温度处理对甘蓝幼苗耐热性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温是蔬菜生产中最常见的逆境因子,严重影响蔬菜的产量和品质,是造成夏秋之交蔬菜淡季的根本原因。因此,蔬菜耐热性研究备受关注,但在甘蓝上的耐热性研究较少有报道。而甘蓝由于适应性及抗逆性强,容易栽培,是我国各地普遍栽培的一种重要蔬菜作物,在蔬菜的周年供应中占有重要地位,秋甘蓝的育苗正值夏季高温多雨季节,造成育成的甘蓝幼苗质量差,抗逆性弱,严重影响后期产量和品质。可见,采取一定的生产措施来提高甘蓝幼苗的耐热性在生产上有一定的实际意义。
     本试验以耐热性不同的三个甘蓝品种(夏光、西园四号、京丰一号)为材料,两种温度处理(不同温度预处理、热激处理)方式,分别采用二次回归正交旋转组合设计(包括温度、时间两个因子)进行温度处理。以苗期热害指数分析为依据实现对甘蓝幼苗耐热性的定量分析,并分别测定了三个甘蓝品种在9种处理组合下的与耐热性相关的生理生化指标:活力指数、电解质渗漏量、脯氨酸含量、可溶性蛋白质的含量、MDA含量、SOD活性、POD活性、CAT活性,从而较系统地从种子活力、细胞膜的热稳定性、膜脂过氧化、膜保护酶系统以及蛋白质代谢等角度研究了甘蓝种子经过温度处理后所发生的一系列生理生化变化,进一步探讨了影响甘蓝幼苗耐热性的机理。并通过温度处理试验,探讨了使甘蓝幼苗耐热性提高的最优温度时间处理组合,为生产上提供一定的处理水平参数。
     1、试验结果表明:甘蓝种子经过温度处理后,与耐热性呈正相关的指标如活力指数、脯氨酸含量、可溶性蛋白质含量、束缚水含量、SOD活性、POD活性、CAT活性等指标均随着热害指数的降低而提高;而与耐热性呈负相关的指标如电解质渗漏量、MDA含量等指标均随着热害指数的降低而降低。回归分析结果显示,F~(**)>F_((0.05))=3.33,回归可靠,说明温度、时间二因素与甘蓝耐热性相关的生理生化指标之间存在极显著的回归关系。
     2、温度、时间二因子对甘蓝幼苗耐热性的影响主次是温度>时间,其中温度因子对热害指数都有极显著影响,而处理时间则对热害指数是显著影响,并且二者之间存在交互作用。
     3、试验结果显示,相同的温度处理下三个品种之间的耐热性差异较大,其耐热性具体表现为夏光>西园四号>京丰一号,其中三个品种经过温度处理后的热害指数表现为:夏光<西园四号<京丰一号。两种温度处理的结果比较起来,热激处理的效果优于不同温度预处理的效果。其中夏光高出31.04%,西园四号高出13.18%,京丰一号高出50.27%。
     4、温度是影响蔬菜耐热性的一个重要外部条件,但是温度处理时间也是影响耐热性的一个重要因素,通过本试验得出温度处理的最优组合:不同温度预处理最优组合分别是夏光21.2℃27.8h,西园四号21.2℃27.5h,京丰一号20.2℃20.1h,在此条件下热害指数分别为:
    
    西南农业大学硕士学位论文
    夏光5.09%,西园四号6.22%,京丰一号n.08%;热激处理的最优组合分别是夏光42.3℃2.3h,
    西园四号42.2℃2.3h,京丰一号42.2℃2.3h,在此条件下热害指数分别为夏光3.51%,西园
    四号5.4既,京丰一号5.51%o
     5、本试验结果还显示,三个品种热激处理的最优处理组合没有区别,几乎是同一水平,
    但是耐热性表现为:夏光)西园四号>京丰一号,其中热害指数分别为夏光3.51%,西园四号
    5.40%,京丰一号5.51%o
     综合上述,在最优温度处理条件下,与耐热性呈正相关的指标如活力指数、脯氨酸含量、
    可溶性蛋白质含量、束缚水含量、SOD活性、Pon活性、’CAT活性等均有所增加,以及与耐热
    性呈负相关的指标如热害指数、电解质渗漏量、MDA活性等有所降低,为甘蓝幼苗耐热性的提
    高打下了良好的生理生化基础。
     可见,温度处理能有效降低幼苗期热害指数,提高甘蓝幼苗的耐热性,为甘蓝幼苗度过
    炎热夏季奠下坚实基础,使幼苗群体生长势良好,为后期高产高效提供了可靠的保证;并且
    这种处理方法简单,成本低,效益高,为下一步推广应用奠定了坚实的基础。总之,本试验
    结果能为甘蓝的夏季育苗工作和耐热栽培提供一定的理论依据和技术参数。
High temperature is the most unfavorable factor in vegetable production. It seriously influences the quality and output of vegetable and is a basic reason for the shortage of vegetables in summer and autumn seasons. Therefore, studies on heat-durability of vegetables are paid to great importance. Up to now there are few reports on the heat-durability of cabbage. Because cabbage is of strong adaptability and anti-adversity, they are easily cultivated, so it has become an important vegetable in China and occupy an important status in anniversary supply of vegetables. The seedling of autumn cabbage is bred in summer when it is hot and rainy, which results in the bad quantity and less anti-adversity of cabbage seedlings, and seriously influences the subsequent yield and quality. Therefore, adopting certain cultivation method to enhance heat-durability of seedlings is of great importance in cabbage production.
    The material used in the experiment are three cabbages species(Xiaguang, Xiyuan NO. 4, Jingfeng NO.1), They are applied with two temperature treatment methods(different temperature pretreatment and heat-activation treatment) respectively, using the response surface design (including temperature and time two factors). According to the test of seedling heat-damage index, quantitative analyses have been achieve for the heat-durability of cabbage seedlings, and it has been measured for the heat-related physiological and biochemical indexes of three cabbage species in nine combined treatments. Consequently, the physiological and biochemical changes in cabbage seeds after temperature treating are systematically studied. Furthermore, the mechanisms that affect heat-durability of cabbage seedlings are discussed. By the experiment, the best temperature and time treat combinations are acquired for the improvement of cabbage seedling heat-durability, which may provide to cabbage production.
    1. The result indicates: after treating with temperature, all indexes have positive relation with heat-durability of cabbage seeds such as vitality, proline content, dissolubility protein content, binding water content, SOD activity, POD activity, CAT activity etc, all of them increase as the heat-damage index reducing; those have negative relation with heat-durability such as electrolyte pervasion, MDA content etc. all go down as heat-damage index. The statistics show that,
    
    
    temperature and treat time have remarkable regressive relations with physiological and biochemical index that related with heat-durability of cabbage.
    2. The influence on heat-durability of cabbage seedling is temperature>time, and temperature has remarkable influence on heat-damage index.
    3. The result shows that, heat-durability among three species has big difference under the same temperature treatment , the heat-durability is Xiaguang>Xiyuan No. 4>Jingfeng No. l.and after temperature treating , the heat-damage index of these three species is Xiaguang    4. Temperature is an important exterior condition that affect the heat-durability of vegetable, the treat time is also an important factor to affect the heat-durability of vegetable. The best combination under different temperature pretreatment is Xiaguang, 21.2℃ and 27.8h; Xiyuan No.4, 21.2℃ and 27. 5h; Jingfeng No. 1, 20. 2℃ and 20.1h respectively. Under these treatments the heat-damage index would be Xiaguang 5. 09%, Xiyuan No. 4 6. 22%, Jingfeng No.1 11.08%, respectively. The best combinations by heat-activation treatment are Xiaguang, 42.3℃ and 2. 3h, Xiyuan No. 4 ,42.2℃ and 2.3h, Jingfeng No. 1, 42.2℃ and 2. 3h, The heat-damage index under the treats would be Xiaguang 3.51%, Xiyuan No. 45.40%, Jingfeng No. 15. 51%.
    5.The study also indicates that the best combinations after heat-activate treating to three species have no difference,
引文
[1]高亮之,金之庆.全球气候变化和中国的农业.江苏农业学报,1994,10(1):1-10
    [2]张志忠,黄碧琦,吕柳新.蔬菜作物的高温伤害及其耐热性研究进展.福建农林大学学报(自然科学版),2002,第31卷第二期203-207
    [3]STARCK Z, SIWIEC A, CHOTUJD, et al. Distribution of calcium in tomato plants in response to heat stress and plant growth regulators[J]. Plant and Soil, 1994,167(1):143-148
    [4]FERGUSON I B, YEEML, WATKINS C B, et al. Phosphorylation of membrane in response to heat shock in cultured pear cell[J].Plant Science Limerick, 1994,130(1):19-24
    [5][加]R.G.S.比德韦尔 著 刘富林译.植物生理学[M].北京:高等教育出版社,1986,221-222
    [6]孟繁静,刘道宏,苏业瑜.植物生理生化[M].北京:中国农业出版社,372-375
    [7]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1993,198-219
    [8]孙存普,张建中,段绍瑾主编.自由基生物学导论[M].中国科学技术大学出版社,1999,167-172
    [9]钱永常,于叔文.植物中的逆境蛋白.植物生理学通讯,1989,(5):5-11
    [10]侯学文,郭勇.泛肽与植物逆境响应[J].植物僧力学通讯,1998,34(6):474-478
    [11]吴国胜,王永健,姜亦巍等.大白菜耐热性遗传效应研究[J].园艺学报,1997,24(2):141-144
    [12]马德华,庞金安,李淑菊.高温对辣椒幼苗叶片某些生理作用的影响[J].天津农业科学,1999,5(3):8-10
    [13]汤章城.逆境条件下植物脯氨酸的累积及其可能的意义.植物生理学通讯,1984,(1):15—21
    [14]马永战,邹琦,程炳嵩.小麦的高温伤害与高温适应Ⅱ.高温对麦苗游离脯氨酸含量的影响.山东农业大学学报,1986,17(4):1-8
    [15]郑小林,董任瑞.水稻热激反应的研究Ⅰ.幼苗叶片的膜透性和游离脯氨酸含量的变化.湖南农业大学学报.第23卷第2期:109-112
    [16]郑小林,董任瑞.水稻热激反应的研究Ⅲ.高温对水稻幼苗叶片过氧化物酶的影响.湖南农业大学学报,第24卷第6期:433-435
    [17]廖飞雄,潘瑞炽.热胁迫下菜心脯氨酸含量变化及其在耐热中的作用.华南师范大学学报(自然科学版),2001,(2):45-48
    [18]王宝山.生物自由基与植物膜伤害[J].植物生理学通讯,1988(2):12-16
    [19]邹琦.小麦的高温伤害与高温适应.植物学报,1988,30(4):388-395
    [20]吴国胜,王永健,曹宛虹等.大白菜热害发生规律及耐热性筛选方法的研究.华北农学报,1995,10(1):111-115
    [21]陈少裕.膜脂过氧化对植物细胞的伤害.植物生理学通讯,1991,27(2):84-90
    
    
    [22]曾韶西,王以柔,刘鸿先.低温下黄瓜有苗子叶硫氢基(SH)含量变化与膜脂过氧化.植物学报,1997,33(1):50-54
    [23]Fridovich Ⅰ. The biology of oxygen radical [J]. Science, 1978,201:875—880
    [24]聂先舟等,水稻旗叶膜脂过氧化作用与叶龄及Ni~(2+)、Ag+的关系。植物生理学通讯,1989,(2):32-34
    [25]张宗申,利容千,王建波.外源Ca~(2+)、La~(3+)、EGTA处理对辣椒叶片热激反应的影响[J].武汉大学学报,2000,2:253-256
    [26]马德华,庞金安,霍振荣,等.高温对黄瓜幼苗膜脂过氧化作用的影响[J].西北植物学报,2000,20(1):141-144
    [27]吴国荣,陆长梅,周长芳等.生理高温对佛州侧耳超氧化物歧化酶的影响[J].菌物系统,2000,19(3):371-376
    [28]何亚丽,沈剑,王惠林.冷地型草坪草耐热机理初探.上海农学院学报,1997,15(2):128-132
    [29]吴国荣,陆长梅,陶明煊等.百草枯和H_2O_2预处理提高盐泽螺旋藻对铅的耐受性[J].湖泊科学,2000,12(3):240-246
    [30]周人纲等.植物热激蛋白.植物抗性生理研究.济南:山东科学技术出版社,1992,242-247
    [31]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1995,199-215
    [32]陈世儒主编.种子生产原理与实践[M].北京:农业出版社,1993,58-63
    [33]王景升主编.种子[M],北京:农业出版社,1987,51-53
    [34]Collins G G, Nie X L, Saltveit M E. Hsat shock proteins and chilling sensitivity of mung bean hypocotyls. J Exp Bot, 1995,46:795-802
    [35]Weis E, Berry J A. Plant and high temperature stress. In:Long S P, Woodward F I, eds. Plants and Temperature. Cambridge:The Company of Biologists Limited, 1988.329-346
    [36]SANTARIUS K A, EXNER M, THEBUD L R. Effects of high temperature on the photosynthetic apparatus in isolated mesophyll protoplasts of Valerianella locusta(1)[J]1991,25(1):17-26
    [37]苗琛,利容千,王建波.甘蓝热胁迫叶片细胞的超微结构研究.植物学报,1994,36(9):730-732
    [38]韩笑冰,利容千,王建波.热胁迫下萝卜不同耐热品种细胞组织结构比较.武汉植物学研究,1997,15(2),173-178
    [39]陈火英等.萝卜抗热性鉴定技术.上海蔬菜,1992(3):15-16
    [40]罗少波等.番茄耐热优良品种筛选初报.中国蔬菜,1994(6)33-35
    [41]钱春梅,陈巧玲等.大白菜种子萌发的高温耐性诱导.园艺学进展(第五辑):414-416
    [42]陈玲,宋松泉,傅家瑞.番茄种子萌发的高温耐性诱导[J]。种子,1998,(5):10-12
    [43]刘箭等.菜豆细胞膜系统上Mg~(2+).ATP酶热稳定性的细胞化研究.北京农业大学学报,
    
    1995,21(3):236-237
    [44]刘箭等.菜豆下胚轴质膜微囊和液泡膜微囊体外热稳定性的研究.植物学报,1996(5):347-350
    [45]叶陈亮等,大白菜耐热性的生理研究——叶片水分和蛋白质代谢与耐热性.福建农业大学学报,1996,25(4):490-493
    [46]李明远等.2000年蔬菜植保科技的展望.中国蔬菜,1996(2):1-3
    [47]黄祥富,蒋明兰等.PEG渗调对苦瓜种子活力和膜脂过氧化的影响[J].种子,1999,101(2):7-8
    [48]郑成超,邹琦等.渗透调节提高种子活力的机理研究[J].山东农业大学学报,1999,21(2):31-36
    [49]朱世东.自由基清除剂对几种蔬菜衰老种子活力的影响[J].园艺学报,2000,27(1):67-68
    [50]韩锦峰等.表油菜素内酯对提高烟草种子活力机理的研究[J].华北农学报,1989,4(1):68-73
    [51]吴道藩.提高甘蓝种子活力的方法与机理研究[硕士学位论文].西南农业大学,2002年,11-15
    [52]翟依仁.干热处理对甘蓝种子发芽与带病菌的效果研究[J].种子科技,1995,6:27-28
    [53]阎立,孟宪财.静电处理提高甘蓝种子活力的研究[J].辽宁农业科学,1989,2:24-27
    [54]陆世钧,乔柄根.早熟大白菜耐热性与EC值关系初探[J].上海蔬菜,1990,(2):16-18
    [55]王帮锡.渗透胁迫引起的膜伤害与膜脂过氧化和某些自由基的关系[J].中国科学,1992,(4):35-37
    [56]何亚丽,沈剑,王惠林.冷地型草坪草耐热机理初探[J].上海农学院学报,1997,15(2):128-132
    [57]彭永宏,张文才.猕猴桃叶片耐热性指标研究[J].武汉植物学研究,1995,13(1):70-74
    [58]国际种子检验协会(ISTA)编.国际种子检验规程[M].北京:中国农业出版社,1999,32-34
    [59]陈玲,宋松泉,傅家瑞.番茄种子萌发的高温耐性诱导[J].种子,1998,(5):10-12
    [60]徐本美,顾增辉等.测定种子电导率方法的探讨[J].种子,1983,1:18-23
    [61]康俊根,翟依仁等.甘蓝耐热性鉴定方法[J].中国蔬菜,2002(1)4-7
    [62]吴国胜,王永健,曹婉虹等.大白菜热害发生规律及耐热性筛选方法的研究[J].华北农学报,1995,10(1):111-115
    [63]赵世杰,刘华山等.植物生理学实验指导[M].北京:中国农业科技出版社,1998,57-59
    [64]李合生主编,植物生理生化实验原理和技术[M].高等教育出版社,1999年
    [65]刘维信,曹寿椿.栽培方式对不结球白菜耐热性的影响[J].山东农业大学学报,1990,21(3):47-51
    [66]刘维信,曹寿椿.夏季自然高温条件下不接球白菜品种评价及相关性的研究[J].山东
    
    农业大学学报,1993,24(2):176-182
    [67]FUJITA S. NAZAMID S,MAEGAWA M, et al. Purification and properties of polyphenol oxidase from cabbage[J]. Journal of Agricultural and Food Chemistry, I995,43(50):1138-1142
    [68]BOWLER C. MONTAGV MV,INZED. Superoxide dismutase and strees tolerance[J]. Annu Rev Plant Physiot Plant Mol Biol, 1992,(43):83-116
    [69]ARRIQONI O,GARAL D E, TOMMASI F, et al. Changes in the ascorbate system during seed development of Viciafaba L[J]. Plany Physicl, 1992, (99):235-238
    [70]朱世东.自由基清除剂对几种蔬菜衰老种子活力的影响[J].园艺学报,2000,27(1):67-68
    [71]Harman, G. E, Mattick,L. R, Association of lipid oxidation with seed aging and death. Nature, 1976,2 (6):323-324
    [72]汤章城.植物抗逆性生理生化研究的某些进展[J].植物生理学通讯,1991,27(2):146-148
    [73]刘祖祺,林定坡.ABA/Gas调控特异蛋白质与柑桔的抗寒性[J].园艺学报,1993,20(4):335-340
    [74]张宗申,利容千,王建波.外源Ca~(2+)预处理对高温胁迫下辣椒叶片细胞膜透性和Ca~(2-)含量及分布的影响[J].植物生态学报,2001,25(2):230-234

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700