物,1999,19:57-60.
    22.李林泉,刘文娟,任寿美,等.小麦纹枯病的消长因素与防治对策[J].江苏农业科学,1995,(5):32-33.
    23.李强,王文彦.适乐时、敌萎丹悬浮种衣剂对小麦全蚀病的防治效果[J].西北农业学报,2003,12:123-126.
    24.李强,王保通,吴兴元,等.陕西省新育成品种(系)对小麦赤霉病抗性的分析[J].麦类作物学报,2009,29:712-715.
    25.李清铣等.江苏几种作物病原丝核菌生物学特性研究[J].江苏农学院学报,1988,9(3):23-26.
    26.李伟,陈怀谷,张爱香,等.核盘菌和灰葡萄孢基因组中的简单重复序列分析[J].遗传,2007,28:1154-1160.
    27.梁平彦,周淑敏.来源不同V-C组不同的小麦全蚀病菌病毒的特性[J].病毒学杂志,1989:68-75.
    28.刘荆,赵桂东.淮阴地区不同耕作条件下小麦纹枯病的发生及防治[J].江苏农业科学(增刊),1993.76-78.
    29.陆长婴,季明东,傅华欣,等.江苏省不同区域小麦纹桔病发生流行动态的模糊聚类分析[J].上海农业学报,2002,18:63-68.
    30.路兴波,吴洵耻,周凯南.小麦纹枯病危害损失及经济阈值的研究[J].山东农业大学学报,1995,26:503-506.
    31.罗家传,韦胜利,张伟,等.国审小麦新品种泛麦5号的选育及推广应用.农业科技通讯,2006:22-23.
    32.缪荣蓉,刁春友,张银贵,等.浅析覆盖稻草及秸杆还田对小麦纹枯病的控制作用.植保技术与推广,1998,1:10-12.
    33.齐永霞,丁克坚,陈方新,等.小麦纹枯病产量损失估计研究[J].植物保护,2006,32:46-48.
    34.任贤,杨德光,张曦燕,等.小麦全蚀病与抗性基因转移研究[J].作物杂志,2003:15-17.
    35.沈裕琥,黄相国,王海庆.秸秆覆盖的农田效应[J].干旱地区农业研究,1998,16(1):45-50.
    36.史建荣,王裕中,杨新宁.小麦纹枯病产量损失研究[J].江苏农业学报,1989,5(3):44-45.
    37.史建荣,王裕中,陈怀谷.小麦纹枯病品种抗性鉴定技术及抗病资源的筛选与分析[J].植物保 护学报,2000,(2):107-11.
    38.孙爱根.栽培因子对小麦纹枯病的综合效应及高产控病技术研究[J].安徽农业大学学报,2002,29:355-358.
    39.孙炳剑,袁虹霞,邢小萍,等.不同种子处理剂对小麦全蚀病的防治效果[J].麦类作物学报,2008,28:709-712.
    40.孙虎,李洪连,袁虹霞,等.不同小麦品种(系)对全蚀病的抗性鉴定和评价[J].河南农业科学,2004:52-54.
    41.孙虎,薛保国,杨丽荣,等.小麦全蚀病拮抗木霉ZBS6的分离、筛选及鉴定[J].河南农业科学,2010:79-83.
    42.孙静,宋玉立,何文兰,等.小麦全蚀病及其病原菌研究概况.河南农业科学,2010:134-137.
    43.檀根甲,丁克坚,季伯衡,等.小麦纹枯病菌氮素营养的研究[J].应用生态学报,1997,8(4):396-398.
    44.田春杰,陈家宽,钟扬.微生物系统发育多样性及其保护生物学意义[J].应用生态学报,2003,14:609-612.
    45.王保通,商鸿生,李强,等.硅噻菌胺拌种防治小麦全蚀病试验研究[J].西北农业学报,2005,14:26-28.
    46.王玲,王远宏,袁虹霞,等.小麦纹枯病生防放线菌株筛选及其防效初步研究[J].河南科学,2005,23:527-530.
    47.王美南,商鸿生.华山新麦草对小麦全蚀病菌的抗病性研究[J].西北农业大学学报,2000a,28:69-71.
    48.王美南,商鸿生.陕西小麦全蚀病菌变种类型及其主要特性[J].西北农业学报,2000b,9:78-82.
    49.王裕中,杨新宁,史建荣.麦类纹枯病防治研究-1.大小麦及其轮作物丝核菌的生物学特性与致病力比较[J].江苏农业学报,1986,2(4):29-35.
    50.王裕中,吴志凤,史建荣,等.江苏省小麦纹枯病发生规律与病害消长因素分析[J].植物保护学报,1994,21:109-114.
    51.王裕中.小麦纹枯病的发生与防治[J].植保技术与推广,2001,21:39-41.
    52.王怀训,王开运,姜兴印,等.25%敌力脱乳防治小麦纹枯病药效评价[J].农药科学与管理,2000,(2):45-48.
    53.夏正俊,顾本康,李清铣.江苏省大、小麦纹枯病病原学的初步研究[J].植物病理学学报,1989,19:23-25.
    54.邢彩云,胡锐,沙广乐,等.药剂拌种对小麦全蚀病的防效试验[J].河南农业科学,2010:74-75.
    55.邢小萍,汪敏,刘春元,等.不同小麦品种(系)对小麦纹枯病抗性动态研究[J].河南农业科学,2008,(12):85-88.
    56.杨卫星,袁虹霞,孙炳剑,等.小麦品种(系)对禾谷胞囊线虫抗性鉴定和评价[C].中国植物病理学会2007年学术年会论文集,杨凌:西北农林科技大学出版社.
    57.姚健民,王永成,朱有釭.全蚀病菌在玉米上的新变种[J].真菌学报,1992a,11:99-104.
    58.姚健民,曹鹏翔,李秀琴,等.玉米全蚀病发病规律的研究[J].植物病理学报,1992b,22:318.
    59.姚健民,李秀琴.我国北方玉米全蚀病菌变种类型研究[J].植物病理学报,1995,25:127-132.
    60.于汉寿,吴汉章,张益明,等.壳聚糖拌种对小麦生长及纹枯病发生的影响[J].江苏农业科学,1997,(6):9-11.
    61.袁红旭,商鸿生,井金学,等.小麦全蚀病菌不同致病力菌株的致病特点[J].植物保护学报,2003,30:353-357.
    62.张芳,刁春友,杨荣明.江苏省小麦纹枯病发生特点及防治技术[J].中国植保导刊,2008,28:14-16.
    63.张秋娥,曹克强,胡同乐,等.河北省小麦全蚀病菌变种类型鉴定[J].植物保护,2008,34:18-21.
    64.张学君,凌宏通,李洪连,等.生物农药麦丰宁B3对小麦纹枯病的抑制作用[J].植物病理学报,1994,24:361-366.
    65.张跃进,王建强,姜玉英,等.2007年全国农作物重大病虫害发生趋势预测[J].中国植保导刊,2007,27:32-35.
    66. Annis S L, Goodwin P H. Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. European journal of plant pathology,1997,103,1-14.
    67. Asher, M J C, Shipton P J. Biology and control of take-all, Academic Press,1981.
    68. Asirifi K N, Morgan W C, Parbery D G Suppression of sclerotinia soft rot of lettuce with organic soil amendments [J]. Australian Journal of Experimental Agriculture,1994,34:131-136.
    69. Augustin C, Ulrich K, Ward E, et al. RAPD-Based Inter-and Intravarietal Classification of Fungi of the gaeumannomyces-Phialophora Complex [J]. Journal of Phytopathology,1999,147:109-117.
    70. Aulakh M S, Khera T S, Doran J W, et al. Managing crop residue with green manure, urea, and tillage in a rice-wheat rotation. Soil Science Society of America Journal,2001,65:820-827.
    71. Bailey K L, Lazarovits G. Suppressing soil-borne diseases with residue management and organic amendments [J]. Soil & Tillage Research,2003,72:169-180.
    72. Ballinger D J, Kollmorgen J F. Control of take-all of wheat in the field with benzimidazole and triazole fungicides applied at seeding [J]. Plant Pathology,1986,35:67-73.
    73. Bateman G L, Hornby D, Payne R W, Nicholls P H. Evaluation of fungicides applied to soil to control naturally-occurring take-all using a balanced-incomplete-block design and very small plots [J]. Annals of Applied Biology,1994,124:241-251.
    74. Bateman G L, Ward E, Antoniw J F. Identification of Gaeumannomyces graminis var. tritici and G. graminis var. avenae using a DNA probe and non-molecular methods [J]. Mycological Research, 1992,96,737-742.
    75. Bateman G L, Ward E, Hornby D, et al. Comparisons of isolates of the take-all fungus, Gaeumannomyces graminis var. Tritici, from different cereal sequences using DNA probes and non-molecular methods [J]. Soil Biology and Biochemistry,1997,29,1225-1232.
    76. Bell A A, Wheeler M H. Biosynthesis and Functions of Fungal Melanins [J]. Annual Review of Phytopathology,1986,24,411-451.
    77. Blanch P A, Asher M J C, Burnett J H. Inheritance of pathogenicity and cultural characters in Gaeumannomyces graminis var. triti i [J]. Transactions of the British Mycological Society,1981,77: 391-399.
    78. Blair I D. Studies on the growth in soil and parasitic action of certain Rhizoctonia solani isolates from wheat [J]. Canadian Journal of Research,1942,20:174-185.
    79. Bockus W. Effects of fall infection by Gaeumannomyces graminis var. tritici and triadimenol seed treatment on severity of take-all in winter wheat [J]. Phytopathology,1983,73:540-543.
    80. Boerema G H, Verhoeven A A. Check-list for scientific names of common parasitic fungi. Series 2b: Fungi on field crops:cereals and grasses [J]. Netherlands Journal of Plant Pathology,1977,83: 165-204.
    81. Bonsall R F, Weller D M, Thomashow L S. Quantification of 2,4-Diacetylphloroglucinol Produced by Fluorescent Pseudomonas spp. In Vitro and in the Rhizosphere of Wheat [J]. Applied and Environmental Microbiology,1997,63:951-955.
    82. Bowyer P, Clarke B R, Lunness P, et al. Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme [J]. Science,1995,267:371-374.
    83. Bowyer P, Osbourn A E, Daniels M J. An "instant gene bank" method for heterologous gene cloning: complementation of two Aspergillus nidulans mutants with Gaeumannomyces graminis DNA [J]. Molecular and General Genetics,1994,242:448-454.
    84. Bruehl G W. Rhizoctonia solani in relation to cereal crown and root rots [J]. Phytopathology,1951, 41:375-377.
    85. Bryan G T, Daniels M J, Osbourn A E. Comparison of fungi within the Gaeumannomyce-Phialophora complex by analysis of ribosomal DNA sequences [J]. Applied and Environmental Microbiology,1995,61:681-689.
    86. Bryan G T, Labourdette E, Melton R E, et al. DNA polymorphism and host range in the take-all fungus, Gaeumannomyces graminis [J]. Mycological Research,1999 103,319-327.
    87. Buck K W, Cook R J, Deacon, J W, et al. Control of Plant Pathogens with Viruses and Related Agents [and Discussion] [J]. Philosophical Transactions of the Royal Society of London B, Biological Sciences,1988,318:295-317.
    88. Burpee L, Sanders P L Cole H Jr, Sherwood R T. Anastonosis groups among isolates of ceratobasidium cornigerum and related fungi [J]. Mycologia,1980,72:689-701.
    89. Burpee L. Rhizoctonia cerealis causes yellow patch of turfgrass [J]. Plant Disease,1980,64: 1114-1116.
    90. Bussaban B, Lumyong S, Lumyong P, et al. Endophytic fungi from Amomum siamense [J]. Canadian Journal of Microbiology,2001,47,943-948.
    91. Cain R F. Studies of fungi imperfecti:I. Phialophora [J]. Canadian Journal of Botany,1952,30, 338-343.
    92. Cannon P F, Kirk P M. Fungal families of the world (CABI Publishing).2007.
    93. Chen W, Hoitink H A J, Schmitthenner A F, et al. The role of microbial activity in suppression of damping-off caused by Pythium ultimum. Phytopathology,1988.78:314-322.
    94. Christensen N, Powelson R, Brett M. Epidemiology of wheat take-all as influenced by soil pH and temporal changes in inorganic soil N [J]. Plant and Soil,1987,98,221-230.
    95. Christensen N W, Brett M. Chloride and Liming Effects on Soil Nitrogen Form and Take-all of Wheat [J]. Agronomy Journal,1985,77:157-163.
    96. Chung Y R, Hoitink H A J, Dick W A, et al. Effects of organic matter decomposition level and cellulose amendment on the inoculum potential of Rhizoctonia solani in hardwood bark media [JJ. Phytopathology,1988,78:836-840.
    97. Clarkson D T, Drew M C, Ferguson I B, et al. The effect of the take-all fungus, Gaeumannomyces graminis, on the transport of ions by wheat plants [J]. Physiological Plant Pathology,1975,6: 75-84.
    98. Clarkson J D S, Cook R J. Effect of sharp eyespot on yield loss in winter wheat [J]. Plant Pathology, 1983,32:421-428.
    99. Coins T Q, Edens W A, Henson J M. Heavily-melanized variants of the sexual Gaeumannomyces graminis var. tritici are non-pathogenic and indistinguishable from the asexual, Phialophora state [J]. Mycological Research,2002,106:1179-1186.
    100. Conn K L, Lazarovits G. Impact of animal manures on verticillium wilt, potato scab, and soil microbial populations [J]. Canadian Journal of Plant Pathology,1999,21,81-92.
    101. Conner R L, Clapperton M J, Kuzyk A D. Control of take-all in soft white spring wheat with seed and soil treatments [J]. Canadian Journal of Plant Pathology,2000,22:91-98.
    102. Conner R L, Kuzyk A D. Evaluation of seed-treatment fungicides for control of take-all in soft white spring wheat [J]. Canadian Journal of Plant Pathology,1990,12:213-216.
    103. Cook R J. Take-all of wheat [J]. Physiological and Molecular Plant Pathology,2003,62:73-86.
    104. Cook R J, Thomashow L S, Weller D M, et al. Molecular mechanisms of defense by rhizobacteria against root disease [J]. Proceedings of the National Academy of Sciences,1995,92,4197-4201.
    105. Cromey M G, Parkes R A, Fraser P M. Factors associated with stem base and root disease of New Zealand wheat and barley crops [J]. Australasian Plant Pathology,2006,35:391-400.
    106. Cunfer B M, Buntin G D, Phillips D V. Effect of Crop Rotation on Take-all of Wheat in Double-Cropping Systems [J]. Plant Disease,2006,90,1161-1166.
    107. Daval S, Lebreton L, Gazengel K, et al. The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots [J]. Molecular Plant Pathology.2011,12: 839-854.
    108. Daval S, Lebreton L, Gazengel K, et al. Genetic evidence for differentiation of Gaeumannomyces graminis var. tritici into two major groups [J]. Plant Pathology,2010,59:165-178.
    109. Dawe A L, Nuss D L. Hypoviruses and chestnut blight:Exploiting Viruses to Understand and Modulate Fungal Pathogenesis [J]. Annual Review of Genetics,2001,35:1-29.
    110. Deacon J W. Phialophora radicicola and Gaeumannomyces graminis on roots of grasses and cereals [J]. Transactions of the British Mycological Society,1973,61:471-485.
    111. Deacon J W. Further studies on Phialophora radicicola and Gaeumannomyces graminis on roots and stem bases of grasses and cereals [J]. Transactions of the British Mycological Society,1974a, 63:307-327.
    112. Deacon J W. Interactions between varieties of Gaeumannomyces graminis and Phialophora radicicola on roots, stem bases and rhizomes of the Gramineae [J]. Plant Pathology,1974b,23: 85-92.
    113. Deacon J W. Biological control of the take-all fungus, Gaeumannomyces graminis, by Phialophora radicicola and similar fungi [J]. Soil Biology and Biochemistry,1976,8:275-283.
    114. Di Pietro A, Garcia-Maceira F I, Meglecz E, Roncero M I G. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis [J]. Molecular Microbiology,2001,39:1140-1152.
    115. Dufresne M, Osbourn A E. Definition of tissue-specific and general requirements for plant infection in a phytopathogenic fungus [J]. Molecular Plant-Microbe Interactions,2001,14:300-307.
    116. Edens W A, Goins T Q, Dooley D, et al. Purification and characterization of a secreted laccase of Gaeumannomyces graminis var. tritici [J]. Applied and Environmental Microbiology,1999,65: 3071-3074.
    117. Elliott M, Landschoot P. Fungi similar to Gaeumannomyces associated with root rot of turfgrasses in Florida [J]. Plant Disease,1991,75:238-241.
    118. Elliott M L. Determination of an etiological agent of bermudagrass decline [J]. Phytopathology, 1991,81:1380-1384.
    119. Elliott M L. Effect of melanin biosynthesis inhibiting compounds on Gaeumannomyces species [J]. Mycologia,1995,87:370-374.
    120. Epstein L, Kaur S, Goins T, et al. Production of hyphopodia by wild-type and three transformants of Gaeumannomyces graminis var. graminis [J]. Mycologia,1994,86:72-81.
    121. Feussner I, Kuhn H, Wasternack C. Lipoxygenase-dependent degradation of storage lipids [J]. Trends in Plant Science,2001,6:268-273.
    122. Fouly H, Wilkinson H. Detection of Gaeumannomyces graminis varieties using polymerase chain reaction with variety-specific primers [J]. Plant Disease,2000,84:947-951.
    123. Fouly H M, Wilkinson H T, Domier L L. Use of random amplified polymorphic DNA (RAPD) for identification of Gaeumannomyces species [J]. Soil Biology and Biochemistry,1996,28:703-710.
    124. Frederick B A, Caesar-Tonthat T C, Wheeler M H, et al. Isolation and characterisation of Gaeumannomyces graminis var. graminis melanin mutants [J]. Mycological Research,1999,103: 99-110.
    125. Freeman J, Ward E. Gaeumannomyces graminis, the take-all fungus and its relatives [J]. Molecular Plant Pathology,2004,5,235-252.
    126. Freeman J, Ward E, Gutteridge R J, et al. Methods for studying population structure, including sensitivity to the fungicide silthiofam, of the cereal take-all fungus, Gaeumannomyces graminis var. tritici [J]. Plant Pathology,2005,54,686-698.
    127. Frey M, Chomet P, Glawischnig E, et al. Analysis of a chemical plant defense mechanism in grasses [J]. Science,1997 277,696-699.
    128. Friebe A, Vilich V, Hennig L, et al. Detoxification of benzoxazolinone allelochemicals from wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum [J]. Applied Environmental Microbiology,1998,64,2386-2391.
    129. Gams W. Phialophore and some similar morphologically little-differentiated anamorphs of divergent ascomycetes [J]. Studies in Mycology,2000,45,187-199.
    130. Garbeva P, Silby M W, Raaijmakers J M, et al. Transcriptional and antagonistic responses of Pseudomonas fluorescens PfO-1 to phylogenetically different bacterial competitors [J]. The ISME Journal,2011a,5:973-985.
    131. Garbeva P, Tyc O, Remus-Emsermann M N P, et al. No Apparent Costs for Facultative Antibiotic Production by the Soil Bacterium Pseudomonas fluorescens PfO-1 [J]. PLoS One,2011b,6, e27266.
    132. Garcia C, Mathre D. Factors affecting control of take-all of spring wheat by seed treatment with sterol biosynthesis-inhibiting fungicides [J]. Plant Disease,1987,71,743-746.
    133. Gerlagh M. Introduction of Ophiobolus graminis into new polders and its decline [J]. European journal of plant pathology,1968,74:1-97.
    134. Gill J S, Sivasithamparam K, Smettem K R J. Soil moisture affects disease severity and colonization of wheat roots by Rhizoctonia solani AG-8 [J]. Soil Biology and Biochemistry,2001, 33:1363-1370.
    135. Glynne M D, Ritchie W M. Sharp eyespot of wheat caused by Corticium(Rhizoctonia) solani [J]. Nature (Lond.).1943,152:161.
    136. Goodwin P, Hsiang H, Xue B, et al. Differentiation of Gaeumannomyces graminis from other turf-grass fungi by amplification with primers from ribosomal internal transcribed spacers [J]. Plant Pathology,1995,44:384-391.
    137. Gould W D. New selective media for enumeration and recovery of fluorescent Pseudomonas from various habitats [J]. Applied and Environmental Microbiology,1985,49:28-32.
    138. Gutteridge R J, Jenkyn J F, Poulton P R. Occurrence of severe take-all in winter wheat after many years of growing spring barley, and effects of soil phosphate [J]. Aspects of Applied Biology,1996, 47:453-458.
    139. Haralampidis K, Bryan G, Qi X, et al. A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots [J]. Proceedings of the National Academy of Sciences, 2001,98:13431-13436.
    140. Harvey P R, Langridge P, Marshall D R. Genetic drift and host-mediated selection cause genetic differentiation among Gaeumannomyces graminis populations infecting cereals in southern Australia [J]. Mycological Research,2001,105:927-935.
    141. Henson J M. DNA hybridization and polymerase chain reaction (PCR) tests for identification of Gaeumannomyces, Phialophora and Magnaporthe isolates [J]. Mycological Research,1992,96: 629-636.
    142. Henson J M, Blake N K, Pilgeram A L. Transformation of Gaeumannomyces graminis to benomyl resistance [J]. Current Genetics,1988,14:113-117.
    143. Henson J M, Butler M J, Day A W. THE DARK SIDE OF THE MYCELIUM:Melanins of Phytopathogenic Fungi [J]. Annual Review of Phytopathology,1999,37:447-471.
    144. Herrick J B, Madsen E L, Batt C A, et al. Polymerase chain reaction amplification of naphthalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria [J]. Applied Envrionmental Microbiology,1993,59 (3):687-694.
    145. Hollins T W, Scott P R. Pathogenicity of Gaewnannomyces graminis isolates to wheat and rye seedlings [J]. Plant Pathology,1990,39:269-273.
    146. Hornby D, Bateman G L, International C. Take-all disease of cereals:a regional perspective (CAB International).1998.
    147. Hornby D, Bateman G L, Payne R W, et al. Field tests of bacteria and soil-applied fungicides as control agents for take-all in winter wheat [J]. Annals of Applied Biology,1993,122:253-270.
    148. Hornby D, Slope D B, Gutteridge R J, et al. Gaeumannomyces cylindrosporus, a new ascomycete from cereal roots [J]. Transactions of the British Mycological Society,1977,69:21-25.
    149. Hornsten L, Su C, Osbourn A E, et al. Cloning of linoleatediol synthase reveals homology with prostaglandin H synthases [J]. The Journal of Biological Chemistry,1999,274:28219-28224.
    150. Hornsten L, Su C, Osbourn A E, et al. Cloning of the manganese lipoxygenase gene reveals homology with the lipoxygenase gene family [J]. European Journal of Biochemistry,2002,269: 2690-2697.
    151. Howard R J, Ferrari M A, Roach D H, et al. Penetration of hard substrates by a fungus employing enormous turgor pressures [J]. Proceedings of the National Academy of Sciences,1991,88: 11281-11284.
    152. Howard R J, Valent B. Breaking and entering:Host Penetration by the Fungal Rice Blast Pathogen Magnaporthe grisea [J]. Annual Review of Microbiology,1996,50:491-512.
    153. Howe G A, Schilmiller A L. Oxylipin metabolism in response to stress [J]. Current Opinion in Plant Biology,2002,5:230-236.
    154. Hu S, van Bruggen A H C, Wakeman R J, et al. Microbial suppression of in vitro growth of Pythium ultimum and disease incidence in relation to soil C and N availability [J]. Plant Soil.1997, 195,43-52.
    155. Huang D, Lin Z, Chen X., et al. Molecular Characterization of a Triticum durum-Haynaldia villosa Amphiploid and Its Derivatives for Resistance to Gaeumannomyces graminis var. tritici [J]. Agricultural Sciences in China,2007,6:513-521.
    156. Huang L, Kang Z, Buchenauer H. Comparison of infection of wheat roots by Phialophora graminicola and Gaeumannomyces graminis var. tritici by ultrastructural and cytochemical studies [J]. Zeitschrifrift Pflanzenkrankheiten und Pflanzenschutz,2001,108:593-607.
    157. Huber S M, Lottspeich F, Kamper J. A gene that encodes a product with similarity to dioxygenases is highly expressed in teliospores of Ustilago maydis [J]. Molecular Genettics and Genomics,2002, 267:757-771.
    158. Innocenti G, Roberti R, Montanari M, et al. Efficacy of microorganisms antagonistic to Rhizoctonia cerealis and their cell wall degrading enzymatic activities [J]. Mycological Research,2003,107: 421-427.
    159. Jamil N, Buck K W, Carlile M J. Sequence relationships between Virus double-stranded RNA from isolates of Gaeumannomyces graminis in different vegetative compatibility groups [J]. Journal of General Virology,1984,65:1741-1747.
    160. Janvier C, Villeneuve F, Alabouvette C, et al. Soil health through soil disease suppression:Which strategy from descriptors to indicators [J]? Soil Biology and Biochemistry,2007,39:1-23.
    161. Jenkyn J F, Gutteridge R J, Jalaluddin M. Straw disposal and cereal diseases. In:Ecology of Plant Pathogens. Wallingford, UK:CAB International,1994,285-300.
    162. Jenkyn J F, Christian D G, Bacon E T G, et al. Effects of incorporating different amounts of straw on growth, disease and yield of consecutive crops of winter wheat grown on contrasting soil types [J]. Journal of Agricultural Science,2001,136:1-14.
    163. Jian J H, Lakshman D K, Tavantzis S M. Association of distinct double-stranded RNAs with enhanced or diminished virulence in Rhizoctonia solani infecting potato [J]. Molecular Plant-Microbe Interactions,1997,10:1002-1009.
    164. Juhnke M, Mathre D, Sands D. A selective medium for Gaeumannomyces graminis var. tritici [J]. Plant Disease,1984,68:233-236.
    165. Kang Z, Huang L, Buchenauer H. Cytochemistry of cell wall component alterations in wheat roots infected by Gaeumannomyces graminis var. tritici [J]. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz,2000,107:337-351.
    166. Kantety R V, La Rota M, Matthews D E, et al. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat [J]. Plant Molecular Biology, 2002,48:501-510.
    167. Karaoglu H, Lee C M Y, Meyer W. Survey of Simple Sequence Repeats in Completed Fungal Genomes [J]. Molecular Biology and Evolution,2005,22:639-649.
    168. Keel C, Schnider U, Maurhofer M, et al. Suppression of root diseases by Pseudomonas fluorescens CHA0:importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol [J]. Molecular Plant-Microbe Interaction,1992,5:4-13.
    169. Keel C, Weller D M, Natsch A, et al. Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations [J]. Applied and Environmental Microbiology,1996,62:552-563.
    170. Kennedy A C. Bacterial diversity in agroecosystems [J]. Agriculture, Ecosystems and Environment. 1999,74:65-76.
    171. Kim D S, Cook R J, Weller D M. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage [J]. Phytopathology,1997,87:551-558.
    172. Kohlmeyer J, Volkmann-Kohlmeyer B, Eriksson O. Fungi on Juncus roemerianus.4. New Marine Ascomycetes [J]. Mycologia,1995,87:532-542.
    173. Landschoot P J, Jackson N. Gaeumannomyces incrustans sp. nov., a root-infecting hyphopodiate fungus from grass roots in the United States [J]. Mycological Research,1989,93:55-58.
    174. Lebreton L, Gosme M, Lucas P, et al. Linear relationship between Gaeumannomyces graminis var. tritici (Ggt) genotypic frequencies and disease severity on wheat roots in the field [J]. Environment Microbiology,2007,9:492-499.
    175. Lebreton L, Lucas P, Dugas F, et al. Changes in population structure of the soilborne fungus Gaeumannomyces graminis var. tritici during continuous wheat cropping [J]. Environmental Microbiology,2004,6:1174-1185.
    176. Li YC, Korol A B, Fahima T, et al. Microsatellites:genomic distribution, putative functions and mutational mechanisms:a review [J]. Molecular Ecology,2002,11:2453-2465.
    177. Lim S, Notley-McRobb L, Lim M, et al. A comparison of the nature and abundance of microsatellites in 14 fungal genomes [J]. Fungal Genetics and Biology,2004,41:1025-1036.
    178. Lipps P E, Herr L J. Etiology of Rhizoctonia cerealis in sharp eyespot of wheat [J]. Phytopathology, 1982,72:1574-1577.
    179. Litvintseva A P, Henson J M. Characterization of two laccase genes of Gaeumannomyces graminis var. graminis and their differential transcription in melanin mutants and wild type [J]. Mycological Research,2002a,106:808-814.
    180. Litvintseva A P, Henson J M. Cloning, Characterization, and transcription of three laccase genes from Gaeumannomyces graminis var. tritici, the take-all fungus [J]. Applied and Environmental Microbiollogy,2002b,68:1305-1311.
    181. Lucas P, Jeuffroy M H, Schoeny A, et al. Basis for nitrogen fertilization management of winter wheat crops infected with take-all [J]. Aspects of Applied Biology,1997,50:255-262.
    182. Mazzola M. Transformation of soil microbial community structure and Rhizoctonia-suppressxve potential in response to apple roots [J]. Phytopathology,1999,89:920~927.
    183. Mazzola M, Granatstein D M, Elfving D C, et al. Suppression of specific apple root pathogens by Brassica napus seed meal amendment regardless of glucosinolate content [J]. Phytopathology,2001, 91:673-679.
    184. McMillan V E, Hammond-Kosack K E, Gutteridge R J. Evidence that wheat cultivars differ in their ability to build up inoculum of the take-all fungus, Gaeiumannomyces graminis var. tritici, under a first wheat crop [J]. Plant Pathology,2011,60:200-206.
    185. McSpadden Gardener B B, Mavrodi D V, Thomashow L S, et al. A rapid polymerase chain reaction-based assay characterizing rhizosphere populations of 2,4-diacetylphloroglucinol-producing bacteria [J]. Phytopathology,2001,91:44-54.
    186. Money N P, Caesar-TonThat T C, Frederick B, et al. Melanin synthesis is associated with changes in hyphopodial turgor, permeability, and wall rigidity in gaeumannomyces graminis var. graminis [J]. Fungal Genetics and Biology,1998,24:240-251.
    187. Moore K J, Cook R J. Increased take-all of wheat with direct drilling in the Pacific Northwest [J]. Phytopathology,1984,74:1044-1049.
    188. Morrissey J P, Osbourn A E. Fungal resistance to plant antibiotics as a mechanism of pathogenesis [J]. Microbiology and Molecular Biology Review,1999,63:708-724.
    189. Nie J, Zhou J M, Wang H Y, et al. Effect of long-term rice straw return on soil glomalin, carbon and nitrogen [J]. Pedosphere,2007,17:295-302.
    190. Niemeyer H M. Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the Gramineae [J]. Phytochemistry,1988,27:3349-3358.
    191. O'Dell M, Flavell R B, Hollins T W. The classification of isolates of Gaeumannomyces graminis from wheat, rye and oats using restriction fragment length polymorphisms in families of repeated DNA sequences [J]. Plant Pathology,1992,41:554-562.
    192. Ogoshi A, Oniki M, Sakai R, et al. Anastomosis grouping among isolates of binucleate Rhizoctonia [J]. Transactions ofMycological Socciety of Japan,1979,20:33-39.
    193. Ogoshi A, Oniki M, Araki T, et al. Studies on the anastomosis groups of binucleate Rhizoctonia and their perfect states [J]. Journal of the Faculty of Agriculture, Hokkaido University,1983,61: 244-260.
    194. Osbourn A. Saponins and plant defence-a soap story [J]. Trends in Plant Science,1996,1:4-9.
    195. Osbourn A E, Clarke B R, Dow J M, et al. Partial characterization of avenacinase from Gaeumannomyces graminis var. avenae [J]. Physiological and Molecular Plant Pathology,1991, 38:301-312.
    196. Osbourn A E, Clarke B R, Lunness P, et al. An oat species lacking avenacin is susceptible to infection by Gaeumannomyces graminis var. tritici [J]. Physiological and Molecular Plant Pathology,1994,45:457-467.
    197. Osunlaja S O. Effect of organic soil amendments on the incidence of stalk rot of maize caused by Macrophomina phaseolina and Fusarivm moniliforme [J]. Journal of Basic Microbiology.1990,30, 753-757.
    198. Pankhurst C E, McDonald H J, Hawke B G, et al. Effect of tillage and stubble management on chemical and microbiological properties and the development of suppression towards cereal root disease in soil from two sites in NSW [J]. Australia. Soil Biology and Biochemistry,2002,34: 833-840.
    199. Papadopoulou K, Melton R E, Leggett M, et al. Compromised disease resistance in saponin-deficient plants [J]. Proceedings of the National Academy of Sciences,1999,96: 12923-12928.
    200. Parmeter J R, Sherwood R T, Platt W D. Anastomosis grouping among isolates of Thanatephorus cucumeris [J]. Phytopathology,1969,59:1270-1278.
    201. Peakall R O D, Smouse P E. Genalex 6:genetic analysis in Excel. Population genetic software for teaching and research [J]. Molecular Ecology Notes,2006,6:288-295.
    202. Pilgeram A, Henson J. Transformation and cotransformation of Gaeumannomyces graminis to phleomycin resistance [J]. Phytopathology,1990,80:1124-1129.
    203. Pilgeram A L, Goins T, Henson J M. The fate of integrated DNA in Gaeumannomyces graminis transformants [J]. FEMS Microbiology Letters,1993,113:309-314.
    204. Pilgeram A.L, Henson, J.M. Sexual crosses of the homothallic fungus Gaeumannomyces graminis var.tritici based on use of an auxotroph obtained by transformation [J]. Experimental Mycology, 1992,16:35-43.
    205. Pitt D. Studies on sharp eyespot disease of cereals:Effects of the disease on the wheat host and the incidence of disease in the field [J]. Annal of Applied Biology,1964,54:77-89.
    206. Prew R D, Ashby J E. Effects of incorporating or burning straw, and of different cultivation systems, on winter wheat grown on two soil types[J].Journal of Agricultural Science,1995,124,173-194.
    207. Raaijmakers J M, Bonsall R F, Weller D M. Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat [J]. Phytopathology,1999,89:470-475.
    208. Raaijmakers J M, Weller D M. Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp.in take-all decline soils [J]. Molecular Plant-Microbe Interaction,1998,11: 144-152.
    209. Raaijmakers J M, Weller D M, Thomashow L S. Frequency of antibiotic-producing Pseudomonas spp. in natural environments [J]. Applied and Environmental Microbiology,1997,63:881-887.
    210. Rachdawong S, Cramer C L, Grabau E A, et al. Gaeumannomyces graminis vars. avenae, graminis, and tritici. Identified using PCR amplification of avenacinase-like genes [J]. Plant Disease,2002, 86:652-660.
    211. Rassmann K, Schlotterer C, Tautz D. Isolation of simple-sequence loci for use in polymerase chain reaction-based DNA fingerprinting [J]. Electrophoresis,1991,12:113-118.
    212. Reis E M, Cook R J, McNeal B L. Effect of mineral nutrition on take-all of wheat [J]. Phytopathology,1980,72:224-229.
    213. Rodgers-Gray B S, Shaw M W. Substantial reductions in winter wheat disease caused by addition of straw but not manure to soil [J]. Plant Pathology,2000.49:590-599.
    214. Rodgers-Gray B S, Shaw M W. Reductions in winter wheat diseases are not related to changes in the saprophytic phylloplane microflora [J]. Plant Pathology,2001,50:537-545.
    215. Roget D K, Coppi J A, Herdina, et al. Assessment of suppression to Rhizoctonia solani in a range of soils across SE Australia. In:Proceedings of the First Australasian Soil-Borne Disease Symposium. BSES, Brisbane.1999,129-130.
    216. Roose-Amsaleg C L, Garnier-Sillan E, Harry M. Extraction and purification of microbial DNA from soil and sediment samples [J]. Applied Soil Ecology,2001,18:47-60.
    217. Rothrock C S. Take-all of wheat as affected by tillage and wheat-soybean doublecropping [J]. Soil Biology and Biochemistry,1987,19:307-311.
    218. Rothrock C S, Cunfer B M. Absence of take-all decline in double-cropped fields [J]. Soil Biology and Biochemistry,1986,18:113-114.
    219. Rothrock C S, Langdale G W. Influence of nonhost summer crops on take-all in double-cropped winter wheat [J]. Plant Disease,1989,73:130-132.
    220. Sanguinetti C J, Dias Neto E., Simpson A J. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels [J]. Biotechniques,1994,17:914-921.
    221. Sarniguet A, Lucas P, Lucas M. Relationships between take-all, soil conduciveness to the disease, populations of fluorescent pseudomonads and nitrogen fertilizers [J]. Plant and Soil,1992a, 145:17-27.
    222. Sarniguet A, Lucas P, Lucas M, et al. Soil conduciveness to take-all of wheat:Influence of the nitrogen fertilizers on the structure of populations of fluorescent pseudomonads [J]. Plant and Soil, 1992b,145:29-36.
    223. Schesser K., Luder A., Henson J M. Use of Polymerase chain reaction to detect the take-all fungus, Gaeumannomyces graminis, in infected wheat plants [J]. Applied Environmental Microbiology, 1991,57:553-556.
    224. Schoeny A, Jeuffroy M-H, Lucas, P. Influence of take-all epidemics on winter wheat yield formation and yield Loss [J]. Phytopathology,2001,91:694-701.
    225. Schoeny A, Lucas P. Modeling of take-all epidemics to evaluate the efficacy of a new seed-treatment fungicide on wheat [J]. Phytopathology,1999,89:954-961.
    226. Sheng X, Yang F, Zheng G, et al. Efficacy of MON65500 for controlling take-all of irrigated spring wheat in Northcentral China [J]. Crop Protection,2001,20:345-349.
    227. Singh G, Jalota, S K, Sidhu B S. Soil physical and hydraulic properties in a rice-wheat cropping system in India:effects of rice-straw management [J]. Soil Use and Management,2005,21:17-21.
    228. Smalla K, Wieland G, Buchner A, et al. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoreses:plant-dependent enrichment and seasonal shifts revealed [J]. Applied and Environmental Microbiology,2001,67:4742-4751.
    229. Smiley R W, Cook R J. Relationship between take-all of wheat and rhizosphere pH in soils fertilized with ammonium vs. nitrate-nitrogen [J]. Phytopathology,1973,63:882-890.
    230. Smit E, Leeflang P, Glandorf B, et al. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis [J]. Applied and Environmental Microbiology,1999,65:2614-2621.
    231. Smit E, Leeflang P, Gommans S, et al. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods [J]. Applied and Environmental Microbiology,2001,67:2284-2291.
    232. Sorensen J, Jensen L E, Nybroe O. Soil and rhizosphere as habitats for pseudomonas inoculants: new knowledge on distribution, activity and physiological state derived from micro-scale and single-cell studies [J]. Plant and Soil,2001,232:97-108.
    233. Souza J T, Weller D M, Raaijmakers J M. Frequency, diversity and activity of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in Dutch take-all decline soils [J]. Phytopathology,2003,93:54-63.
    234. Steffens W, Fuhr F, Kraus P, et al. Uptake and distribution of Baytan in spring barley and spring wheat after seed treatment [J]. Pflanzen Schutz-Nachrichten,1982,35:171-188.
    235. Stern R E, Jones J P. Sharp eyespot of wheat in Arkansas caused by Rhizoctonia solani [J]. Plant Disease Report,1978,62:56-60.
    236. Su C, Oliw E H. Purification and characterization of linoleate 8-dioxygenase from the fungus Gaeumannomyces graminis as a novel hemoprotein [J]. Journal of Biological Chemistry,1996,271: 14112-14118.
    237. Su C, Oliw E H. Manganese lipoxygenase [J]. Journal of Biological Chemistry,1998,273: 13072-13079.
    238. Toth G, Gaspari Z, Jurka J. Microsatellites in different eukaryotic genomes:survey and analysis [J]. Genome Research,2000,10:967-981.
    239. Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes [J]. Nucleic Acids Research,1984,12:4127-4138.
    240. Tautz D, Schlotterer C. Simple sequences [J]. Current Opinion in Genetics & Development,1994,4: 832-837.
    241. Thomashow L S, Weller D M. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici [J]. Journal of Bacteriology,1988,170: 3499-3508.
    242. Thomashow L S, Weller D M, Bonsall R F, et al. Production of the antibiotic phenazine-1-carboxylic Acid by fluorescent pseudomonas species in the rhizosphere of wheat [J]. Applied and Environment Microbiology,1990,56:908-912.
    243. Thornton C R, Dewey F M, Gilligan C A. Production and characterization of a monoclonal antibody raised against surface antigens from mycelium of Gaeumannomyces graminis var. tritici: evidence for an extracellular polyphenol oxidase [J]. Phytopathology,1997,87:123-131.
    244. Turner E M. Ophiobolus graminis Sacc. Var. Avenae var.n., as the cause of take all or whiteheads of oats in Wales [J]. Transactions of the British Mycological Society,1940,24:270-281.
    245. Ulrich K, Augustin C, Werner A. Identification and characterization of a new group of root-colonizing fungi within the Gaeumannomyces-Phialophora complex [J]. New Phytologist, 2000,145:127-135.
    246. von Arx J A, Olivier D L. The taxonomy of Ophiobolus graminis Sacc [J]. Transactions of the British Mycological Society,1952,35:29-33.
    247. Van der Hoveven E P, Bollen G J. Effect of benomyl on soil fungi associated with rye. I. Effect on the incidence of sharp eyespot caused by Rhizoctonia cerealis [J]. European Journal of Plant Pathology,1980,3:163-180.
    248. Walker J. Type studies on Gaeumannomyces graminis and related fungi [J]. Transactions of the British Mycological Society,1972,58:427-457.
    249. Walker J. Take-all disease of gramineae:A review of recent work [J]. Review of Plant Pathology, 1975,54:113-144.
    250. Walker J. Gaeumannomyces, Linocarpon, Ophiobolus and several other genera of scolecospored ascomycetes and Phialophora conidial states, with a note on hyphopodia [J]. Mycotaxon,1980,11: 1-129.
    251. Ward E. Improved polymerase chain reaction (PCR) detection of Gaeumannomyces graminis including a safeguard against false negatives [J]. European journal of plant pathology,1995,101: 561-566.
    252. Ward E, Bateman G L. Comparison of Gaeumannomyces-and Phialophora-like fungal pathogens from maize and other plants using DNA methods [J]. New Phytologist,1999,141:323-331.
    253. Weller D M. Pseudomonas biocontrol agents of soil borne pathogens:Looking back over 30 years [J]. Phytopathogy,2007,97:250-256.
    254. Werker A R, Gilligan C A. Analysis of the effects of selected gronomic factors on the dynamics of the take-all disease of wheat in field plots [J]. Plant Pathology,1990,39:161-177.
    255. Weste G. The process of root infection by Ophiobolus graminis [J]. Transactions of the British Mycological Society,1972,59:352-353.
    256. Wetzel III H, Dernoeden P, Millner P. Identification of darkly pigmented fungi associated with turfgrass roots by mycelial characteristics and RAPD-PCR [J]. Plant Disease,1996,80:359-364.
    257. Wilkes M A, Marshall D R, Copeland L. Hydroxamic acids in cereal roots inhibit the growth of take-all [J]. Soil Biology and Biochemistry,1999,31:1831-1836.
    258. Willetts H J. A comparison between Ophiobolus graminis and Ophiobolus graminis van Avenae [J]. Transactions of the British Mycological Society,1961,44,504-510.
    259. Wiseman B M, Neate S M, Keller K O, et al. Suppression of Rhizoctonia solani anastomosis group 8 in Australia and its biological nature [J]. Soil Bioogyl and Biochemistry,1996,28:727-732.
    260. Wong P T W. Effect of temperature on growth of some avirulent fungi and cross-protection against the wheat take-all fungus [J]. Annals of Applied Biology,1980,95:291-299.
    261. Wong P T W. Gaeumannomyces wongoonoo sp. nov., the cause of a patch disease of buffalo grass (St Augustine grass) [J]. Mycological Research,2002,106:857-862.
    262. Wong P T W, Mead J A, Holley M P. Enhanced field control of wheat take-all using cold tolerant isolates of Gaeumannomyces graminis van graminis and Phialophora sp. (lobed hyphopodia) [J]. Plant Pathology,1996,45:285-293.
    263. Wong P T W, Siviour T R. Control of Ophiobolus patch in Agrostis turf using avirulent fungi and take-all suppressive soils in pot experiments [J]. Annals of Applied Biology,1979,92:191-197.
    264. Yang M-M, Mavrodi D V, Mavrodi O V, et al. Biological Control of Take-All by Fluorescent Pseudomonas spp. from Chinese Wheat Fields [J]. Phytopathology,2011,101:1481-1491.
    265. Yeates J S. Ascospore length of Australian isolates of Gaeumannomyces graminis [J]. Transactions of the British Mycological Society,1986,86:131-136.
    266. Yeates J S, Fang C S, Parker C A. Distribution and importance of oat-attacking isolates of Gaeumannomyces graminis var. Tritici in Western Australia [J]. Transactions of the British Mycological Society,1986,86:145-152.
    267. Yeates J S, Parker C A. In vitro reaction of Australian isolates of Gaeumannomyces graminis to crude oat extracts [J]. Transactions of the British Mycological Society,1986,86:137-144.
    268. You M P, Sivasithamparam K. Changes in microbial populations of an avocado plantation mulch suppressive of Phytophthora cinnamomi [J]. Applied Soil Ecology,1995,2:33-34.
    269. Zhang W, Han D Y, Dick W A, et al. Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis [J]. Phytopathology,1998,88:450-455.
    270. Zhou X G, Everts K L. Suppression of Fusarium wilt of watermelon by soil amendment with hairy vetch [J]. Plant Disease,2004,88:1357-1365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700