南北样带温带区主要树种功能性状地理分异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物地理分布格局一直以来是生态学研究的重点内容。植物功能性状不但反映了植物对生境条件的响应和适应,而且能够将环境、植物和生态系统结构、过程与功能联系起来。在全球气候变化的背景下,通过分析植物功能性状与环境的关系,可以更好认识植物分布格局变化的环境驱动机制,为预测未来植被的发展趋势提供理论依据。中国东部南北样带作为全球15条陆地样带之一,环境梯度的变化造就了其特有的植被分布格局,而在南北样带温带区,栎属不同树种由北至南呈现出地理替代分布现象。本研究的目的就是在总体了解南北样带温带区主要树种功能性状地理分异特征的基础上,以南北样带温带区优势栎属树种为主要研究对象,探讨栎属树种生活史不同阶段的功能性状沿环境梯度的变化格局,揭示栎属树种地理替代分布的环境驱动机制。基于此,开展了4个方面的研究:(1)南北样带温带区主要树种功能性状与环境条件的关系;(2)南北样带温带区栎属树种功能性状沿环境梯度的变化格局;(3)南北样带温带区栎属树种种子性状对环境条件的响应和适应;(4)南北样带温带区栎属树种幼苗功能性状的变化差异。主要研究方法和结果如下:
     (1)选取南北样带温带区11个地点的55种主要分布树种为研究对象,采用简单线性回归和多元线性逐步回归方法,分析主要树种功能性状与环境因子之间的关系,同时采用标准化主轴法分析功能性状间的关系,对南北样带温带区主要树种功能性状的地理分异特征进行探讨。结果表明:气候条件和土壤因子分别从不同方面驱动树种功能性状的变化分异,气候因子相对于土壤因子解释了更多功能性状的变化。随降水量的降低和土壤磷含量的增加,叶片干物质含量和比叶重均表现为增加的趋势;随日照时数的增加和土壤氮含量的降低,叶片单位重量氮含量增加;随土壤有机质含量和日照时数的增加,叶片单位重量磷含量增加;温度是制约树皮胸径比变化的唯一因素,随温度降低树皮厚度增加;而叶片钾含量在研究区域内没有显著变化。同时,功能性状间的关系更好的反映了主要树种的适应策略,叶片干物质含量和比叶重较高的树种能很好的生存在水分资源相对匮乏的生境里;叶片氮含量、磷含量较高的树种,用快速的养分循环来适应环境;而叶片钾含量也是南北样带温带区主要树种生长的关键因子。
     (2)通过查阅栎属树种的标本,提取南北样带温带区23个地点的12种栎属树种的叶片形态信息,采用相关分析和标准化主轴分析方法,探讨了南北样带温带区栎属树种叶片形态性状沿气候梯度的变化,并结合已有对南北样带温带区栎属树种功能性状的研究,进一步讨论了成年林木阶段栎属树种地理分异的环境驱动机制。总体上,在南北样带温带区,栎属树种的叶片形态性状沿气候梯度发生显著的变化。叶片大小和叶片分裂程度随温度的降低和日照时数的增加而增加;随温度的增加和日照时数的减少,叶脉密度呈增加的趋势;随降水的增加,叶脉密度也逐渐增加。而且,栎属树种叶片形态性状相互关联,在有限资源下采用最优的叶片形态以最大化生长,叶片大小是关键的形态性状,与叶柄长度和叶片分裂程度显著正相关,与叶脉密度显著负相关;而随叶片倾向于长条状发展,叶柄长度和叶脉密度也随之增加。综合多个研究结果表明,气候条件的制约作用造成了南北样带温带区栎属树种的地理分布格局,栎属树种通过调节形态、结构和生理等性状的变化适应环境。
     (3)选取南北样带温带区9个核心分布区的优势栎属树种作为研究对象,野外实地采集多种栎属树种的种子,通过测定种子的质量和化学组成,分析种子性状沿环境梯度的变化格局及其种子化学组成间的关系,结果发现:气候条件是驱动栎属树种种子性状变化的主要因素,这与栎属树种叶片功能性状与环境关系类似,而气候因子中温度的驱动作用较大,日照时数次之。种子质量较大的栎属树种更倾向分布于低温和长日照的样带北部区域;随温度降低,种子中淀粉含量积累减少的同时,多种抗寒物质如蛋白质、可溶性糖和脯氨酸等逐渐增加。而且,栎属树种为适应环境而调整种子的化学组成具有同步性,蛋白质、可溶性总糖和脯氨酸者相互正相关,而三者均与淀粉负相关。
     (4)对采集于不同核心分布区的优势栎属树种的种子进行田间栽培实验,选择南北样带温带区的中部作为田间实验点,保证均一环境条件的同时,尽量减小环境胁迫对实验的影响。以均一环境下1年生幼苗为对象,研究比较种内及种间功能性状的变化差异,分析幼苗功能性状与成熟林木功能性状之间的关系,进一步讨论种子质量对幼苗生长性状的影响作用。结果发现:栎属树种功能性状的种内差异较小,种间差异性较大,种间变异系数高于种内,而且相同环境下幼苗的功能性状与原生地成年林木功能性状的相关性较低。种子质量对幼苗叶片功能性状的影响较小,而对生物量及其分配(根冠比)的影响较大。
     本研究全面分析了南北样带温带区主要树种和栎属树种功能性状的地理分异特征,结果表明即使在相同尺度上,不同研究对象也存在不同的响应和适应机制,而对植物生活史的不同阶段,环境条件的影响作用也存在差异。这证实了植物物种分布格局的形成和变化并不是随机的和偶然的,环境条件在影响植物的同时,植物通过表观形态、结构组成和生理功能等一系列的权衡调节对环境进行响应,不同生活史阶段也形成不同的适应策略,从而在适宜区域进行定居、生长和繁衍。
The study of geographical distribution pattern has long been important in ecology. Plantfunctional traits not only reflect the response and adopt of plants to habitat conditions, but alsoconnect the environment to plants and the structure, process and function of ecological system.Under the background of global climate change, studies on the relationships between plantfunctional traits and environment can better understand the driving mechanism of theenvironment to the changes of plant distribution pattern, and provide the theoretical basis topredict the future trend of vegetation development. The North-South Transect of Eastern China(NSTEC) is one of15land belts in the world, with the unique vegetation distribution patternhere created by the environmental change. In temperate zone of NSTEC, the distribution ofQuercus trees presents a geographical vicarism pattern.
     Hence, the purpose of this study was to analyze the pattern of functional traits change ofmain tree species along the environmental gradient, discuss the adaptive strategy of main treespecies, and then reveal the mechanism of the Quercus trees geographical vicarism at differentlife-history stages. This study included four aspects:(1) the relationships between theenvironmental conditions and functional traits of main tree species;(2) the change pattern offunctional traits of Quercus trees along the environmental gradient;(3) the response andadaptation of seeds traits of Quercus trees to the environmental conditions;(4) thedifferentiation of functional traits of Quercus trees seedling. The study was conducted intemperate zone of NSTEC, which includes two climatic zones, so the change of climate isdramatic.
     The main research methods and results were as follows:
     (1) To study the geographic differentiation of functional traits of main tree species intemperate zone of NSTEC,55kinds of main tree species at11sites were sampled. SimpleLinear Regression and Multiple Linear Stepwise Regression were used to analysis relationships between the functional traits and environmental factors, and Standardised Major Axis was usedto analysis relationships among the functional traits. The results showed that compared to thesoil factor, the climate factors play a greater role in driving the change of traits. With thedecrease of precipitation and the increase of soil phosphorus content, leaf mass per area (LMA)and leaf dry matter content (LDMC) tended to increase; leaf nitrogen content (Nmass) increasedwith the increase of sunlight time and the decrease of soil nitrogen content; leaf phosphoruscontent (Pmass) increased with the increase of soil organic matter content and sunlight time;temperature was the only factor to drive the change of ratio of bark to diameter at breast height,the thickness of bark increased with the decrease of temperature; leaf potassium content (Kmass)didn’t change significantly in the study area. In addition, the relationships among functionaltraits reflected the adaptative strategies of main tree species, such as the tree species of highLMA and LDMC could live better in the habitat of lack of water, as their ability to useenvironmental resources are stronger; tree species which are higher Nmassand Pmass, adapte tothe environment with slower speed of nutrient circulation; and Kmass was also the key factorwhich affect the growth of main tree species.
     (2) Through refering to plant specimens, the leaf morphological information of12kindsof Quercus species at23sites was got. Pearson Correlation analysis was used to analysis thechange of leaf morphological traits of Quercus trees along the gradient of climate, andStandardised Major Axis method was used to discuss the relationships among leafmorphological traits. In addition, the other studies of functional traits of Quercus trees wereused to discuss the environment driving mechanism of Quercus trees geographic differentiation.On the whole, leaf morphological traits of Quercus trees changed significantly along thegradient of climate. Leaf areas and dissection of leaf margin increased with temperaturedropping and sunlight time increasing; leaf vein density increased with the increases oftemperature and precipitation,while decreased with the increase of sunlight time. Moreover,leaf morphological traits were relative to each other, and Quercus trees develop the optimalleaf morphology to grow maximumly with limited resources. The leaf size was the most important morphological traits: it correlated positively with petiole length and dissection ofleaf margin, but negatively with leaf vein density; when leaf tend to become the elongatedshape, the petiole length and leaf vein density also increased. The integration of several studiesindicated that the distribution pattern of Quercus trees is restricted primarily by climate,Quercus trees are adapted to the environment by adjusting the change of traits of morphology,structure and physiology.
     (3) In order to reveal the change pattern of seed traits of Quercus trees along environmentgradient and the relationship among seed chemical compositions, Quercus species from9coredistribution areas were selected in temperate zone of NSTEC. Seeds were collected in the field,and then seed mass and chemical compositions were measured. The results showed that climatewas the main affective condition on the change of seed traits, while temperature was the mostimportant climate factor, and the sunlight time took second place. The kind of Quercus treeswhich seed mass is heavier tended to distribute in northern area of temperate zone of NSTECof low temperature and long sunlight time. With decreasing of temperature, the accumulationof starch content decreased, but some cold-tolerant substances such as protein, soluble sugarand proline increased gradually. Furthermore, the adaptive strategy of Quercus trees byadjusting changes of seed chemical compositions was also synchronized, as there were positiverelationships among the content of soluble sugar, protein and praline, and all of them werenegative relations with starch.
     (4) The seeds which collected from different core distribution areas of Quercus trees werepretreated and sown in the same environment. In order to minimize effect of environmentalstress on the study, the central site in temperate zone of NSTEC was choose as the site ofcommon garden experiments.1year seedlings of Quercus trees are acted as research objects tocompare the difference and variation of different functional traits in intra-species andinter-species, and the relationships between functional traits of seedlings and mature trees areanalyzed, and the relationships between seed mass and seedlings traits are discussed. Theintraspecies differences of all functional traits were smaller than the interspecies difference, and so were the variation coefficients, and all functional traits of seedling were weaklycorrelation with mature trees. Seed mass was little effect on leaf functional traits of seedling,but important influence on the biomass and its allocation (RSR).
     As all the results proved, the formation and change of plant species distribution pattern arenot random and accident, the environment can influence plants functional traits. Meanwhile,plants respond and adapt to environment through a series of modulation of morphology,structure and physiological function, and develop different adaptation strategies in differentgrowth phases, so plants are able to establish, grow and reproduce in the appropriate location.
引文
Ackerly D D, Knight C A, Weiss S B, et al. Leaf size, specific leaf area and microhabitat distribution ofchaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia,2002,130:449~457
    Adams J M, Green W A, Zhang Y. Leaf margins and temperature in the North American flora: recalibratingthermometer. Global and Planetary Change,2008,60:523~534
    Aerts R, Chapin III F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes andpatterns. Advances in Ecological Research,2000,30:1~67
    Aerts R, Cornelissen J H C, Dorrepaal E. Plant performance in a warmer world: general responses of plantsfrom cold, northern biomes and the importance of winter and spring events. Plant Ecology,2006,182:65~77
    Aizen P B, Ezcurra C. Do leaf margins of the temperate forest flora of southern South America reflect awarmer past? Global Ecology and Biogeography,2008,17:164~174
    Andrea R P, Wolfgang A, Jurg S. Seed weight increases with altitude in the Swise Alps between relatedspecies but not among populations of individual species. Oecologia,2005,144:55~61
    Baas P, Ewers F W, Davis S D, et al. Evolution of xylem physiology. In: The Evolution of Plant Physiology(eds Hemsley A R&Poole I). Elsevier Academic Press, London, San Deigo,2004:273~295
    Baker-Brosh K F, Peet R K. The ecological significance of lobed and toothed leaves in temperate forest trees.Ecology,1997,78:1250~1255
    Baraloto C, Forget P M, Goldberg D E. Seed mass, seedling size and Neotropical tree seedling establishment.Journal of Ecology,2005,93:1156~1166
    Barboni D, Harrison S P, Bartlein P, et al. Relationships between plant traits and climate in theMediterranean region: A pollen data analysis. Journal of Vegetation Science,2004,15:635~646
    Bjork R G, Majdi H, Klemedtsson L, et al. Long-term warming effects on root morphology, root massdistribution, and microbial activity in two dry tundra plant communities in northern Sweden. Newphytologist,2007,176:862~873
    Bond W J, Wilgen B W V. Fire and plants. Chapman and Hall, London, UK,1996
    Brokaw N, Busing R T. Niche versus chance and tree diversity in forest gaps. Trends in Ecology andEvolution,2000,15:183~188.
    Burns K C. Patterns in specific leaf area and the structure of a temperate heath community. Diversity andDistributions,2004,10:105~112
    Butler D W, Green R J, Lamb D, et al. Biogeography of seed-dispersal syndromes, life-forms and seed sizesamong woody rain-forest plants in Australia’s subtropics. Journal of Biogeography,2007,34:1736~1750
    Castro-Díez P, Villar-Salvador P, Pérez-Rontomé C, et al. Leaf morphology and leaf chemical composition inthree Quercus(Fagaceae) species along a rainfall gradient in NE Spain. Trees,1997,11:127~134
    Cavender-Bares J, Kitajima K, Bazzaz F A. Multiple trait associations in relation to habitat differentiationamong17Floridian oak species. Ecological Monographs,2004,74(4):635~662
    Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum. Ecology Letters,2009,12:351~366
    Cordell S, Goldstein G, Meinzer F C, et al. Regulation of leaf life-span and nutrient use efficiency ofMetrosidero polymorpha trees at two extremes of a long chronosequence in Hawaii. Oecologia,2001,127:198~206
    Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardized and easymeasurement of plant functional traits worldwide. Australian Journal of Botony,2003,51:335~380
    DeFrenne P, Kolb A, Graae B J, et al. A latitudinal gradient in seed nutrients of the forest herb Anemonenemorosa. Plant Biology,2011,13(3):493~501.
    Delatte E, Chabrerie O. Seed dispersal efficiency of forest herbaceous plant species by the ant Myrmicaruginodis. Comptes Rendus Biologie,2008,331:309~320
    Díaz S, Cabido M. Plant functional types and ecosystem function in relation to global change. Journal ofVegetation Science,1997,8:463~474
    Díaz S, Cabido M. Vive la difference: plant functional diversity matters to ecosystem processes. Trends inEcology and Evolution,2001,16(11):646~655
    Doaz S, Mcintyre S, Lavorel S, et al. Does hairiness matter in Harare? Resolving controversy in globalcomparisons of plant trait responses to ecosystem disturbance. New phytologist,2002,154:7~9.
    Diza S, Cabido M, Casanoves F. Plant functional traits and environmental filters at a regional scale. Journalof Vegetation Science,1998,9:113~122
    Donohue K. Completing the cycle: maternal effects as the missing link in plant life histories. PhilosophicalTransactions. Royal Society B,2009,364:1059~1074
    D rffling K, Schulemburg S, Lesselich G, et al. Abscisic acid and proline levels in cold hardened winterwheat leaves in relation to variety-specific differences in freezing resistance. J. Agr. Crop Sci.,1990,165:230~239
    Dormann C F. Modelling Species Distributions. Modelling complex ecological dynamics: An introductioninto Ecological Modelling (ed. by Jopp F&Reuter H&Breckling B).Springer,2011
    Dornbos D L Jr., Mullen R E. Soybean seed protein and oil contents and fatty acid composition adjustmentsby drought and temperature. J.Am.Oil Chem.Soc.,1992,69:228~231.
    Falster D S, Br nnstr m A, Dieckmann U, et al. In uence of four major plant traits on average height,leaf-area cover, net primary productivity, and biomass density in single-species forests: a theoreticalinvestigation. Journal of Ecology,2011,99:148~164
    Falster D S, Warton D I, Wright I J. SMATR: Standardised Major Axis Tests&Routines. Version2.0,Copyright.2006. http://www.bio.mq.edu. au/ecology/SMATR/index. html. Cited12Oct.2008.
    Feild T S, Sage T L, Czerniak C, et al. Hydathodal leaf teeth of Chloranthus japonicas (Chloranthaceae)prevent guttation~induced flooding of the mesophyll. Plant, Cell&Environment,2005,28:1179~1190.
    Flaster D S, Westoby M. Alternative height strategies among45dicot rain forest species from tropicalQueensland, Australia. Journal of Ecology,2005,93:21~535
    Givnish T J, Montgomery R A, Goldstein G. Adaptive radiation of photosynthetic physiology in theHawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points.American Journal of Botany,2004,91:228~246
    Givnish T J. Leaf and canopy adaptations in tropical forests. In: Medina E, Mooney H A, Vasquez-Yanes C,eds. Physiological ecology of plants of the wet tropics. The Hague, the Netherlands: Dr. W. JunkPublishers,1984,51~84
    Golombek S, Sridhar R, Singh U. Effect of soil temperature on the seed composition of three Spanishgenotypes of groundnut. J. Agric. Food Chem,1995,43(8):2067~2070
    Hanley M E, Cordier P K, May O, et al. Seed size and seedling growth: differential response of Australianand British Fabaceae to nutrient limitation. New Phytologist,2007,174:381~388
    Harmon M E, Franklin J F, Swanson F J, et al. Ecology of coarse woody debris in temperate ecosystems. Adv.Ecol. Res.,1986,15:133~302
    He J S, Wang Z H, Wang X P, et al. A test of the generality of leaf trait relationships on the Tibetan Plateau.New Phytologist,2006a,170:835~848
    Hodgson J G, Wilson P J, Hunt R, et al. Allocating C-S-R plant functional types: a soft approach to a hardproblem. Oikos,1999,85:282~294
    Hubbell S. The unified neutral theory of biodiversityand biogeography. Princeton University Press, Princeton,New Jersey, USA,2001
    Huff P M, Wilf P, Azumah E J. Digital future for paleoclimate estimation from fossil leaves? Preliminaryresults. Palaios,2003,18:266~274
    IPCC (Intergovernmental Panel on Climate Change). Summary for policymakers. In:Sol omon S, Qin D,Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller HL eds.Climate Change2007: ThePhysical Science BnSis. Contribution of Working Group I to the Fourth Assessment Report oftheIntergovernmental Panel on Climate Change. Cambridge University Press, New York,2007
    Jacobs B F. Estimation of rainfall variables from leaf characters in tropical Africa Palaeogeography,Palaeoclimatology, Palaeoecology,1999,145:231~250
    Jolivet C, Bernasconi G. Experimental analysis of constitutive and induced defense in a plant–seed–predatorsystem. Functional Ecology,2006,20:966~972
    Keddy P A. Assembly and response rules: two goals for predictive community ecology. Journal ofVegetation Science,1992,3:157~164
    Khuran E, Sagar R, Singh J S. Seed size: a key trait determining species distribution and diversity of drytropical forest in northern India. Acta Oecologica,2006,29:196~204
    Kikuzawa K, Ackerly D. Significance of leaf longevity in plants. Plant Species Biology,1999,14,39~45
    Kikuzawa K. Leaf phenology as an optimal strategy for carbon gain in plants. Canadian Journal of Botany,1995a,73:158~163
    Kikuzawa K. The basis for variation in leaf longevity of plants. Vegetatio,1995b,121:89~100
    Koch G W, Scholes R J, Steffen W L. The IGBP Terrestrial Transects: Science Plan. IGBP Report No.36,The International Geosphere-Biosphere Programme, Stockholm,1995,61.
    Koerselman W, Meuleman A P M.The vegetation N:P ratio: A new tool detect the nature of nutrientlimitation. The Journal of Applied Ecology,1996,33(6):1441~1450
    Kozlowski T T. Carbohydrate sources and sinks in woody plants. Bot. Rev.,1992,58:107~122
    Krebs C J. Ecology: the experimental analysis of distribution and abundance,5th edn. Benjamin-Cummings,Zug, Switzerland,2002
    Lambers J H R, Clark J S, Beckage B. Density-dependent mortality and the latitudinal gradient in speciesdiversity. Nature,2002,417:732~735
    Lavovrel S, Garnier E. Predicting changes in community composition and ecosystem functioning from planttraits: revisiting the Holy Grail. Functional Ecology,2002,16:545~556
    Leishman M R, Wright I J, Moles A T. The evolutionary ecology of seed size Fenner M ed. Seeds: Theecology of Regeneration in Plant Communities,2nd edn. Wallingford, UK: Intemational,2000,31~57.
    Lenoir J, Grgout J C, Marquet P A, et al. A significant upward shift in plant species optimum elevationduring the20th century. Science,2008,320:1768~1771
    Litton C M, Ryan M G, Knight D H. Effects of tree density and stand age on carbon allocation patterns inpostfire lodgepole pine. Ecological Applications,2004,14:460~475
    McDonald P G, Fonseca C R, Overton J McC, et al. Leaf size divergence along rainfall and soil-nutrientgradients: Is the method of size reduction common among clades? Functional Ecology,2004,17:50~57
    McIntyre S, Lavorel S, Landsberg J, et al. Disturbance response in vegetation-towards a global perspectiveon functional traits. Journal of Vegetation Science,1999,10:621~630.
    McKane R B, Johnson L C, Shaver G R, et al. Resource-based niches provide a basis for plant speciesdiversity and dominance in arctic tundra. Nature,2002,415:68~71
    Meng T T, Ni J, Harrison S P. Plant morphometric traits and climate gradients in northern China: ameta-analysis using quadrat and flora data. Annals of Botany,2009,104:1217~1229
    Miyazawa K, Lechowicz M J. Comparative seeding ecology of eight North America Spruce (Picea) speciesin relation to their geographic ranges. Annals of Botany,2004,94:635~644
    Moles A T, Ackerly D D, Tweddle J C, et al. Global patterns in seed size. Global Ecology and Biogeography,2007,16:109~116
    Moles A T, Ackerly D D, Webb C O, et al. Factors that shape seed mass evolution. Proceedings of theNational Academy of Sciences of the United States of America,2005,102:10540~10544
    Moles A T, Westoby M. Latitude, seed predation and seed mass. Journal of Biogeography,2003,30:105~128
    Moles A T, Westoby M. Seedling survival and seed size: a synthesis of the literature. Journal of Ecology,2004,92:372~383
    Moles A T, Wright I J, Pitman A J, et al. Is there a latitudinal gradient in seed production? Ecography,2009,32:78~82
    Murry B R, Brown A H D, Dickman C R, et al. Geographical gradients in seed mass in relation to climate.Journal of Biogeography,2004,31:379~388
    Murry B R, Thrall P H, Gill A M, et al. How plant life-history and ecological traits relate to species rarityand commonness at varying spatial scales. Austral Ecology,2002,27:291~310
    Naegle E R, Burton J W, Carter T E, et al. In uence of seed nitrogen content on seedling growth andrecovery from nitrogen stress. Plant and Soil,2005,271:329~340
    Neter J, Kutner M, Nachtsheim C, et al. Applied Linear Statistical Models, McGraw-Hill Companies, Inc.,NY,1996
    Nicotra A B Cosgrove M J Cowling A, et al. Leaf shape linked to photosynthetic rates and temperatureoptima in South African Pelargonium species. Oecologia,2008,154:625~635
    Niinemets ü, Fleck S. Petiole mechanics, leaf inclination, morphology, and investment in support in relationto light availability in the canopy of Liriodendron tulipifera. Oecologia,2002,132:21~33
    Niinemets ü, Portsmuth A, Tena D, et al. Do we underestimate the importance of leaf size in planteconomics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Annalsof botany,2007,100:283~303
    Niinemets ü. Are compound-leaved woody species inherently shade-intolerant? An analysis of speciesecological requirements and foliar support costs. Plant Ecology,1998,134:1~11
    Niinemets ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees andshrubs. Ecology,2001,82(2):453~469
    Niinemets ü. The controversy over traits conferring shade-tolerance in trees: ontogenetic change revisited.Journal of Ecology,2006,94:464~470
    Niklas K L. A mechanical perspective on foliage leaf form and function. New Phytologist,1999,143:19~31
    Oluwatosin O A. Genetic and environmental variability in starch, fatty acids and mineral nutrientscomposition in cowpea (Vigna unguiculata (L) Walp). Journal of the Science of Food and Agriculture,1998,78(1):1~11
    Ordo ez1J C, Van Bodegom P M, Witte M J, et al. A global study of relationships between leaf traits,climate and soil measures of nutrient fertility. Global Ecology and Biogeography,2009,18:137~149.
    Pakeman R J, Garnier E, Lavorel S, et al. Impact of abundance weighting on the response of seed traits toclimate and land use. Journal of Ecology,2008,96:355~366
    Pakeman R J. Consistency of plant species and traits responses to grazing along a productivity gradient: amulti-site analysis. Journal of Ecology,2004,92:893~905
    Parmesan C, Yohe G. A globaly coherent fingerprint of climate change impacts across natural systems.Nature,2003,421:37~42
    Pefiuelas J, Boada M. A global change-induced biome shift in the Montseny Mountains (NE Spain). GlobalChange Biology,2003,9:131~140
    Pen S L, Ren H. The North-South Transect of Eastern China (NSTEC) for global change studies. GCTENews,2000,16:6
    Pérez-Ramos I M, Gqmez-Aparicio L, Villar R, et al. Seedling growth and morphology of three oak speciesalong eld resource gradients and seed mass variation: a seedling age-dependent response. Journal ofVegetation Science,2010,21:419~437
    Petcu E, Atanasiu L. Relationship between proline content variation, thermostability of membranes and coldresistance in some wheat genotypes. Rom. Agr. Research,1994,2:55~60
    Pickup M, Westoby M, Basden A. Dry mass costs of deploying leaf area in relation to leaf size. FunctionalEcology,2005,19:88~97
    Piper E L, Boote K J. Temperature and cultivar effects on soybean seed oil and protein concentrations. J. Am.Oil Chem.Soc.,1999,76:1233~1241
    Poorter L, Rozendaal D. Leaf size and leaf display of thirty-eight tropical tree species. Oecologia,2008,158:35~46
    Prioul J L, Chartier P. Partitioning of transfer and carboxylation components of intracellular resistance tophotosynthetic CO2fixation: a critical analysis of the methods used. Annals of Botany,1977,41:789~800
    Reich P B, Ellsworth D S, Walters M B, et al. Generality of leaf trait relationships: a test across six biomes.Ecology,1999,80:1955~1969
    Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America,2004,101:11001~11006
    Reich P B, Wright I J, Lusk C H. Predicting leaf physiology from simple plant and climate attributes: Aglobal glopnet analysis. Ecological Applications,2007,17(7):1982~1988
    Richards E J. Inherited epigenetic variation-revisiting soft inheritance. Nature Reviews Genetics,2006,7:395~401
    Root T L, Price J T, Hall K R, et al. Fingerprints of global warming on wild animals and plants. Nature,2003,421:57~60
    Rowe N, Speck T. Plant growth forms: an ecological and evolutionary perspective. New Phytologist,2005,166:61~72
    Royer D L, Kooyman R M, Little S A, et al. Ecology of1eaf teeth a multi-site analysis from an Australiansubtropical rainforest. American Journal of Botany,2009,96(4):738~750
    Royer D L, McElwain J C, Adams J M, et al. Sensitivity of leaf size and shape to climate within Acerrubrum and Quercus kelloggii. New Phytologist,2008,179:808~817
    Royer D L, Wilf P, Janesko D A, et al. Correlations of climate and plant ecology to leaf size and shape:potential proxies for the fossil record. American Journal of Botany,2005,92:1141~1151
    Royer D L, Wilf P. Why do toothed leaves correlate with cold climates? Gas exchange at leaf marginsprovides new insights into a classic paleo-temperature proxy. International Journal of Plant Sciences,2006,167:11~18
    Rustad L E, Campbell J L, Marion G M, et al. A meta-analysis of the response of soil respiration, netnitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia,2001,126:543~562
    Santiago L S, Wright I J. Leaf functional traits of tropical forest plants in relation to growth form. FunctionalEcology,2007,21:19~27
    Saura-Mas S, Shipley B, Lioret F. Relationship between post-fire regeneration and leaf economics spectrumin Mediterranean woody species. Functional Ecology,2009,23:103~110
    Schmidt P A. Beitrag zur Systematik und Evolution der Gattung Picea A. Dietr. Flora,1989,182:435~461(in German)
    Sperry J S, Meinzer F C, McCulloh K A. Safety and efficiency conflicts in hydraulic architecture: scalingfrom tissues to trees. Plant, Cell and Environment,2008,31:632~645
    Sterck F J, Van Gelder H A, Poorter L. Mechanical branch constraints contribute to life-history variationacross tree species in a Bolivian forest. Journal of Ecology,2006,94:1192~1200
    Strand A, Foyer C H, Gustafsson P, et al. Altering flux through the sucrose biosynthesis pathway intransgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and thedevelopment of freezing tolerance. Plant, Cell and Environment,2003,26:523~536
    Sultan S E. Evolutionary implication of phenotypic plasticity in plants//Hecht M K, Bruce Wallace B,Prance G T. Evolutionary Biology. New York: plenum press,1995,127~178
    Sultan S E. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science,2000,5:537~542
    Takagi T, Nakamura M, Hayashi H, et al. The leaf-order-dependent enhancement of freezing tolerance incold-acclimated Arabidopsis rosettes is not correlated with the transcript levels of the cold~inducibletranscription factors of CBF/DREB1. Plant&Cell Physiology,2003,44(9):922~931
    Thomas J M G., Boote K J, Allen L H, et al. Elevated temperature and carbon dioxide effects on soybeanseed composition and transcript abundance. Crop Science,2003,43:1548~1557
    Titlyanova A A, Romanova I P, Kosykh N P, et al. Pattern and process in above-ground and below-groundcomponents of grassland ecosystems. Journal of Vegetation Science,1999,10:307~320
    Toledo M, Poorter L, Pe a-Claros M, et al. Climate is a stronger driver of tree and forest growth rates thansoil and disturbance. Journal of ecology,2011,99:254~264
    Traiser C, Klotz S, Uhl D, et al. Environmental signals from leaves-a physiognomic analysis of Europeanvegetation. New Phytologist,2005,166:465~484
    Trunova J I. Winter wheat frost hardiness and protein synthesis at chilling temperature. In: Li P H. PlantCold Hardiness. New York: Alan R. Liss,1987,43~47
    Tyree M T, Zimmermann M H. Xylem Structure and the Ascent of Sap, Spring series in wood sciences,2ndedn (ed. Timell,T.E.). Springer-Verlag, Berlin,2002,283
    Van der Werf A, Geerts R H E M, Jacobs F H H, et al. The importance of relative growth rate and associatedtraits for competition between species during vegetation succession. In: Lambers H, Poorter H, VanVuuren MMI, eds. Inherent variation in plant growth physiological mechanisms and ecologicalconsequences. Leiden, The Netherlands: Backhuys Publishers,1998,489~502
    Walck J L, Baskin J M, Baskin C C. Why is Solidago shortii narrowly endemic and S. altissimogeographically widespread? A comprehensive comparative study of biological traits. Journal ofBiogeography,2001,28:1221~1237
    Webb T, Bartlein P J. Global changes during the last3million years: climatic controls and biotic responses.Annual Review of Ecology and Systematics,1992,23:141~173
    Weiner J. Allocation, plasticity and allometry in plants. Perspective in Plant Ecology, Evolution andSystematics,2004,6:207~215
    Westoby M, Falster D S, Moles A T, et al. Plant ecological strategies: some leading dimensions of variationbetween species. Annual Review of Ecology and Systematics,2002,33:125~159
    Westoby M, Wright I J. Land-plant ecology on the basis of functional traits. Trends in Ecology and Evolution,2006,21:261~268
    Wilf P. When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology,1997,23:373~390
    Wing S, Bao H, Koch P L. An Eocene cool period? Evidence for continental cooling during the warmest partof the Cenozoic. In: Huber BT, MacCleod KG, Wing S, eds. Warm climates in earth history.Cambridge,UK: Cambridge University Press,2000,197~237
    Wright I J, Clifford H T, Kidson R, et al. A survey of seed and seedling characters in1744Australiandicotyledon species: cross-species trait correlations and correlated trait-shifts within evolutionarylineages. Biological Journal of the Linnean Society,2000,69:521~547
    Wright I J, Groom P K, Lamont B B, et al. Leaf traits relationships in Australian plant species. FunctionalPlant Biology,2004,31:551~558
    Wright I J, Reich P B, Atkin O K, et al. Irradiance, temperature and rainfall influence leaf dark respiration inwoody plants: evidence from comparisons across20sites. New Phytologist,2006,169:309~319
    Wright I J, Reich P B, Cornelissen J H C, et al. Assessing the generality of global leaf trait relationships.New Phytologist,2005,166(2):485~496
    Wright I J, Reich P B, Cornelissen J H C, et al. Modulation of leaf economic traits and trait relationships byclimate. Global Ecology and Biogeography,2005,14(5):411~421
    Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature,2004,428(22):821-827
    Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high-and low-rainfall and high-and low-nutrient habitats. Functional Ecology,2001,15(4):423-434
    Wright I J, Westody M. Differences in seedling growth behavior among species:trait correlation across species, and trait shifts along nutrient compared rainfall gradients. Journal of Ecology,1999,87:85-97
    Wright S J. Plant diversity in tropical rain forests:a review of mechanisms of species coexistence. Oecologia,2002,130:1-14
    Xu F, Guo W H, Xu W H, et al. Leaf morphology correlates with water and light availability:What consequences for simple and compound leaves? Progress in Natural Science,2009,19:1789-1798
    Xu G, Li Y. Rooting depth and leaf hydraulic condunctance in the xeric tree Haloxyolon ammodendron growing at sites of contrasting soil texture. Functional Plant Biology,2008,35:1234-1242
    Yacine A, Lumaret R. Genetic diversity in Holm-oak (Quercus ilex L.):Insigh t from several enzyme markers. Silvae Genet,1989,38(3/4):140-148
    Zanne A E, Westoby M, Falster D S, et al. Angiosperm wood structure:global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany,2010,97(2):207-215
    冯秋红,史作民,董莉莉,等.南北样带落叶乔木功能性状及其与气象因子的关系.中国农业气象,2009,30(1):79-83
    冯秋红,史作民,董莉莉,等.南北样带温带区栎属树种功能性状间的关系及其对气象因子的响应.植物生态学报,2010,34(6):619-627
    冯秋红,史作民,董莉莉.植物功能性状对环境的响应及其应用.林业科学,2008,44(4):125-131
    冯秋红,史作民,董莉莉,等.南北样带温带区栎属树种功能性状对气象因子的响应.生态学报,2010,30(21):5781-5789
    冯秋红.南北样带温带区栎属树种功能性状及其与环境的关系.中国林业科学研究院硕士学位论文,2008,20
    耿燕,吴漪,贺金生.内蒙古草地叶片磷含量与土壤有效磷的关系.植物生态学报,2011,35(1):1-8
    黄普华.从幼苗形态看植物某些性状演化的趋势及植物的亲缘关系.东北林学院学报,1980,1:36-57
    李合生.现代植物生理学,北京:高等教育出版社,2002,396
    李永华,卢琦,吴波,等.干旱区叶片形态特征与植物响应和适应的关系.植物生态学报,2012,36(1):88-9
    刘军,黄上志,傅家瑞,等.种子活力与蛋白质关系的研究进展.植物学通报,2001,18(1):46-51
    刘春迎.KIRA指标在中国植被与气候关系研究中的应用.植物生态学报,1999,23(2):125-138
    刘国华,傅伯杰.全球气候变化对森林生态系统的影响.自然资源学报,2001,16(1);71-78
    刘茂松,洪必恭.中国壳斗科的地理分布及气候条件的关系.植物生态学报,2001,22(1):41-50
    落叶栎树研究组.中国落叶栎树的综合研究.北京林业大学,1988,1(3):77-83
    孟猛,倪健,张治国.地理生态学的干燥度指数及其应用评述.植物生态学报,2004,28(6):853-86
    孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能.植物生态学报,2007,31(1):150-165
    全国土壤普查办公室.中国土壤.北京:中国农业出版社,1998
    王良民,任宪威,刘一樵.我国落叶栎的地理分布.北京林学院学报,1985,2:57-69
    王淑平,周广胜,吕育财,等.中国东北样带(NECT)土壤碳、氮、磷的梯度分析及其与气象因子的关系.植物生态学报,2002,26(5):513-517
    吴丽丽,康宏樟,庄红蕾,等.区域尺度上栓皮栎叶性状变异及其与气候因子的关系.生态学杂志,2010,29(12):2309-2316
    吴征镒.种子植物分布区类型及其起源和分化.昆明:云南科技出版社,2006
    武高林,杜国祯.植物种子大小与幼苗生长策略研究进展.应用生态学报,2008,19(1):191-197
    武维华.植物生理学.北京:科学出版社,2005,117-175
    徐燕,薛立,屈明.植物抗寒性的生理生态学机制研究进展.林业科学,2007,43(4):88-94
    尧婷婷,孟婷婷,倪健,等.新疆准噶尔荒漠植物叶片功能性状的进化和环境驱动机制初探.生物多样性,2010,18(2):201-211
    于顺利,陈宏伟,李晖.种子重量的生态学研究进展.植物生态学报,植物生态学报,2007,31(6):989-997
    郑淑霞,上官周平.黄土高原地区植物叶片养分组成的空间分布格局.自然科学进展,2006,8(16):965-973
    中国应对气候变化的政策与行动.中国人民共和国国务院新闻办公室,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700