拟南芥NPY基因对根向重力性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于植物来说,重力代表了一个重要的环境信号,它影响了植物的生长和发育。向重力性是指植物能够感受重力的方向,使得根向下生长,茎向上生长。根的向重力性在拟南芥中已被广泛研究,但是向重力性的机理还没有被完全研究清楚。植物的向重力性、向光性和生长素调节器官发育对植物的形态建成很重要。人们通过对拟南芥向光性和生长素调节器官发育的研究发现二者都至少需要一个NPH3样基因,一个AGC激酶和一个生长素响应因子。NPH3样基因是一个大的基因家族,NPY基因属于这个家族。许多研究表明生长素响应因子(ARF7和ARF19)和AGC激酶(PID, WAG1, WAG2和D6PKs)对根的向重力性也起重要作用。因此本论文研究了NPY基因是否也参与调节根的向重力性。主要获得以下研究结果:
     (1)为了研究NPY基因在根里的表达特异性,通过GUS染色发现NPY1, NPY2, NPY3, NPY4, NPY5都在主根的根尖表达。NPY基因在根尖的表达揭示了这5个NPY基因很可能对根向重力性起作用。
     (2)为了研究NPY基因的缺失是否直接影响根的向重力性,通过分析所有npy单突变体,双突变体,三突变体,四突变体和五突变体的根向重力性的表型,发现npy单突变体和双突变体没有明显的向重力性缺陷;在十种npy三突变体里,除了npy1npy2npy4,其他的三突变体略有向重力性缺陷;在五种npy四突变体里,除了npy1npy2npy3npy4,其他的四突变体均比npy三突变体的向重力性缺陷严重,npy2npy3npy4npy5四突变体是所有四突变里向重力性缺陷最严重的;npy1npy2npy3npy4npy5五突变体缺失向重力性在所有突变体里最严重。这些表型分析揭示了拟南芥的5个NPY基因对根向重力性功能冗余。
     (3)生长素运输抑制剂(NPA)抑制野生型的根向重力性,促进野生型根毛生长。通过NPA处理npy2npy3npy4npy5四突变体,发现突变体的非向重力性程度略有减弱,根毛密度和长度也比野生型少。结果说明NPY基因减弱了NPA抑制向重力性的作用,增强了NPA促进根毛生长的作用,揭示了NPY基因与生长素运输紧密相关。
     (4)生长素在野生型根的静止中心和根冠小柱细胞积累。为了研究NPY基因的突变是否会改变生长素在根尖的积累,通过激光扫描共聚焦显微技术研究了生长素报道基因DR5::GFP在npyl npy2npy3npy4npy5五突变体的表达,结果显示生长素不仅在npy五突变体的静止中心和根冠小柱细胞积累,还在侧根冠细胞(LRC)异常积累。揭示了生长素在npy五突变体根表皮细胞的极性运输受到影响。
     (5)PIN2基因编码了一个生长素输出载体。为了研究NPY基因与PIN2基因的相互作用,本论文以npy2npy3npy4npy5为母本,pin2为父本进行杂交,获得的npy2npy3npy4npy5pin2五突变体的向重力性缺陷均比父本或母本严重。同时,外源生长素IAA和NAA导致npy2npy3npy4npy5pin2五突变体根尖弯向培养基外侧生长的表型也比父本或母本严重。揭示了NPY基因和PIN2基因在生长素调节根向重力性的遗传通路里具有协同作用。
     (6)生长素运输蛋白PIN2定位在根尖表皮细胞膜的上层。为了研究NPY基因是否影响PIN2的定位,通过激光扫描共聚焦显微技术研究了PIN2::GFP在npy1npy2npy3npy4npy5五突变体的表达,结果显示PIN2不仅在npy五突变体根表皮细胞膜的上层定位,还在表皮细胞膜的侧面定位。这种极性定位的改变很可能是造成生长素极性运输在npy五突变体里受到抑制的原因。
     综上所述,NPY基因在拟南芥根向重力性里发挥着重要作用。研究根向重力性对于阐明地球重力在生物进化进程中的作用和空间不同重力环境中发展植物栽培技术具有重要意义。本论文揭示了拟南芥使用了AGC激酶-NPH3样蛋白-ARF模型来调节根向重力性,为进一步研究拟南芥根向重力性的机制奠定了基础。
Gravity is an important environment signal for plants, effecting its growth and development. Plants can sense the direction of gravity and orient their growth to ensure that roots are anchored in soil and that shoots grow upward. Gravitropism have been studied extensively using Arabidopsis genetics, but the exact mechanisms are not fully understood. Gravitropism, phototropism and auxin-regulated organogenesis are important for morphogenesis. It was reported that auxin-regulated organogenesis and phototropism used analogous mechanisms for which at least one NPH3-like gene, one AGC kinase, and one ARF were required. NPH3-like gene is a big gene family, which NPY genes are included. It was reported that root gravitropic responses required both auxin response factors (ARF7and ARF19) and AGC kinase (PID, WAG1, WAG2and D6PKs). This paper researched whether NPY genes were required for gravitropic responses. The main results were as follows:(1) The expression patterns of the NPY genes were shown by GUS staining. All of the five NPY genes were highly expressed in primary root tips, indicating that they may play a key role in Arabidopsis root gravitropism.
     (2) The single and double npy mutants did not display obvious gravitropism defects; all of the npy triple mutants except npyl npy2npy4had weak gravitropism defects; all of the npy quadruple mutants except npyl npy2npy3npy4had stronger gravitropism defects than the npy triple mutants. The npyl npy2npy3npy4npy5quintuple mutants showed the strongest gravitropic phenotypes, second is npy2npy3npy4npy5quadruple mutants. Systematic phenotypic analysis of npy mutant demonstrated that the five NPY genes all contributed to gravitropism redundancily.
     (3) Auxin transport inhibitor NPA inhibits gravitropism and promotes the growth of root hair. Our data showed that NPA slightly decreased the agravitropism in npy2npy3npy4npy5quadruple mutants and npy2npy3npy4npy5quadruple mutants were more resistant to NPA in length and dencity of root hair than wild type, indicating NPY genes deseased the inhibitor function of NPA to gravitropism and increased the promote function of NPA to root hair, which uncovered that NPY genes are related to auxin transportion.
     (4) Auxin is accumulated in quiescent center and columella cells in wild type. The expression pattern of auxin reporter DR5::GFP in npyl npy2npy3npy4npy5quintuple mutants was shown by confocal. DR5::GFP not only detected in quiescent center and columella cells, but also in the lateral root cap in npy quintuple mutants, indicating auxin transportion was affected in npy quintuple mutants.
     (5) PIN2gene encoded a polar-auxin-transport efflux. Our data indicated NPYs and PIN2had synergistic interactions since npy2npy3npy4npy5pin2quintuple mutants showed stronger phenotype than either pin2single mutant or npy2npy3npy4npy5quadruple mutant in both agravitropism and the phenotype of root tip bending out of the plates with exogenous IAA and NAA.
     (6) PIN2located in upper side of epidermis of root tip in wild type. Our data showed that there was no PIN2polarity in epidermis of root tip in npyl npy2npy3npy4npy5quintuple mutants, probably causing the restrain of the polar auxin transportion from root tip to elongation zone through epidermis.
     In summary, NPY genes played an essential role in root gravitropic responses in Arabidopsis. The research of gravitropism is very important to clarify the function of gravity to biological evolution and help developing cultivation techniques in different gravity environments. This paper uncovered that plants used an AGC kinase-NPH3-like protein-ARF module analogous to those in auxin-regulated organogenesis and phototropism to regulate plant root gravitropic responses, which providing foundation for further understanding the exact mechanisms of gravitropism.
引文
Abas L, Benjamin R, Malenica N, Paciorek T, Wisniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat.Cell Biol.8:249-256.
    Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657.
    Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture:regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot.97:883-893.
    Aloni R, Langhans M, Aloni E, Dreieicher E, Ullrich CI (2005) Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. J. Exp. Bot.56:1535-1544.
    Aloni R, Langhans M, Aloni E, Ullrich CI (2004) Role of cytokinin in the regulation of root gravitropism. Planta 220:177-182.
    Beeckman T (2009). Root Development. Annu. Plant Rev.37:157-174.
    Beemster GT, Fiorani F, Inze D (2003) Cell cycle:the key toplant growth control? Trends Plant Sci.8:154-158.
    Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591-602.
    Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057-4067.
    Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996). Arabidopsis AUXl gene:a permease-like regulator of root gravitropism. Science 273:948-950.
    Bennett SRM, Alvarez J, Bossinger G, Smyth DR (1995) Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J.8:505-520.
    Berleth T, Jurgens G (1993) The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118:575-587.
    Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett MJ, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J.29: 325-332.
    Birnbaum K, Jung JW, Wang JY, Lambert GM, Hirst JA, GalbraithDW, Benfey PN (2005) Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat. Methods 2:615-619.
    Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39-44.
    Boonsirichai K, Sedbrook J, Chen R, Gilroy S, Masson P (2003) ARG1 is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell 15:2612-2625.
    Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, MaceD, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801-806.
    Buer CS, Masle J, Wasteneys GO (2000) Growth conditions modulate rootwave phenotypes in Arabidopsis. Plant Cell Physiol.41:1164-1170.
    Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol.140:1384-1396.
    Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci.8:165-171.
    Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze' D, Sandberg G, Casero PJ, Bennett MJ (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843-852.
    Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) The Arabidopsis thaliana AGRAVITROPIC l gene encodes a component of the polar-auxin-transport efflux carrier. Proc. Natl Acad. Sci. USA.95:15112-15117.
    Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev.20: 1790-1799.
    Cheng Y, Dai X, Zhao Y (2007a) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430-2439.
    Cheng Y, Qin G, Dai X, Zhao Y (2007b) NPY1, a BTBNPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proc. Natl Acad. Sci. USA.104:18825-18829.
    Cheng Y, Qin G, Dai X, Zhao Y (2008) NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis. Proc. Natl Acad. Sci. USA.105:21017-21022.
    Christensen SK, Dagenais N, Chory J, Weigel D (2000) Regulation of auxin response by the protein kinase PINOID. Cell 100:469-478.
    Christie JM, Reymond P, Powell GK, Bernasconi P, Raibekas A, Liscum E, Briggs WR (1998) Arabidopsis NPH1:a flavoprotein with the properties of a photoreceptor for phototropism. Science 282:1698-1701.
    Clough SJ, Bent AF (1998) Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J.16:735-743.
    Caspar T, Pickard BG (1989) Gravitropism in a starchless mutant of Arabidopsis:implications for the starch-statolith theory of gravity sensing. Planta 177:185-197.
    Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198:532-541.
    Deruere J, Jackson K, Garbers C, Soil D, Delong A (1999) The RCNl-encoded a subunit of protein phosphatase 2A increases phosphatase activity in vivo. Plant J.20:389-399.
    De Smet I, Tetsumura T, De Rybel B, Frey NF, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inzel D, Bennett MJ, Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134: 681-690.
    Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435:441-445.
    Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jurgens G, Estelle M (2005b) Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 9:109-119.
    Dharmasiri S, Swarup R, Mockaitis K, Dharmasiri N, Singh SK, Kowalchyk M, Marchant A, Mills S, Sandberg G, Bennett MJ, Estelle M (2006) AXR4 is required for localization of the auxin influx facilitator AUX1. Science 312:1218-1220.
    Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr. Biol.17:520-527.
    Dhonukshe P, Tanaka H, Goh T, Ebine K, Mahonen AP, Prasad K, Blilou I, Geldner N, Xu J, Uemura T, Chory J, Ueda T, Nakano A, Scheres B, Friml J (2008) Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature 456: 962-966.
    Ditengou FA, Teale WD, Kochersperger P, Flittner KA, Kneuper I, van der Graaff E, Nziengui H, Pinosa F, Li X, Nitschke R, Laux T, Palme K. (2008) Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA.105:18818-18823.
    Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B. (1993) Cellular-organization of the Arabidopsis thaliana root. Development 119:71-84.
    Dubrovsky JG, Doerner PW, Colon-Carmona A, Rost TL (2000) Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiol.124:1648-1657.
    Dubrovsky JG, Rost TL, Colon-Carmona A, Doerner P (2001) Early primordium morphogenesis during lateral root initiation in Arabidopsis thaliana. Planta 214:30-36.
    Fasano JM, Massa GD, Gilroy S (2002) Ionic signaling in plant responses to gravity and touch. J. Plant Growth Regul.21:71-88.
    Fitzelle KJ, Kiss JZ (2001) Restoration of gravitropic sensitivity in starch-deficient mutants of Arabidopsis by hypergravity. J. Exp. Bot.52:265-275.
    Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of the auxin efflux regulator AtPIN3 mediates tropism in Arabidopsis. Nature 415:806-809.
    Friml J, Benkova E, Mayer U, Palme K, Muster G (2003) Automated whole mount localisation techniques for plant seedlings. Plant J.34:115-124.
    Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB, Ljung K, Sandberg G, Hooykaas PJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862-865.
    Friml J, Benfey P, Benkova E, Bennett M, Berleth T, Geldner N, Grebe M, Heisler M, Hejatko J, Jiirgens G, Laux T, Lindsey K, Lukowitz W, Luschnig C, Offringa R, Scheres B, Swarup R, Torres-Ruiz R, Weijers D, Zazimalova E (2006) Apical-basal polarity:why plant cells don't stand on their heads. Trends Plant Sci.11:12-14.
    Fukaki H, Nakao Y, Okushima Y, Theologis A, Tasaka M (2005) Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis. Plant J. 44:382-395.
    Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAAl4 gene of Arabidopsis. Plant J.29: 153-168.
    Furutani M, Kajiwara T, Kato T, Treml B, Stockum C, Torres-Ruiz R, Tasaka M (2007) The gene MACCHI-BOU 4/ENHANCER OF PINOID encodes a NPH3-like protein and reveals similarities between organogenesis and phototropism at the molecular level. Development 134: 3849-3859.
    Furutani M, Sakamoto N, Yoshida S, Kajiwara T, Robert HS, Friml J, Tasaka M (2011) Polar-localized NPH3-like proteins regulate polarity and endocytosis of PIN-FORMED auxin efflux carriers. Development 138:2069-2078.
    Galvan-Ampudia CS, Offringa R (2007) Plant evolution:AGC kinases tell the auxin tale. Trends Plant Sci.12:541-547.
    Garbers C, DeLong A, Deruere J, Bernasconi P, Soll D (1996) A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis. EMBO J.15: 2115-2124.
    Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282: 2226-2230.
    Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219-230.
    Geldner N, Richter S, Vieten A, Marquardt S, Torres-Ruiz RA, Mayer U, Jurgens G (2004) Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131:389-400.
    Glass NL, Kosuge T (1986) Cloning of the gene for indoleacetic acidlysine synthetase from Pseudomonas syringae subsp.savastanoi. J. Bacteriol.166:598-603.
    Glass NL, Kosuge T (1988) Role of indoleacetic acid-lysine synthetase in regulation of indoleacetic acid pool size and virulence of Pseudomonas syringae subsp. savastanoi. J. Bacteriol.170:2367-2373.
    Guan C, Rosen ES, Boonsirichai K, Poff KL, Masson PH (2003) The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway. Plant Physiol.133:100-112.
    Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J.17:1405-1411.
    Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K, Watahiki MK, Yamamoto K, Liscum E (2000) The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12:757-770.
    Hobbie L, Estelle M (1995) The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J.7:211-220.
    Holland JJ, Roberts D, Liscum E (2009) Understanding phototropism:from Darwin to today. J. Exp. Bot.60:1969-1978.
    Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR (1997) Arabidopsis NPH1:a protein kinase with a putative redox-sensing domain. Science 278:2120-2123.
    Inada S, Ohgishi M, Mayama T, Okada K, Sakai T (2004) RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell 16:887-896.
    Ishikawa H, Evans ML (1995) Specialized zones of development in roots. Plant Physiol.109: 725-727.
    Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions:beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J.6:3901-3907.
    Kim JI, Sharkhuu A, Jin JB, Li P, Jeong JC, Baek D, Lee SY, Blakeslee JJ, Murphy AS, Bohnert HJ, Hasegawa PM, Yun DJ, Bressan RA (2007) yucca6, a dominant mutation in Arabidopsis, affects auxin accumulation and auxin-related phenotypes. Plant Physiol.145: 722-735.
    Kiss JZ, Wright JB, Caspar T (1996) Gravitropism in roots of intermediate-starch mutants of Arabidopsis. Physiol. Plant 97:237-244
    Kiss JZ, Miller KM, Ogden LA, Roth KK (2002) Phototropism and gravitropism in lateral roots of Arabidopsis. Plant Cell Physiol.43:35-43.
    Kleine-Vehn J, Friml J (2008) Polar targeting and endocytic recycling in auxin-dependent plant development. Annu. Rev. Cell Dev. Biol.24:447-473.
    Kleine-Vehn J, Dhonukshe P, Sauer M, Brewer PB, Wisniewska J, Paciorek T, Benkova E, Friml J (2008) ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis. Curr. Biol.18:526-531.
    Lalanne E, Michaelidis C, Moore JM, Gagliano W, Johnson A, Patel R, Howden R, Vielle-Calzada J-P, Grossniklaus U, Twell D (2004) Analysis of transposon insertion mutants highlights the diversity of mechanisms underlying male progamic development in Arabidopsis. Genetics 167:1975-1986.
    Laplaze L, Parizot B, Baker A, Ricaud L, Martiniere A, Auguy F, Franche C, Nussaume L, Bogusz D, Haseloff J (2005) GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. J. Exp. Bot.56:2433-2442.
    Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root-meristems is a 2-stage process. Development 121:3303-3310.
    Laskowski M, Grieneisen VA, Hofhuis H, Hove CA, Hogeweg P, Maree AF, Scheres B (2008) Root system architecture from coupling cell shape to auxin transport. Plos. Biol.6:2721-2735.
    Leyser HMO, Lincoln CA, Timpte CS, Lammer D, Turner JC, Estelle M (1993) Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme El. Nature 304:161-164.
    Leyser HM, Pickett FB, Dharmasiri S, Estelle M (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-ACl promoter. Plant J.10:403-413.
    Li G, Xue HW (2007) Arabidopsis PLDz2 Regulates Vesicle Trafficking and Is Required for Auxin Response. Plant Cell 19:281-295.
    Li J, Dai X, Zhao Y (2006) A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis. Plant Physiol.140:899-908.
    Li L, Xu J, Xu ZH, Xue HW (2005) Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell 17:2738-2753.
    Li Y, Dai X, Cheng Y, Zhao Y (2011) NPY genes play an essential role in root gravitropic response in Arabidopsis. Mol. Plant 4:171-179.
    Lin R, Wang H (2005) Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. Plant Physiol.138:949-964.
    Liscum E, Briggs WR (1995) Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7:473-485.
    Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17:1090-1104.
    Lucas M, Godin C, Jay-Allemand C, Laplaze L (2008) Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J. Exp. Bot.59:55-66.
    Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIRl, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev.12: 2175-2187.
    MacCleery SA, Kiss JA (1999) Plastid sedimentation kinetics of roots in wild-type and starch-deficient mutants of Arabidopsis. Plant Physiol.120:183-192.
    Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant, Cell and Environment 28:67-77.
    Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33-44.
    Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett MJ (1999) AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J.18:2066-2073.
    Marsch-Martinez N, Greco R, Van Arkel G, Herrera-Estrella L, Pereira A (2002) Activation tagging using the En-Ⅰ maize transposon system in Arabidopsis. Plant Physiol.129: 1544-1556.
    Mayer U, Buttner G, Jurgens G (1993) Apical-basal pattern formation in the Arabidopsis embryo:Studies on the role of the GNOM gene. Development 117:149-162.
    Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler MG, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz EM, Luschnig C, Offringa R, Friml J (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044-1056.
    Migliaccio F, Piconese S. (2001) Spiralizations and tropisms in Arabidopsis. Trends Plant Sci 6: 561-565.
    Moller B, Weijers D (2009) Auxin Control of Embryo Patterning. Cold Spring Harb Perspect Biol. 1:a001545.
    Morita MT (2010) Directional gravity sensing in gravitropism. Annu. Rev. Plant Biol.61: 705-720.
    Motchoulski A, Liscum E (1999) Arabidopsis NPH3:A NPH1 photoreceptor-interacting protein essential for phototropism. Science 286:961-964.
    Monshausen GB, Sievers A (2002) Basipetal propagation of gravity-induced surface pH changes along primary roots of Lepidium sativum L. Planta 215:980-988.
    Muller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J.17:6903-6911.
    Mullen JL, Wolverton C, Hangarter RP (2005) Apical control, gravitropic signaling, and the growth of lateral roots in Arabidopsis. Adv. Space. Res.36:1211-1217.
    Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol.123:563-574.
    Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J.5:175-187.
    Nieuwland J, Maughan S, Dewitte W, Scofield S, Sanz L, Murray JA (2009) The D-type cyclin CYCD41 modulates lateral root density in Arabidopsis by affecting the basal meristem region. Proc. Natl. Acad. Sci.106:22528-22533.
    Okada K, Shimura Y (1990) Reversible root tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus. Science 250:274-276
    Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR., Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444-463.
    Ottenschlager I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl. Acad. Sci. USA 100:2987-2991.
    Overvoorde P, Fukaki H, Beeckman T (2010) Auxin Control of Root Development. Cold Spring Harb Perspect Biol.2:a001537.
    Paciorek T, Zazimalova E, Ruthardt N, Petrasek J, Stierhof YD, Kleine-Vehn J, Morris DA, Emans N, Jurgens G, Geldner N, Friml J (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1351-1256.
    Paponov IA, Teale WD, Trebar M, Blilou K, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci.10:170-177.
    Pedmale UV, Liscum, E (2007) Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J. Biol. Chem. 282:19992-20001.
    Petrasek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertova D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazimalova E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 3:914-918.
    Petricka JJ, Clay NK, Nelson TM (2008) Vein patterning screens and the defectively organized tributaries mutants in Arabidopsis thaliana. Plant J.56:251-263.
    Philosoph-Hadas S, Friedman H, Meir S (2005) Gravitropic bending and plant hormones. Vitam Horm.72:31-78.
    Plieth C, Trewavas AJ (2002) Reorientation of seedlings in the earth's gravitational field induces cytosolic calcium transients. Plant Physiol.129:786-796.
    Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T (1996) Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200:229-237.
    Reinhardt D, Pesce E, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426: 255-260.
    Rashotte A, Brady S, Reed R, Ante S, Muday G (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol.122:481-490.
    Rashotte AM, DeLong A, Muday GK (2001) Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response and lateral root elongation. Plant Cell 13:1683-1697.
    Richter GL, Monshausen GB, Krol A, Gilroy S (2009) Mechanical stimuli modulate lateral root organogenesis. Plant Physiol.151:1855-1866.
    Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279:1371-1373.
    Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grrlp. Genes Dev.12:198-207.
    Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463-472.
    Sack FD (1991) Plant gravity sensing. Int. Rev. Cytol.127:193-252.
    Sack FD (1997) Plastids and gravitropic sensing. Planta 203:S63-S68.
    Sakai T, Kagawa T, Kashahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada, K (2001) Arabidopsis nphl and npll:blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl Acad. Sci. USA.98:6969-6974.
    Sakamoto K, Briggs WR (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723-1735.
    Santner AA, Watson JC (2006) The WAG1 and WAG2 protein kinases negatively regulate root waving in Arabidopsis. Plant J.45:752-764.
    Santelia D, Vincenzetti V, Azzarello E, Bovet L, Fukao Y, Duchtig P, Mancuso S, Martinoia E, Geisler M (2005) MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Lett.579:5399-5406.
    Sauer M, Balla J, Luschnig C, Wisniewska J, Reinohl V, Friml J, Benkova E (2006) Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev.20:2902-2911.
    Sedbrook JC, Chen R, Masson PH (1999) ARG1 (Altered Response to Gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton. Proc. Natl. Acad. Sci. USA. 96:1140-1145.
    Shin H, Shin HS, Guo Z, Blancaflor EB, Masson PH, Chen R (2005) Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases. Plant J.42:188-200.
    Simmons C, Soil D, Migliaccio F (1995) Circumnutation and gravitropism cause root waving in Arabidopsis thaliana. J. Exp. Bot.46:143-150.
    Stone BB, Stowe-Evans EL, Harper RM, Celaya RB, Ljung K, Sandberg G, Liscum E (2008) Disruptions in AUX1-dependent auxin influx alterhypocotyl phototropism in Arabidopsis. Mol. Plant 1:129-144.
    Sukumar P, Edwards KS, Rahman A, Delong A, Muday GK (2009) PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis. Plant Physiol.150:722-735.
    Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett MJ (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev.15:2648-2653
    Swarup R, Kargul J, Marchant A, Zadik D, Rahman A, Mills R, Yemm A, May S, Williams L, Millner P, Tsurumi S, Moore I, Napier R, Kerr ID, Bennett MJ (2004) Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16:3069-3083.
    Swarup R, Kramer EM, Perry P, Knox K, Leyser HMO, Haseloff J, Beemster GTS, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat. Cell Biol.7:1057-1065.
    Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16: 379-393.
    Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K (2005) PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17: 2922-2939.
    Thompson MV, Holbrook NM (2004) Root-gel interactions and the root waving behavior of Arabidopsis. Plant Physiol.135:1822-1837.
    Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711-721.
    Timpte C, Wilson AK, Estella M (1994) The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics 138: 1239-1249.
    Treml, BS, Winderl S, Radykewicz R, Herz M, Schweizer G, Hutzler P, Glawischnig E, Ruiz RA (2005) The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development 132:4063-4074.
    Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865-1868.
    Utsuno K, Shikanai T, Yamada Y, Hashimoto T (1998) AGR, an Agravitropic locus of Arabidopsis thaliana, en-codes a novel membrane-protein family member. Plant Cell Physiol. 39:1111-1118.
    Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A (2004) Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J.40:523-535.
    Vieten A, Vanneste S, Wisniewska J, Benkova E, Benjamins R, Becckman T, Luschnig C, Friml J (2005) Functional redundancy of PIN proteins is accompanied by auxindependent cross-regulation of PIN expression. Development 132:4521-4531.
    Wan YL, Eisinger W, Ehrhardt D, Kubitscheck U, Baluska F, Briggs W (2008) The subcellular localization and bluelight-induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana. Mol. Plant 1:103-117.
    Weijers D, Benkova E, Jager KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jurgens G (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J.24:1874-1885.
    Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, Alonso JM, Ecker JR, Reed JW (2005) NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J.43:118-130.
    Wisniewska J, Xu J, Seifertova D, Brewer PB, Ruzicka K, Blilou I, Rouquie D, Benkova E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312: 883.
    Woodward C, Bemis SM, Hill EJ, Sawa S, Koshiba T, Torii KU (2005) Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by the activation tagging of a new member of the YUCCA family putative flavin monooxygenases. Plant Physiol.139:192-203.
    Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M (2009) The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol.151:168-179.
    Yang X, Lee S, So JH, Dharmasiri S, Dharmasiri N, Ge L, Jensen C, Hangarter R, Hobbie L, Estelle M (2004) The IAA1 protein is encoded by AXR5 and is a substrate of SCF (TIR1). Plant J.40:772-782.
    Yang Y, Hammes U, Taylor C, Schachtman D, Nielsen E (2006) High affinity auxin transport by the AUX1 influx carrier protein. Curr. Biol.16:1-5.
    Young LS, Harrison BR, Murthy N, Moffatt BA, Gilroy S, Masson PH (2006) Adenosine Kinase Modulates Root Gravitropism and Cap Morphogenesis in Arabidopsis. Plant Physiol. 2006:564-573.
    Zhang Y, He J, McCormick S (2009) Two Arabidopsis AGC kinases are critical for the polarized growth of pollen tubes. Plant J.58:474-484.
    Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD,Weigel D, Chory J(2001). A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306-309.
    Zhao Y (2008) The role of local biosynthesis of auxin and cytokinin in plant development. Curr. Opin. Plant Biol.11:16-22.
    Zourelidou M, Muller I, Willige BC, Nill C, Jikumaru Y, Li H, Schwechheimer C (2009) The polarly localized D6 PROTEIN KINASE is required for efficient auxin transport in Arabidopsis thaliana. Development 136:627-636.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700