甘蓝型油菜KCS基因家族表达及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
KCS基因家族编码β-酮脂酰CoA合成酶,催化超长链脂肪酸延伸过程的缩合反应,是超长链脂肪酸合成的限速酶。通过克隆KCS基因,可阐明KCS基因在超长链脂肪酸及蜡质合成中的功能,为油菜脂肪酸改良提供新的基因源。
     本研究采用同源序列法分离了高芥酸油菜品种中油821、零芥酸野生种诸葛菜和荠菜,含芥酸野生种野芥、白芥和菘蓝中的FAE1基因序列。5个野生种的FAE1基因序列与甘蓝型油菜中油821的FAE1基因同源性高于85%。在酵母中异源表达野生种的FAE1基因,各FAE1基因都可正常表达,转化诸葛菜和荠菜FAE1基因的酵母不能合成超长链脂肪酸,而转化野芥、白芥和菘蓝的FAE1基因的酵母都有微量长链脂肪酸的合成。实验结果表明诸葛菜和芥菜的低芥酸性状源于FAE1基因编码产物的失活。无论是高芥酸物种还是零芥酸物种,其FAE1基因的核苷酸序列高度保守。
     FAE1基因是芥酸合成的限速酶,通过定向抑制FAE1基因的功能,有望将高芥酸油菜品种改良为低芥酸油菜品种。选用FAE1基因的全长序列构建FAE1基因的RNAi载体。将FAE1基因编码区以头对头的方式构建到种子特异性Napin启动子的下游,反向重复的FAE1序列用组蛋白H2A内含子间隔。采用农杆菌介导法将构建的FAE1RNAi载体转化到高芥酸甘蓝型油菜品种中油821中,获得81株转化苗,其中有51株阳性苗。用气相色谱法分析转化株T1代混合种子的脂肪酸组成,受体品种中油821的芥酸含量为43.35%,转基因植株的芥酸含量与野生型相比有不同程度的降低,21株芥酸含量低于35%,2个转化株芥酸含量在10-20%之间。用近红外光谱仪分析转基因植株T2代种子,多数株系的芥酸含量与高芥酸油菜无明显差异,只有1个株系的后代其芥酸性状符合1:3的分离比,低芥酸植株的芥酸含量最低达到2%的水平。结果表明,通过RNAi技术介导FAE1基因沉默可以有效的降低转基因植株中的芥酸含量,但不能降至零芥酸水平。低芥酸转基因植株具有明显的非预期效应,表现出种子皱缩、形状不规则、种皮没有光泽而且难以正常生长等。
     在前期基因组步移及RACE实验的基础上,克隆了BnKCS1、BnKCS3、BnKCS4、BnKCS5、BnKCS6、BnKCS8、BnKCS9、BnKCS10、BnKCS11、BnKCS12、BnKCS13、BnKCS15、BnKCS16、BnKCS17、BnKCS19、BnKCS20和BnKCS21共17个基因的编码序列。对分离的BnKCS基因成员进行亲缘关系分析,从甘蓝型油菜中分离的BnKCS基因成员可分为6个亚类。FAE1基因与KCS基因家族其他成员间的序列同源性在45.6%-63.1%之间,BnKCS4、BnKCS8、BnKCS9、BnKCS16和BnKCS17基因与FAE1基因属于同一亚类,它们与FAE1基因的序列一致性均大于60%。BnKCS基因的表达谱分析表明,种子中表达的基因有9个,包括BnKCS1、BnKCS4、BnKCS5、BnKCS6、BnKCS9、BnKCS10、BnKCS11、BnKCS19和BnKCS20,这些基因与FAE1基因的同源性均大于50%。推测用FAE1基因的全长序列构建FAE1RNAi载体,不仅抑制FAE1基因的表达,还会协同抑制其他同源基因的表达,从而产生非预期效应。需在充分的分析KCS基因家族的基因序列的基础上,利用FAE1基因的特异性序列构建RNAi载体或MicroRNAi载体,达到特异性抑制FAE1基因表达的目的。
     用KCS基因家族的保守结构域FAE1-CUT1-RPPA检索甘蓝型油菜的全基因组序列,检索到了40条KCS基因序列。但未在甘蓝型油菜中检索KCS3、KCS7、KCS8、KCS11、KCS12、KCS16和KCS21基因的同源序列。而在本研究中,我们通过同源序列法从甘蓝型油菜中分离到了BnKCS3、BnKCS8、BnKCS11、BnKCS12、BnKCS16和BnKCS21基因。推测,甘蓝型油菜中KCS基因家族可能至少有46个成员。
     用实时荧光的方法分析甘蓝型油菜中BnKCS基因在根、茎、叶、花蕾、柱头、花粉、30d荚果皮、40d荚果皮、30d种子和40d种子中的表达量。各BnKCS基因在甘蓝型油菜不同组织或器官中具有不同的表达模式,暗示各个基因在不同的组织或器官行使功能。所分析的18个BnKCS基因都在油菜花器官中表达,10个BnKCS基因在茎中表达,13个基因在叶中表达,9个基因在种子中有表达,8个基因在角果皮中表达。BnKCS2、BnKCS7、BnKCS8、BnKCS9和BnKCS215个基因在花器官中特异表达,其中BnKCS2和BnKCS9只在花粉中特异性表达,BnKCS21仅在花瓣中特异表达。
     将克隆的17个BnKCS基因构建到酵母表达载体pYES2/NTA中半乳糖诱导启动子的下游,在酵母中进行异源表达分析。15个BnKCS基因在酵母中正常表达并翻译蛋白,BnKCS3和BnKCS4受密码子偏好的影响在酵母中没有表达产物。分析酵母脂肪酸组成发现,只有转BnKCS1基因和FAE1基因的酵母中有超长链脂肪酸的合成,其它转基因酵母均没有新的超长链脂肪酸合成。结果表明这些BnKCS基因不能利用酵母中的脂肪酸作为催化底物。在后续研究中需要在酵母体外添加超长链脂肪酸做底物,进一步研究BnKCS基因的功能。
     为了揭示KCS基因与蜡质合成的相关性,鉴定出了7个有突变体纯系的拟南芥kcs突变体,包括kcs4、kcs7、kcs9、kcs11、kcs13、kcs16和kcs17。基因表达谱分析显示,突变体中的靶标基因因T-DNA的插入而沉默。用扫描电镜扫描拟南芥突变体及野生型角果和茎表面的蜡质晶体密度,突变体与野生型相比,茎和角果表面的蜡质晶体密度没有明显变化。通过GC-MS分析kcs突变体角果、茎和叶的表面蜡质组成。发现除kcs4突变体外,其余的kcs突变体茎、角果和叶的部分蜡质组分与野生型相比有显著降低,且链长不一,既有酰基还原途径的产物,如初级醇,也有脱羰基途径的产物如烷烃、醛和29酮。kcs突变体没有出现出蜡质严重缺失的性状,也没出现某一链长的超长链脂肪酸衍生物过度积累或某一蜡质组分完全缺失的情况。表明本研究中的KCS7、KCS8、KCS9、KCS11、KCS13、KCS16和KCS17基因的催化功能与其他KCS基因相互重叠,催化产物不是某一特定链长的超长链脂肪酸,而且催化产物既参与酰基还原途径也参与脱羰基途径的代谢。
KCS gene family encode β-ketoacyl CoA synthase, a rate-limiting enzyme in the synthesis of very long chain fatty acid (VLCFA), catalyzing the condensation reaction of VLCFA elongation process. Cloning of KCSgenes help to elucidate the function of the KCSgenes in the synthesis of VLCFAs and wax, and provide a new source of genes for improving rapeseed fatty acid composition.
     In this study, FAE1gene sequences were isolated from high erucic acid B. napus varieties Zhongyou821, zero-erucic acid wild species Orychophragmus violaceus L.and Capsella bursapastrois L., wild species containing erucic acid Sinapis alba L., Sinapis arvensis L. and Isatis indigotica Fort. Comparison of FAE1sequences indicated that the FAE1gene of Zhongyou821showed more than85%identity with that of five wild species. Heterologous expression of the FAE1genes was performed in the yeast cell, all the FAE1genes from the wild cruciferous species can normally express in yeast cells. The yeast cells expressing FAE1genes from O. violaceus and C. buraspastroil showed no VLCFA formation, and those expressing FAE1genes from S. arvensis, S. alba, and I. indigotica produced trace amount VLCFA. Experimental results show that the low erucic acid trait of O. violaceus and C. buraspastroil comes from the inactivation of protein activity encoded by FAE1gene. The FAE1nucleotide sequences are highly conserved between high erucic acid species and zero erucic acid species.
     FAE1gene is the rate-limiting enzyme in the synthesis of erucic acid. The high erucic acid rapeseed varieties can be improved for low erucic acid rapeseed varieties through directed inhibition of FAE1gene function. The full-length sequence of FAE1gene was chosen to construct the FAE1RNAi vector. The FAE1sequences were cloned to downstream of the seed-specific Napin promoter as a head-to-head concatemer, and the inverted repeats of FAE1sequence were spaced apart by a histone H2A intron. The FAE1RNAi vector was transformed into high erucic acid B. napus varieties Zhongyou821by Agrobacterium-mediated method. After transformation,81transformants were obtained, in which,51positive seedlings were identified by PCR method. GC analysis of fatty acid composition of transgenic T1generation seeds revealed that the erucic acid content of transgenic rapeseed decreased in different degree compared with the wild type. The erucic acid content of recipient varieties Zhongyou821was43.35%, that of21transformants is less than35%, in which, the erucic acid content of two transformants decrease to10-20%. Near-infrared analysis of T2generation seeds showed that the erucic acid content of most lines displayed no significant difference compared with high erucic acid rapeseed. The erucic acid trait displayed separation ratio of1:3for the descendants of one line, the erucic acid content of low erucic acid transgenic plant was at the level of2%. The results revealed that the FAE1silence mediated by RNAi technology can effectively reduce the erucic acid content of transgenic plants, but can not reduce to zero erucic acid level. And low erucic acid transformants have obvious unintended effects, showing seed shrinkage, irregular shape, seed coat glossless and difficult to normally grow.
     On the basis of previous genomewalking and RACE experiment, we cloned17KCS gene members, including BnKCS1, BnKCS3, BnKCS4, BnKCS5, BnKCS6, BnKCS8, BnKCS9, BnKCS10, BnKCS11, BnKCS12, BnKCS13, BnKCS15, BnKCS16, BnKCS17, BnKCSl9, BnKCS20and BnKCS21. According to the pedigree analysis, BnKCS gene members can be divided into six sub-categories. The sequence homology ranges from45.6%to63.1%between the FAE1gene and other members of the KCS gene family. BnKCS4, BnKCS8, BnKCS9, BnKCS16, BnKCS17and FAE1genes belong to one sub-category, these genes show more than60%identity with FAE1gene. Expression profile analysis of BnKCS genes showed that there are9BnKCS genes expressing in the seeds, including BnKCS1, BnKCS4, BnKCSS, BnKCS6, BnKCS9, BnKCS10, BnKCS11, BnKCS19and BnKCS20. these genes exhibit greater than50%homology with FAE1gene. It was speculated that the FAE1full-length sequence was used to construct FAE1RNAi vector, which not only inhibit the expression of FAE1gene, but also synergisticlly inhibit the expression of homologous genes, thus, resulting in unintended effects. In the future, it is better to identify FAE1specific sequence for constructing FAE1RNAi or MicroRNAi vector on the basis of a comprehensive analysis of the sequences of the KCS gene family, to achieve the specific purpose of inhibiting the function of the FAE1gene.
     The conserved domain FAEl-CUT1-RPPA of KCS family was usend to search the KCS sequences across the whole genomic sequence of B. napus, and40KCS sequences were obtained. Wherereas, no homologous sequence of KCS3, KCS7, KCS8, KCS11, KCS12, KCS16and KCS21were retrieved. In this study, BnKCS3, BnKCS8, BnKCS11, Bn KCS12, BnKCS16and BnKCS21were isolated form B. napus. It is concluded that the KCS family contains46gene members at least in B, napus.
     The real-time PCR method was used to analyze the expression profile of BnKCS genes in different tissues of B. napus, including root, stem, leaf, bud, stigma, pollen,30d pod skin,40d pod skin,30d seeds and40d seed. The BnKCS genes have different expression pattern in different tissues or organs. The analysis results shows that18BnKCS genes are expressed in the floral organ of B. napus,10BnKCS genes expressed in the stem,13BnKCS genes expressed in leaves,9genes expressed in seed,8genes expressed in the pod skin.5genes (BnKCS2, BnKCS7, BnKCS8, BnKCS9and BnKCS21) are specifically expressed in floral organ, of which, BnKCS2and BnKCS9are specially expressed in the pollen, BnKCS21is specifically expressed in the petals.
     17BnKCS genes were cloned to downstream of the galactose-inducible promoter of the yeast expression vector pYES2/NT, to perform heterologous expression in yeast cells.15BnKCS gene can normally translate protein, and the BnKCS3and the BnKCS4fail to be expressed due to the codon preference. GC analysis of yeast fatty acid composition indicated that the VLCFAs were only observed in yeast expressing the BnKCS1and FAE1genes, and no VLCFA synthesis in yeast expressing other BnKCS genes. It was concluded that these BnKCS genes can not take advantage of the fatty acids in yeast as a catalytic substrate to synthesize VLCFA. In follow-up studies, VLCFAs should be added to the yeast medium in vitro for further studying of BnKCS gene function.
     To reveal the relationship between the KCS genes and wax biosynthesis, the homozygotes of7Arabidopsis Kcs mutant were identified, including kcs4, kcs7kcs9, kcsll kcs13, kcs16and kcs17. The KCS gene expression profile analysis showed that the target gene in the mutant was silenced due to the insertion of the T-DNA. The wax crystal density of the surface of Arabidopsis siliques and stems were scanned using a scanning electron microscope, and found that the wax crystal density of the mutant does not significantly change compared with that of the wild type. GC-MS was carried out to analyze the wax composition of Arabidopsis siliques, stems and leaves. Compared to the wild-type, part of the wax components were significantly reduced in stems, siliques and leaves for kcs mutants with except of the kcs4mutant. And the wax components with significant change have different chain length, including both the product of the acyl reduction pathway, such as primary alcohols, and that of decarbonylation pathway, such as alkanes, aldehydes and29C ketone. The kcs mutant did not appear serious deficiencies of surface wax, or excessive accumulation of a derivative of VLCFA and total loss of someone wax composition. This study revealed that the catalytic function was overlapping with other KCS gene for the KCS7, KCS8, KCS9, ACS11, KCS13, KCS16and KCS17genes, their catalytic product is not a VLCFA with specific chain length, involved in the metabolism of both acyl reduction pathway and decarbonylation pathway.
引文
1.黄卓烈,朱利泉.生物化学[M].北京:中国农业出版社,2004,226-232.
    2.卢善发.植物脂肪酸的生物合成与基因工程[J].植物学通报,2000,17(6):481-49.
    3.李昌珠,李正茂.植物脂肪酸的生物合成及其生理功能的研究进展[J].湖南林业科技,2009,36(6):45-49.
    4.胡晓敏,张志飞,饶力群,黄卫.植物角质层蜡质合成与调控的分子生物学研究进展[J].武汉植物学研究,2007,25(4):377-380.
    5.倪郁,郭彦军.植物超长链脂肪酸及角质层蜡质生物合成相关酶基因研究现状[J].遗传,2008,30(5):561-567.
    6.武玉花,卢长明,吴刚,肖玲.植物芥酸合成代谢与遗传调控研究进展[J]。中国油料作物学报,2005,27(2):82-86.
    7.武玉花,吴刚,肖玲,曹应龙,卢长明.十字花科植物中低芥酸野生种的发掘和FAE1基因的功能验证[J].中国农业科学,2009,42(11):3819-3827.
    8.张穗生,黄日波,周兴,黎贞崇,黄志民.酿酒酵母乙醇耐受性机理研究进展[J].微生物学通报,2009,36(10):1604~1608.
    9.赵翠格,刘頔,李凤兰,郭惠红.植物种子油脂的生物合成及代谢基础研究进展[J].种子,2010,29(4):56-62.
    10.周奕华,陈正华.植物种子中脂肪酸代谢途径的遗传调控与基因工程[J].植物学通报,1998,15(5):16-23.
    11. Aarts M G M, Dirkse W G, Stiekema W J, Pereira A. Transposon tagging of a male sterility gene in Arabidopsis [J]. Nature,1993,363:715-717.
    12. Aarts M G M, Hodge R, Kalantidis K, Florack D, Wilson Z A, Mulligan B J. The Arabidopsis male sterility2protein shares similarity with reductases in elongation/condensation complexes [J]. Plant J,1997,12:615-623.
    13. Aarts M G M, Keijzer C J, Stiekema W J, Pereira A. Molecular characterization of the CER1gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility [J]. Plant Cell,1995,7(12):2115-2127.
    14. Abbadi A, Brummel M, Spener F. Knockout of the regulatory site of3-ketoacyl-ACP synthase III enhances short-and medium-Chain acyl-ACP synthesis [J]. The Plant J,2000,24(1):1-9.
    15. Barret B, Delourme R, Renard M, Domergue F,. A rapeseed FAE1gene is linked to the El locus associated with variation in the content of erucic acid [J]. Theor Appl Genet,1998,96:177-186.
    16. Barthlott, Nienhuis W. Purity of scared lotus or escape from contamination in biological surfaces [J]. Planta,1997,202:1-8.
    17. Beaudoin F, Gable K, Sayanova O, Dunn T, Napier J A. A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal beta-keto-reductase [J]. J Biol Chem,2002,277(13):11481-11488.
    18. Beaudoin F, Michaelson L, Hey S, Lewis M, Shewry P, Sayanova O,and Napier J. Heterologous reconstitution in yeast of the polyunsaturated fatty acid biosynthetic pathway [J]. PNAS,2000,97:6421-6426.
    19. Beaudoin F, Wu X, Li F, Haslam R P, Markham J E, Zheng H, Napier J A, and Kunst L. Functional Characterization of the Arabidopsis beta-Ketoacyl-Coenzyme A Reductase Candidates of the Fatty Acid Elongase [J]. Plant Physiology,2009,150:1174-1191.
    20. Beisson F, Koo A J, Ruuska S. Arabidopsis genes involved in acyl lipid metabolism. A2003census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database [J]. Plant Physiol,2003,132:681-697.
    21. Bell E, Creelman R A, Mullet J E. A chloroplast lipoxygenase is required for wound induced jasmonic acid accumulation in Arabidopsis [J]. Proc Natl Acad Aci USA,1995,92:8675-8679.
    22. Bernerth R, Frentzen M. Utilization of erucoyl-CoA by acyltransferases from developing seeds of Brassica napus (L.) involved in triacylglycerol biosynthesis [J]. Plant Sci,1990,67:21-28.
    23. Blacklock B J, Jaworski J G. Substrate specificity of Arabidopsis3-ketoacyl-CoA synthases [J]. Biochemical and Biophysical Research Communications,2006,346:583-590
    24. Bonaventure G, Salas J J, Pollard M R. Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth [J]. Plant Cell,2003,15:1020-1033.
    25. Branen J K, Chiou T J, Engeseth N J. Overexpression of acyl carrier protein-1alters fatty acid composition of leaf tissue in Arabidopsis [J]. Plant Physiol,2001,127:222-229.
    26. Branen J K, Shintntani D K, Engeseth N J. Expression of antisense acyl carrier protein-4reduces lipid content in Arabidopsis leaf tissue [J]. Plant Physiol,2003,132:748-756.
    27. Broun P, Poindexter P, Osborne E, Jiang C Z, Riechmann J L. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis [J]. Proc Natl Acad Sci USA,2004,101(13):4706-4711.
    28. Brown A, Affleck V, Kroon J, Slabas A. Proof of function of a putative3-hydroxyacyl-acyl carrier protein dehydratase from higher plants by mass spectrometry of product formation [J]. FEBS Letters,2009,583:363-368.
    29. Carlsson A S, Labrie S T, Kinney A J, von Wettstein-Konwles P, Browse J. A KAS2cDNA complements the phenotypes of the Arabidopsis fabl mutant that differs in a single residue bordering the substrate binding pocket [J]. Plant J,2002,29:761-70.
    30. Chen X, Goodwin S M, Boroff V L, Liu X, Jenks MA. Cloning and characterization of the WAX2gene of Arabidopsis involved in cuticle membrane and wax production [J]. Plant Cell,2003,15(5):1170-1185.
    31. Chi X Y, Yang Q L, Pa LJ, He Y N, Chen M N, Gao Y, Yu S L. Cloning and Expression Analysis of β-ketoacyl-ACP Reductase, β-hydroxyacyl-ACP Dehydrase and Enoyl-ACP Reductase from Arachis hypogaea L [J]. Genomics and Applied Biology,2010, Vol.1No.2.
    32. Clough R C, Matthis A L, Barnum S R, Jaworski J G. Purification and characterization of3-ketoacyl-acyl carrier protein synthase-III from spinach:a condensing enzyme utilizing acetyl-coenzyme-A to initiate fatty acid synthesis [J]. J Biol Chem,1992,267:20992-20998.
    33. Costaglioli P, Joubes J, Garcia C, Stef M, Arveiler B, Lessire R, Garbay B. Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis [J]. Biochim Biophys Acta,2005,1734(3):247-258.
    34. Cottingham I, Austin A, Slabas A R. Inhibition and covalent modification of rape seed (Brassica napus) enoyl ACP reductase by phenylglyoxal [J]. Biochim Biophys Acta,1989,995:273-278.
    35. D'Agnolo G, Rosenfeld I S, Vagelos P R. Multiple forms of beta-ketoacyl-acyl carrier protein synthetase in Escherichia coli [J]. J Biol Chem,1975,250(14):5289-94.
    36. De Boer G J, Kater M M, Fawcett T, Slabas A R, Nijkamp H J J, Stuitje A R. NADH-dependent enoyl-acyl carrier protein reductase:characterization of a housekeeping gene involved in storage lipid synthesis in seed of Arabidopsis and other plant species [J]. Plant Physiol Biochem,1998,36:473-486.
    37. Dehesh K, Edwards P, Fillatti J, Slabaugh M and Byrne J. KAS IV:a3-ketoacyl-ACP synthase from Cuphea sp. is a medium chain specific condensing enzyme [J]. The Plant Journal,1998,15:383-390.
    38. Dehesh K, Jones A, Knutzon D S andVoelker T A. Production of high levels of8:0and10:0fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana [J]. Plant J,1996,9:167-172.
    39. Dehesh K, Tai H, Edwards P, Byrne J, and Jaworski J G. Overexpression of3-Ketoacyl-Acyl-Carrier Protein Synthase Ills in Plants Reduces the Rate of Lipid Synthesis [J]. Plant Physiology,2001,125:1103-1114.
    40. Demendoza D, Cronan J E. Thermal regulation of membrane lipid fluidity in bacteria [J]. Trends Biomed Sci,1983,8(2):49-52.
    41. Denic V, Weissman J S. A molecular caliper mechanism for determining very long-chain fatty acid length [J]. Cell,2007,130:663-677.
    42. Dessen A, Quemard A, Blanchard J S, Jacobs W R and Sacchettini J C. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis [J]. Science,1995,267,1638-1641.
    43. Dietrich C R, Perera M A, Yandeau-Nelson D, Meeley R B, Nikolau B J, Schnable P S. Characterization of two GL8paralogs reveals that the3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development [J]. Plant J,2005,42:844-861.
    44. Doermann P, VoelkerT A, Ohlrogge J B. Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1[J]. Plant Physiology,2000,123:637-644.
    45. Domergue F, Chevalier S, Creach A, Cassagne C, Lessire R. Purification of the acyl-CoA elongase complex from developing rapeseed and characterization of the3-ketoacyl-CoA synthase and the3-hydroxyacyl-CoA dehydratase [J]. Lipids,2000,35(5):487-494.
    46. DOrmann P, Spener F, Ohlrogge J B, Characterization of two acyl-acyl carrier protein thioesterases from developing Cuphea seeds specific for medium-chain and oleoyl-acyl carrier protein [J]. Planta,1993,189:425-432.
    47. Dormann P, Voelker T A, Ohlrogge J B. Accumulation of Palmitate in Arabidopsis Mediated by the Acyl-Acyl Carrier Protein Thioesterase FATB1[J]. Plant Physiol,2000,123(2):637-644.
    48. Eigenb rode S D, Espelie K E. Effects of plant epicuticular lipids on insect herbivores [J]. Ann Rev Entomol,1995,40:171-194.
    49. Facciotti M T, Bertain P B, Yuan L. Improved stearate phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase [J]. Nat Biotechnol,1999,17:593-597.
    50. Fawcett T, Simon W J, Swinhoe R, Shanklin J, Nishida I, Christie W W, Slabas A R. Expression of mRNA and steadystate levels of protein isoforms of enoyl-ACP reductase from Brassica napus [J]. Plant Mol Biol,1994,26:155-163.
    51. Fehling E, Mukherjee K D. Acyl-CoA elongase from a higher plant (Lunaria annua): Metabo licinter mediates of very long chain acyl-CoA products and substrate specificity [J]. Biochim Biophys Acta,1991,1082:239-246.
    52. Fiebig A, Mayfield J A, Miley N L, Chau S, Fischer L F, Preuss D. Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems [J]. Plant Cell,2000,12(10):2001-2008.
    53. Gable K, Garton S, Napier J A, Dunn T M. Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system [J]. J Exp Bot,2004,55(396):543-545.
    54. Ghanevati M, Jan G. Engineering and mechanistic studies of the Arabidopsis FAE1β-ketoacyl-CoA synthase, FAE1KCS [J]. Eur J Biochem,2002,269:3531-3539.
    55. Ghanevati M, Jaworski J G. Active-site residues of a plant membrane-bound fatty acid elongase β-ketoacyl-CoA synthase, FAE1KCS [J]. Biochimica et Biophysica Acta,2001,77-85
    56. Ghosh S K, Bhattacharjee A, Jha J K, Mondal A K. Characterization and cloning of a stearoyl/oleoyl specific fatty acyl-acyl carrier protein thioesterase from the seeds of Madhuca longifolia (latifolia)[J]. Plant Physiol Bio-chem,2007,45:887-897.
    57. Gill L and Valivety R. Polyunsaturated fatty acids, part1:Occurrence, biological activities and applications [J]. Trends in Biotechnology,1997,15(10):401-409.
    58. Gupta A, Mukhopadhyay N, Arumugam Y S. Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in FAE1gene [J]. Theor Appl Genet,2004,108:743-749.
    59. Han J, Liihs W, Sonntag K, Borchardt DS, Frentzen M, Wolter FP. Functional characterization of β-ketoacyl-CoA synthase genes from Brassica napus L[J]. Plant Mol Biol,2001,46(2):229-239.
    60. Hannoufa A, McNevin J, Lemieux B. Epicuticular waxes of eceriferum mutants of Arabidopsis thaliana [J]. Phytochemistry,1993,33(4):851-855.
    61. Hansen L, von Wettstein-Knowles P. The barley genes Acll and Ac13encoding acyl carrier proteins Ⅰ and Ⅲ are located on different chromosomes [J]. Mol Gen Genet,1991,229:467-478.
    62. Hellyer A, Leadlay P F, Slabas A R. Induction, purification and characterization of acyl-ACP thioesterase from developing seeds of oil seed rape (Brassica napus)[J]. Plant Mol Biol,1992,20:763-780.
    63. Hendren R W, Bloch K. Fatty acid synthetase from Euglena gracilis.Separation of component activities of the ACP-dependent fatty acid synthetase and partial purification of the3-ketoacyl-ACP synthetase [J]. J Biol Chem,1980,255:1504-1508.
    64. Hlousek-Radojcic A, Post-Beittenmiller D, Ohlrogge J B. Expression of constitutive and tissue-specific acyl carrier protein isoforms in Arabidopsis [J]. Plant Physiol,1992,98:206-214.
    65. Hoj P B, Svendsen I B. Barley chloroplasts contain two acyl carrier proteins coded for by different genes [J]. Carlsberg Res Commun,1984,49:483-492.
    66. Hooker T S, Lam P, Zheng H, Kunst L. A core subunit of the RNA-processing/degrading exosome specifically influences cuticular wax biosynthesis in Arabidopsis [J]. Plant Cell,2007,19(3):904-913.
    67. Hooker T S, Millar AA, Kunst L. Significance of the expression of the CER6condensing enzyme for cuticular wax production in Arabidopsis [J]. Plant Physiol,2002,129(4):1568-1580.
    68. Hwang S K, Kim K H, Hwang Y S. Molecular cloning and expression analysis of3-ketoacyl-ACP synthases in the immature seeds of Perilla frutescens [J]. Mol Cells,2000,10:533-539.
    69. Jackowski S, Rock C O. Altered molecular form of acyl carrier protein associated with3-ketoacyl-acyl carrier protein synthase Ⅱ (fabF) mutants [J]. J Bacteriol,1987,169:1469-1473.
    70. James D W Jr, Lim E, Keller J, Plooy Ⅰ, Ralston E, Dooner H K. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1(FAE1) gene with the maize transposon activator [J]. Plant Cell,1995,7(3):309-319.
    71. James D W, Dooner H K. Isolation of EMS-induced mutants in Arabidopsis altered in seed fatty acid composition [J]. Theor Appl Genet,1990,80:241-245.
    72. Jaworski J G, Clough R C, Barnum S R. A cerulean ininsensitive short chain3-ketoacyl-acyl carrier protein synthase in Spinacia oleracea leaves [J]. Plant Physiol,1989,90:41-44.
    73. Jenks M A, Joly R J. Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor (L.)[J]. Moench Plant Physiol,1994,105:1239-1245.
    74. Jha J K, Sinha S, Maiti M K. Functional expression of an acyl carrier protein (ACP) from Azospirillum brasilense alters fatty acid profiles in Escherichia coli and Brassica juncea [J]. Plant Physiol Biol,2007,45:490-500
    75. Kachroo A, Lapchyk L, Fukushige H, Hildebrand D, Klessig D, and Kachroo P.. Plastidial fatty acid signaling modulates salicylic acid-and jasmonic acid-mediated defense pathways in the Arabidopsis ssi2mutant [J]. Plant Cell,2003,15:2952-2965.
    76. Kachroo A, Venugopal S C, Lapchyk L, Falcone D, Hildebrand D and Kachroo P. Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis [J]. Proc Natl Acad Sci USA,2004,101:5152-5157.
    77. Kanrar S, Venkateswari J, Dureja P, Kirti P B, Chopra V L. Modification of erucic acid content in Indian mustard (Brassica juncea) by up-regulation and down-regulation of the Brassica juncea FATTY ACID ELONGATION1(BjFAEl) gene [J]. Plant Cell Rep,2006,25:148-155.
    78. Katavic V, Friesen W, Barton D L. Utility of the Arabidopsis FAE1and yeast SLC1-1genes for improvements in erucic acid and oil content in rapeseed [J]. Biochem Soc Trans,2000,28(6):935-937.
    79. Katavica V, Dennis L, Bartona E. Gaining insight into the role of serine282in B. napus FAE1condensing enzyme [J]. FEBS Letters,2004,562:118-124.
    80. Kater M M, Koningstein G M, Nijkamp H J J, Stuitje A R. cDNA cloning and expression of Brassica napus enoyl-acyl carrier protein reductase in Escherichia coli [J]. Plant Mol Biol,1991,17:895-909.
    81. Kauppinen S K. Structure and expression of the Kasl2gene encoding a3-ketoacyl-ACP synthase I isozyme from barley [J]. J Biol Chem,1992,267:23999-24006.
    82. Kerschen A, Napoli C A, Jorgensen R A, Muller A E. Effectiveness of RNA interference in transgenic plants [J]. FEBS Letters,2004,566:223-228.
    83. Kersteins G. Cuticular water permeability and its physiological significance [J]. J Exp Bot,1996,47:1813-1832.
    84. Kerstiens G. Signaling across the divide:A wider perspective of cuticular structure function relationship [J]. Trends Plant Sci,1996,1:125-129.
    85. Kimber M S, Martin F, Lu Y, Houston S, Vedadi M, Dharamsi A, Fiebig K M, Schmid M, and Rock C O. The structure of (3R)-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Pseudomonas aeruginosa [J]. J Bio Chem,2004,279(50):52593-52602.
    86. Klein B, Pawlowski K, Horicke-Grandpierre C, Schell J, Topfer R. Isolation and characterization of a cDNA from Cuphea lanceolata encoding a beta-ketoacyl-ACP reductase [J]. Mol Gen Genet,1992,233(1-2):122-128.
    87. Kohlwein S D, Eder S, Oh C S, Martin C E, Gable K, Bacikova D, Dunn T. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae [J]. Mol Cell Biol,2001,21(1):109-125.
    88. Kolattukudy PE. Enzymatic synthesis of fatty alcohols in Brassica oleracea [J]. Arch Biochem Biophys,1971,142(2):-701-709.
    89. Kopka J, Robers M, Schuch R, Spener F. Acyl carrier proteins from developing seeds of Cuphea lanceolata Ait [J]. Planta,1993,191:102-111.
    90. Kunst L, Samuels A L. Biosynthesis and secretion of plant cuticular wax [J]. Prog Lipid Res,2003,42(1):51-80.
    91. Kunst L, Samuels A L. Biosynthesis and secretion of plant cuticular wax [J]. Progress in Lipid Research,2003,42:51-80.
    92. Kunst L, Taylor D C, Underhill E W. Fatty acid elongation in developing seed of Arabidopsis thaliana [J]. Plant Physiol Biochem,1992,30(4):425-434.
    93. Kurata J, Kawabata-Awai C, Sakuradani F, Shimizu S, Okada K, Wada T. The YORE-YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis [J]. Plant J,2003,36(1):55-66.
    94. Lai CY and Cronan J E. β-ketoacyl-acyl carrier protein synthase Ⅲ (FabH) is essential for bacterial fatty acid synthesis [J]. J Biol Chem,2003,278:51494-51503.
    95. Lardizabal K D, Metz J G, Sakamoto T, Hutton W C, Pollard M R, Lassner M W. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic Arabidopsis [J]. Plant Physiol,2000,122(3):645-655.
    96. Lassner M W, Lardizabal K, Metz J G. A jojoba ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plant [J]. Plant Cell,1996,8:281-292.
    97. Lassner, M W, Levering C K, Davies H M. Lysophosphatidic acid acyltransferase from meadow foam mediates insertion of erucic acid at the sn-2position of triacylglycerol in transgenic rapeseed oil [J]. Plant Physiol,1995,109:1389-1394.
    98. Leonard J M, Knapp S J, Slabaugh M B. A Cuphea beta-ketoacyl-ACP synthase shifts the synthesis of fatty acids towards shorter chains in Arabidopsis seeds expressing Cuphea FatB thioesterases [J]. Plant J,1998,13:621-628.
    99. Lessire R, Domergue F, Spinner C, Lellouche J P, Mioskowski C, Cassagne C. Study of the3-hydroxy eicosanoyl-coenzyme A dehydratase and (E)-2,3enoyl-coenzyme A reductase involved in acyl-coenzyme A elongation in etiolated leek seedlings [J]. Plant Physiol,1999,119(3):1009-1016.
    100. Li J, Li M R, Wu P Z, Tian C E, Jiang H W, Wu G J. Molecular cloning and expression analysis of a gene encoding a putative-ketoacyl-acyl carrier protein (ACP) synthase Ⅲ (KAS Ⅲ) from Jatropha curcas [J]. Tree Physiol,2008,28:921-927.
    101. Li M J, Li A Q, Xia H, Zhao C Z, Li C S, Wan S B. Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L [J]. J Biosci,2009,34:227-238.
    102. Mariani C, Wolters-Arts M. Complex waxes [J]. Plant Cell,2000,12(10):1795-1797.
    103. Martz F, Kiviniemi S, Palva T E, Sutinen M L. Contribution of omega-3fatty acid desaturase and3-ketoacyl-ACP synthase II (KASII) genes in the modulation of glycerolipid fatty acid composition during cold acclimation in birch leaves [J]. J Exp Bot,2006,57:897-909.
    104. Matsumara S and Stumpf P K. Fat metabolism in higher plants. ⅩⅩⅩⅤ. Partial primary structure of spinach acyl carrier protein [J]. Arch Biochem Biophys,1968,125(3):932-941.
    105. McNevin J P, Woodward W, Hannoufa A, Feldmann K A, Lemieux B. Isolation and characterization of eceriferum (cer) mutants induced by T-DNA insertions in Arabidopsis thaliana [J]. Genome,1993,36(3):610-618.
    106. Mekhedov S, Martinez de Ilarduya O, Ohlrogge J. Toward a functional catalog of the plant genome:a survey of genes for lipid biosynthesis [J]. Plant Physiol,2000,122:389-401.
    107. Metz J G, Pollard M R, Anderson L, Hayes R, Lassner M W. Purification of a jojoba embryo fatty acyl-Coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed [J]. Plant Physiol,2000,122(3):635-644.
    108. Michael W, Lassner, Kathryn. A Jojoba β-ketoacyl-CoA synthase cDNA complements the Canola fatty acid elongation mutation in transgenic plants [J]. The Plant Cell,1996,8:281-292.
    109. Mietkiewska E, Giblin E M, Wang S. Seed-specific heterologous expression of a nasturtium FAE gene in Arabidopsis results in a dramatic increase in the proportion of erucic acid [J]. Plant Physiol,2004,136(1):2665-2675.
    110. Millar A A, Clemens S, Zachgo S, Giblin M, Taylor D C, Kunst L. CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-longchain fatty acid condensing enzyme [J]. Plant Cell,1999,11(5):825-838.
    111. Millar A A, Kunst L. Very-long-chain fatty acid biosynthesisis controlled through the expression and specificity of the condensing enzyme [J]. Plant J,1997,12(1):121-131.
    112. Mou Z, He Y, Dai Y, Liu X, and Li J. Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology [J]. Plant Cell,2000,12:405-418.
    113. O'Hara P, Slabas A R and Fawcett T. Antisense Expression of3-Oxoacyl-ACP Reductase Affects Whole Plant Productivity and Causes Collateral Changes in Activity of Fatty Acid Synthase Components [J]. Plant Cell Physiol,2007,48(5):736-744.
    114. Ohlrogge J B, Jaworski J G, Post-Beittenmiller D. In:Moore TS Jr, editor. Lipid metabolism in plants [M]. Boca Raton:CRC Press,1993:3-32.
    115. Ohlrogge J B, Kuhn D N, Stumpf P K. Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea [J]. Proc Nati Acad. SciUSA,1979,76(3):1194-1198.
    116. Ohlrogge J B, Kuo T M. Plants have isoforms for acyl carrier protein that are expressed differently in different tissues [J]. J Biol Chem,1985,260:8032-8037.
    117. Ohlrogge J, Browse J. Lipid biosynthesis [J]. Plant Cell,1993,7:957-970.
    118. Park J A, Kim T W, Kim S K, Kim W T, Pai H S. Silencing of NbECR encoding a putative enoyl-CoA reductase results in disorganized membrane structures and epidermal cell ablation in Nicotiana benthamiana [J]. FEBS Letters,2005,579:4459-4464.
    119. Paul S, Gable K, Beaudoin F, Cahoon E, Jaworski J, Napier J A, Dunn T M. Members of the Arabidopsis FAE1-like3-ketoacyl-coA synthase gene family substitute for the elop proteins of Saccharomyces cerevisiae [J]. J Biol Chem,2006,281(14):9018-9029.
    120. Peng Q, Hu Y, Wei R, Zhang Y; Guan C, Ruan Y, Liu C. Simultaneous silencing of FAD2and FAE1genes affects both oleic acid and erucic acid contents in Brassica napus seeds [J]. Plant Cell Rep,2010,29:317-325.
    121. Pidkowich M S, Nguyen H T, Heilmann I, Ischebeck T, Shanklin J. Modulating seed beta-ketoacyl-acyl carrier protein synthase Ⅱ level converts the composition of a temperate seed oil to that of a palm-like tropical oil [J]. Proc Natl Acad Sci USA,2007,104:4742-4747.
    122. Price A C, Zhang Y M, Rock C O, and White S W. Structure of β-ketoacyl-[acyl carrier protein] reductase from Escherichia coli:Negative cooperativity and its structural basis [J]. Biochemistry,2001,40:12772-12781.
    123. Pruitt R E, Vielle-Calzada J P, Ploense S E, Grossniklaus U, Lolle S J. FIDDLEHEAD, a gene required to suppress epidermal epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme [J]. Proc Natl Acad Sci USA,2000,97(3):1311-1316.
    124. Puyaubert J, Dieryck W, Costaglioli P, Chevalier S, Breton A, Lessire R. Temporal gene expression of3-ketoacyl-CoA reductase is different in high and in low erucic acid Brassica napus cultivars during seed development [J]. Biochim Biophys Acta,2005,1687(3):152-163.
    125. Qin Y M, Hu C Y, Pang Y. Saturated Very-Long-Chain Fatty Acids Promote Cotton Fiber and Arabidopsis Cell Elongation by Activating Ethylene Biosynthesis [J]. The Plant Cell,2007,19:3692-3704.
    126. Qin Y M, Ma Pujol F, Shi Y H, Feng J X, Liu Y M, Kastaniotis A J, Hiltunen J K, Zhu Y X. Cloning and functional characterization of two cDNAs encoding NADPH-dependent3-ketoacyl-CoA reductase from developing cotton fibers [J]. Cell Res,2005,15(6):465-473.
    127. Raffaele S, Vailleau F, Le'ger A, Joube's, Miersch O, Huard C, Ble'e E, Mongrand S, Domergue F, and Roby D. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis [J]. Plant Cell,2008,20:752-767.
    128. Reith M. A3-ketoacyl-acyl camer protein synthase Ⅲ gene (fabH) is encoded on the chloroplast genome of the red alga Porphyrn umbilicalis [J]. Plant Mol Biol,1993,21: 185-189.
    129. Richardson A, Boscari A, Schreiber L, Kerstiens G, Jarvis M, Herzyk P, Fricke W. Cloning and expression analysis of candidate genes involved in wax deposition along the growing barley (Hordeum vulgare) leaf [J]. Planta,2007,226:1459-1473.
    130. Riederer M, Schreiber L. Protecting against water loss:anlysis of the barrier properties of plant cuticles [J]. J Exp Bot,2001,52:2023-2032.
    131. Rossak M, Smith M, Kunst L. Expression of the FAE1gene and FAE1promoter activity in developing seeds of Arabidopsis thaliana [J]. Plant Mol Biol,2001,46(6):717-725.
    132. Roudier, F. Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis [J]. Plant Cell,2010,22:364-375.
    133. Rowland O, Zheng H, Hepworth S R, Lam P, Jetter R, Kunst L. CER4encodes an alcohol-forming fatty acyl-coA reductase involved in cuticular wax production in Arabidopsis [J]. Plant Physiol,2006,142(3):866-877.
    134. Safford R, Windust J H C, Lucas C, De Silva J, James C M, Hellyer A, Smith C G, Slabas A R, Hughes S G. Plastid-localized seed acyl-carrier protein of Brassica napus is encoded by a distinct, nuclear multigene family [J]. Eur J Biochem,1988,174:287-295.
    135. Schneiter R, Tatzer V, Gogg G, Leitner E, Kohlwein S D. Elolp-dependent carboxy-terminal elongation of C14:1Delta (9) to C16:1Delta (11) fatty acids in Saccharomyces cerevisiae [J]. J Bacteriol,2000,182(13):3655-3660.
    136. Schranz M E, Lysak M A, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae:building blocks of crucifer genomes [J]. Trends in Plant Science,2006,11(11):535-542.
    137. Schutt BS, Brummel M, Schuch R, Spener F. The role of acyl carrier protein isoforms from Cuphea lanceolata seeds in the de-novo biosynthesis of medium-chain fatty acids [J]. Planta,1998,205:263-268.
    138. Serrano-Vega M J, Garces R, Martinez-Force E. Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds (helianthus annuus L.)[J]. Planta,2005,221:868-880.
    139. Sheldon P S., Kekwicka R G, Smith C G., Sidebottom C, Slabas A R.3-Oxoacyl-[ACP] reductase from oilseed rape (Brassica napus)[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1992,1120(2):151-159.
    140. Shimakata T and Stumpf P K. Fatty Acid Synthetase of Spinacia oleracea Leaves [J]. Plant Physiol,1982,69,1257-1262.
    141. Shimakata T, Stumpf P K. Properties of fatty acid synthetase of developing Carthamun tinctorius L.(safflower) seeds[J]. Arch Biochem Biophys,1982.
    142. Shimakata T, Stumpf P K. The prokaryotic nature of the fatty acid synthetase of developing Carthamus tinctorius L.(safflower) seeds [J]. Arch Biochem Biophys,1982,217:144-154.
    143. Shimikata, T. and Stumpf, P.K. Purification and characterization of β-ketoacyl-[acyl carrier protein] reductase, β-hydroxyacyl-[acyl carrier protein] dehydratase, and enoyl-[acyl carrier protein]reductase from Spinacea olerecea leaves [J]. Arch. Biochem,1982, Biophys.218,77-91.
    144. Shintani D K, Ohlrogge J B. The characterization of a mitochondrial acyl carrier protein isoform isolated from Arabidopsis thaliana [J]. Plant Physiol,1994,104:1221-1229.
    145. Siggaard-Andersen M, Kauppinen S, von Wettstein-Knowles P. Primary structure of a cerulenin-binding3-ketoacyl-[acyl carrier protein] synthase from barley chloroplasts [J]. Proc Natl Acad Sci USA,1991,88:4114-4118.
    146. Simoni R D, Criddle R S, Stumpf P K. Fat metabolism in higher plants. XXXI. Purification and properties of plant and bacterial acyl carrier proteins [J]. J Biol Chem,1967,242:(4):573-581.
    147. Sinha S, Jha J K, Maiti M K, Basu A, Mukhopadhyay U K, Sen S K. Metabolic engineering of fatty acid biosynthesis in Indian mustard (Brassica juncea) improves nutritional quality of seed oil [J]. Plant Biotechnol Rep,2007,1:185-197.
    148. Slabas A R, Chase D, Nishida I, Murata N, Sidebottom C, Safford R, Sheldon P S, Kekwick R G O, Hardie D G, and Mackintosh R W. Molecular cloning of higher-plant3-oxoacyl-(acyl carrier protein) reductase [J]. Biochem J,1992,283:321-326.
    149. Slabas A R, Sidebottom C M, Hellyer A, Kessell R M L, Tombs M P. Oilseed rape NADH enoyl acyl-carrier protein reductase [J]. Biochim Biophys Acta,1986,877,271-280.
    150. Song P, Allen R D. Identification of a cotton fiber specific acyl carrier protein cDNA by differential display [J]. Biochim Biophys Acta,1997,1351:305-312.
    151. Stoll C, Luhs W, Zarhloul M K, Brummel M, Spener F and Friedt W. Knockout of KAS III regulation changes fatty acid composition in canola (Brassica napus)[J]. Eur J Lipid Sci Technol,2006,108:277-278.
    152. Stumpf P K. in Fatty Acid Metabolism and Its Regulation (Numa, S. ed)[M], Elsevier Science Publ, Amsterdam,1984:155-179
    153. Tai H, JaworsE J G. β-Ketoacyl-acyl carrier protein synthase III from spinach (Spinacia oleracea) is not similar to other condensing enzymes of fatty acid synthase [J]. Plant Physio,1993,113:1361-1367.
    154. Tai H, Post-Beittenmiller D, Jaworski J C. Cloning of a cDNA Encoding3-Ketoacyl-Acyl Carrier Protein Synthase III from Arabidopsis [J]. Plant Physiol,1994,106:801-802.
    155. Teh O K, Ramli U S. Characterization of a KCS-like KASII from Jessenia bataua that elongates saturated and monounsaturated stearic acids in Arabidopsis thaliana [J]. Mol Biotechnol,2011,48:97-108.
    156. Tian B, Wei F, Shu H, Zhang Q, Zang X, Lian Y. Decreasing erucic acid level by RNAi-mediated silencing of fatty acid elongase1(BnFAE1.1) in rapeseeds (Brassica napus L.)[J]. A. Afr J Biotechnol,2011,61(10):13194-13201.
    157. Trenkamp S, Martin W, Tietjen K. Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides [J]. Proc Natl Acad Sci USA,2004,101(32):11903-11908.
    158. Tsay J T, Oh W, Larson T J, Jackowski S, Rock C O. Isolation and characterization of the3-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12[J]. J Bi A Chem,1992,267:6807-6814.
    159. Turnowsky F, Fuchs K, Jeschek C, Hogenauer G. ENVM genes of Salmonella typhimurium and Escherichia coli [J]. J Bacteriol,1989,171:6555-6565.
    160. Verwoert11, Van der Linden K H, Walsh M C, Nijkamp H J and Stuitje A R. Modification of Brassica napus seed oil by expression of the Escherichia coli fabH gene, encoding3-ketoacylacyl carrier protein synthase III [J]. Plant Mol Biol,1995,27:875-886.
    161. Vesna K, Elzbieta M, Dennis L. Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase1by a single amino acid substitution [J]. Eur J Biochem,2002,5625-5631.
    162. Vioque J, Kolattukudy P E. Resolution and purification of an aldehyde-generating and an alcohol-generating fatty acyl-CoA reductase from pea leaves (Pisum sativum L)[J]. Arch Biochem Biophys,1997,340(1):64-72.
    163. Voelker T A, Jones A, Cranmer A M. Broad-range and binary-range acy-lacy-1carrier protein thioesterases suggest an alternative mechan ism for medium-chain production in seeds [J]. Plant Physiology,1997,114:669-677.
    164. Wada H, Shintani D, Ohlrogge J B. Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production [J]. Proc Natl Acad Sci USA,1997,94:1591-1596.
    165. Wallis J G, Browse J. Mutants of Arabidopsis reveal many roles for membrane lipids [J]. Progress in Lipid Research,2002,41:254-278.
    166. Wei Q, Li J, Zhang L, Wua P, Chen Y, Li M, Jiang H, Wu G. Cloning and characterization of a beta-ketoacyl-acyl carrier protein synthase II from Jatropha curcas [J]. Journal of Plant Physiology,2012,169:816-824.
    167. Wissenbach M. New members of the barley Kas gene family encoding beta-ketoacyl-acyl carrier protein synthases [J]. Plant Physiol,1994,106(4):1711-1712.
    168. Wu G Z, Xue H W. Arabidopsis (3-Ketoacyl-[Acyl Carrier Protein] Synthase I is Crucial for Fatty Acid Synthesis and Plays a Role in Chloroplast Division and Embryo Development [J]. The Plant Cell,2010,22:3726-3744.
    169. Wu P Z, Li J, Wei Q, Zeng L, Chen Y P, Li M R, Jiang H W, Wu G J. Cloning and functional characterization of an acyl-acyl carrier protein thioesterase (JcFATB1) from Jatropha curcas [J]. Tree Physiol,2009,29(10):1299-1305.
    170. Wu Y, Xiao L, Wu G, Lu C. Cloning of fatty acid elongationl gene of Brassicaceae plants and molecular identification of genome A and C [J]. Science in China Series C-Life Sciences,2007,50(3):343-349.
    171. Xu X, Dietrich C R, Delledonne M, Xia Y, Wen T J, Robertson D S, Nikolau B J, Schnable P S. Sequence analysis of the cloned glossy8gene of maize suggests that it may code for a beta-ketoacyl reductase required for the biosynthesis of cuticular waxes [J]. Plant Physiol,1997,115(2):501-510.
    172. Xu X, Dietrich C R, Lessire R, Nikolau B J, Schnable P S. The endoplasmic reticulum-associated maize GL8protein is a component of the acyl-coenzyme A elongase involved in the production of cuticular waxes [J]. Plant Physiol,2002,128(3):924-934.
    173. Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K, Saedler H. Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis [J]. Plant Cell,1999,11(11):2187-2201.
    174. Zhang J Y, Broeckling C D. Overexpression of WXP1, a putative Medicago truncatula AP2domain containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (M edicag o sa tiva)[J]. Plant J,2005,42:689-707.
    175. Zheng H, Rowland O, Kunst L. Disruptions of the Arabidopsis enoyl-coA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis [J]. Plant Cell,2005,17(5):1467-1481.
    176. Zou J T, Katavic V, Michael G E. Modification of Seed Oil Content and Acyl Composition in the Brassicaceae by Expression of a Yeast sn-2Acyltransferase Gene [J]. The Plant Cell,1997,9:909-923.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700