玉米胞质Ⅰ类小分子量热激蛋白基因ZmHSP16.9的分离及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温、低温和干旱等非生物胁迫是影响植物生长发育的重要环境因子,植物受到这些胁迫信号刺激后,会产生一系列响应蛋白来保护细胞代谢。热激蛋白(HSP)是植物对外界胁迫所做的应答,是一类重要的胁迫诱导蛋白,在逆境胁迫下的表达增强可提高植物抵御各种逆境因子胁迫的能力,在植物与环境长期协同进化过程中起到非常重要的作用。小分子量热激蛋白(sHSP)是热激蛋白家族中一类分子量约在15-30kDa的热激蛋白,许多体内及体外的研究表明,sHSP在细胞中起分子伴侣作用。作为“分子伴侣”,sHSP可以与正在合成的多肽结合,使其正确折叠;能够引导新生肽穿过细胞器膜结构,使蛋白定位于细胞的不同部位。在高温胁迫下,sHSP可以阻止热变性蛋白的聚集或阻止不可逆的蛋白变性,或有利于蛋白质在高温胁迫变性之后的复性,在植物耐热性中起重要作用。
     本研究从热激处理的玉米(郑单958)叶片中分离到一个细胞质classⅠsHSP16.9的关键基因,命名为ZmHSP16.9,对其序列特征、表达模式,以及过表达转基因烟草的抗逆生理功能进行了初步研究。研究结果对进一步了解sHSP的功能以及利用基因工程技术改良玉米的综合抗逆性,具有重要的理论价值和实践意义。主要结果如下:
     (1)ZmHSP16.9基因的克隆及序列生物信息学分析
     提取热激处理的玉米叶片总RNA,通过RT-PCR的方法分离到sHSP基因ZmHSP16.9,该基因开放阅读框编码一个152个氨基酸的蛋白。将该基因同其他小分子量热激蛋白同源序列比对,结果表明该基因与细胞质calssⅠsHSPs家族聚类在一起,氨基酸序列分析表明该基因同其他植物的细胞质classⅠsHSPs高度同源。通过ProtComp v.9.0database(http://linux1.softberry.com/berry.phtmL?topic=protcomppl&group=programs&subgroup=proloc)数据库对ZmHSP16.9进行亚细胞定位预测,结果显示其定位于细胞质中。构建pBI121-ZmHSP16.9-GFP表达载体,并在洋葱表皮细胞中瞬时表达,在荧光显微镜下观察到细胞质内有GFP激发的绿色荧光。通过以上结果可以推测ZmHSP16.9基因为细胞质classⅠsHSP基因。
     (2)ZmHSP16.9组织特异性和表达模式分析
     对玉米幼苗进行干旱、高温、低温、H2O2及ABA处理,提取叶片总RNA进行Northern杂交,结果表明,正常生长条件下玉米叶片中未检测到ZmHSP16.9基因的转录产物,ZmHSP16.9在热激的玉米根、茎、叶中均有表达,但在叶中表达量最高。高温和外施H2O2均能诱导ZmHSP16.9基因的表达,表明ZmHSP16.9为热激和氧化胁迫诱导特异表达的基因。
     (3)ZmHSP16.9原核表达载体的构建、抗体制备和Western blot分析
     构建了原核表达载体pET-ZmHSP16.9,并在大肠杆菌BL21中表达融合蛋白,诱导、纯化蛋白,免疫小白鼠,制备抗体。Western杂交结果表明,ZmHSP16.9蛋白在玉米幼苗叶片中受高温和氧化胁迫诱导。
     (4)过表达ZmHSP16.9转基因烟草的鉴定
     构建pBI-ZmHSP16.9正义表达载体,成功转化烟草。Northern blot和Western blot结果均表明,ZmHSP16.9基因已经在转基因植株中稳定表达。
     (5)高温条件下过表达ZmHSP16.9基因烟草种子萌发率和幼苗长势良好
     高温胁迫条件下,过表达ZmHSP16.9基因的转基因烟草种子比野生型烟草种子萌发率高,过表达ZmHSP16.9转基因烟草幼苗比野生型幼苗长势更好。
     (6)过表达ZmHSP16.9转基因烟草在高温胁迫条件下的生理变化
     为了检测过表达ZmHSP16.9转基因烟草在高温胁迫条件下的生理变化,测定了一系列与植物逆境胁迫有密切关系的生理指标,包括H2O2和O2的积累量、抗氧化酶的活性、MDA含量和膜透性。结果表明,未处理的转基因和野生型烟草的这些抗逆指标没有明显区别。但是高温胁迫处理后,不管是野生型还是转基因植株烟草体内H2O2,O2的积累量明显增加,但野生型烟草增加的更明显;高温胁迫下过表达ZmHSP16.9转基因烟草通过维持较高的抗氧化酶活性增强活性氧清除能力,减轻活性氧对细胞的伤害;高温条件下,转ZmHSP16.9基因烟草的丙二醛含量、相对电导率比野生型烟草低。这些结果表明,过表达ZmHSP16.9基因提高了转基因烟草对高温胁迫的抗性。
     (7)过表达ZmHSP16.9基因提高了转基因烟草对氧化胁迫的抗性
     氧化胁迫条件下,过表达ZmHSP16.9基因的烟草种子比野生型烟草种子萌发率高;过表达ZmHSP16.9基因烟草幼苗比野生型幼苗长势好。利用不同浓度的H2O2模拟氧化胁迫,发现转基因各株系烟草叶圆片在较高或较低浓度的H2O2溶液中,均保持较高的叶绿素含量。这些结果表明,过表达ZmHSP16.9的转基因烟草耐受氧化胁迫的能力较强。
Abiotic stresses such as high temperature, low temperature and drought, influence plantgrowth and development. These stress signals can stimulate plant which can produce a seriesof responsive protein to protect the cell metabolism. Heat Shock Protein (HSP) is one kind ofimportant stress-induced proteins, producing when the plants are in response to externalstresses. Under stress, increasing expression can strengthen the ability of the plants to resistvarious stress factors, which plays a very important role in the long-term co-evolution processof plants and the environment, and has an important significance in taking it as a study ofstress physiology. The small HSP (sHSP) is a kind of heat shock protein family that range insizes from approximately15to30kDa. Many studies in vivo and in vitro indicate that sHSPact as molecular chaperones in cells. As molecular chaperones, sHSP can bind to and facilitatethe synthesizing polypeptides to correct folding; leading new-synthesized polypeptides totransverse the organelle membranes and locating them in different position. Under hightemperature stress, sHSP can prevent the heat-denatured proteins assembling, preventunreversible proteins denaturalization, or be propitious to the renaturation of heat-denaturedproteins. They play very important roles in plant’s thermotolerance.
     In the present study, we isolated and characterized a novel sHSP gene, ZmHSP16.9, frommaize leaves under heat stress. Sequence comparison, expression analysis and furtherfunctional studies on the over-expressing ZmHSP16.9plants were analyzed in this work.These data have the important theoretical and practical significance in further understandingthe functions of sHSP and using genetic engineering to improve corn comprehensiveresistance. The main results are as follows:
     (1) Molecular cloning and bioinformatics analysis of ZmHSP16.9gene
     Total RNA was isolated from maize leaves under heat stress, we isolated the sHSP genesZmHSP16.9by RT-PCR, and the ZmHSP16.9encodes a protein of152amino acids.Comparing the gene with other small heat shock protein homologous sequence alignment, the results showed that the gene and the cytoplasmic class I sHSPs family clustered together.From the amino acid sequence, we can draw the conclusion that the gene with other plantcytosolic class I sHSPs is highly homologous. The amino acid sequence of ZmHSP16.9wasanalyzed in the ProtComp v.9.0database(http://linux1.softberry.com/berry.phtmL?topic=protcomppl&group=programs&subgroup=proloc). ZmHSP16.9was predicted to be localized in the cytosolic. The fusion protein pBI121-ZmHSP16.9-GFP was expressed transiently in onion epidermis, and the GFP greenfluorescence could be detected in the cytoplasm with the fluorescence microscope. The resultsclearly indicate that ZmHSP16.9is mainly localized in the cytoplasm. From these data, wespeculate that the gene belongs to cytosolic class I sHSP genes.
     (2) Tissue specificity and expression analysis of ZmHSP16.9in Zea mays
     The young seedlings of maize were treated by drought, high temperature, lowtemperature, H2O2and ABA, and total RNAs were extracted and Northern blot was carriedout. The results showed that maize leaves under normal growth condition could not detectZmHSP16.9gene transcripts, but ZmHSP16.9mRNA were expressed in the leaves, stems androots of maize under heat-shock treatment, and the level in the leaves was highest. Hightemperature and H2O2treatments led to a significant increase of ZmHSP16.9transcript level.These results suggest that the ZmHSP16.9gene is involved in response to heat temperatureand oxidative stresses.
     (3) Recombinant of prokaryotic expression vector pET-ZmHSP16.9, antibody productionand Western blotting analysis
     A recombinant of prokaryotic expression vector pET-ZmHSP16.9was constructed andexpressed in E.Coli. BL21. The strong induced fusion protein was purified and used toimmunize white mice to obtain antiserum. Western hybridization revealed ZmHSP16.9inleaves of maize seeding was induced by heat temperature and oxidative stresses.
     (4) Identification of the transgenic tobacco
     The coding region of ZmHSP16.9was introduced into the vector pBI121under thecontrol of the CaMV35S promoter and then transformed into WT tobacco (NC89). Thetransgenic lines showed expression of ZmHSP16.9at both mRNA and protein levels byNorthern blot and Western blot.
     (5) The over-expression of ZmHSP16.9increased seed germination and seeding growthof tobacco under high temperature
     Compared to WT plants, the over-expressing ZmHSP16.9transgenic tobacco showed asignificantly higher germination rate, and the seedling growth was better than WT plantsunder high temperature stress.
     (6) Changes in physiological parameters of tobacco under high temperature stress
     To investigate the effect of ZmHSP16.9over-expression in tobacco on the physiologicalresponses to stress, a panel of physiological parameters, including the accumulation of H2O2,O2, antioxidant enzyme activities, antioxidants content, Malondialdehyde (MDA) contentsand relative electrolytic leakage (REL) were examined. All these physiological parametersreflect normally plant responses or tolerance to stress environment, thus serving as the plantphysiological index under stress. As shown in the result, heat stress induced the accumulationof H2O2, O2in the WT and transgenic tobacco, but this accumulation was more in WT.Through maintaining relatively higher antioxidant enzyme activities and antioxidants content,ZmHSP16.9decreased the accumulation of ROS to reduce the damage to cells. After hightemperature treatment, compared with WT plants, the MDA content was significantly lowerin ZmHSP16.9over-expressing plants. Transgenic plants had a lower electrolyte leakage thanWT under high temperature. These results indicate over-expressing ZmHSP16.9tobaccocould enhance the tolerance to the high temperature compared with WT plants.
     (7) ZmHSP16.9over-expressing tobacco improved tolerance to oxidative stress
     Under oxidative stress, ZmHSP16.9over-expressing tobacco showed a significantlyhigher germination rate and the seedling growth was better than WT plants. H2O2in differentconcentration was used to estimate the effects of the oxidative stress on the growth of the WTand transgenic tobacco plants. ZmHSP16.9over-expressing plants showed higher chlorophyllcontent than WT plants under both high and low H2O2concentrations. These data suggest theadvantages of anti-oxidative characterization in the ZmHSP16.9over-expressing tobaccolines.
引文
郭尚敬,陈娜,郭鹏,孟庆伟。甜椒细胞质小分子量热激蛋白基因(CaHSP18)的cDNA克隆与表达。植物生理与分子生物学学报,2005,31:409~416
    刘箭,庄野真理子。番茄线粒体和内质网小分了量热激蛋白的分子克隆。植物学报,2001,43:138~145
    刘箭。菜豆细胞膜系统上Mg2+-ATP酶热稳定性的研究。北京农业大学学报,1995,21:236~239
    汤章城主编。现代植物生理学实验指南。北京:科学出版社,1999,308~309
    王光耀,刘俊梅,张仪,余炳生,沈征言。热胁迫和热锻炼过程中菜豆叶肉细胞超微结构的变化。农业生物技术学报,1997,7:151~156
    翁锦周,洪月云。植物热激转录因子在非生物逆境中的作用。分了植物育种,2006,4:88~94
    杨传燕,王翠,张景霞,王佳颖,王丽,刘箭。过表达番茄叶绿体小分子热激蛋白提高植株的耐热性。山东师范大学学报(自然科学版),2008,4:106~108
    杨纯明,谢国禄。短期高温对水稻生长发育的影响。国外作物育种,1994,2:4~5
    叶陈亮,柯玉琴,陈伟。大白菜耐热性的生理研究Ⅱ.叶片水分和蛋白质代谢与耐热性。福建农业大学学报,1996,25:490~493
    张桂莲,陈立云,张顺堂,黄明,唐文邦,雷东阳,李梅华,贺治洲。高温胁迫对水稻花器官和产量构成要素及稻米品质的影响。湖南农业大学学报(自然科学版),2007,33:132~136
    张俊环,黄卫东。植物对温度逆境的交叉适应性及其机制研究进展。中国农学通报,2003,19:95~100
    赵世杰主编。植物生理学实验指导。北京:中国农业出版社,1998
    朱广廉。植物生理学实验。北京:北京大学出版社,1990,22~26
    邹琦。植物生理生化实验指导。北京:中国农业出版社,1995
    Abravaya K., Phillips B., Morimoto R.I.. Heat shock-induced interactions of heat shocktranscription factor and the human HSP70promoter examined by in vivo footprinting.Mol. Cell Biol.,1991,11:586~592
    Ahn Y.J., Zimmerman J.L.. Introduction of the carrot HSP17.7into potato (Solanumtuberosum L.) enhances cellular membrane stability and tuberization in vitro. Plant CellEnviron.,2006,29:95~104
    Ahrens M.J., Ingram D.L.. Heat tolerance of citrus leaves. HortScience,1988,23:747~748Almoguera C., Jordano J.. Developmental and environmental concurrent expression ofsunflower dry-seed-stored low molecular weight heat shock protein and Lea mRNAs.Plant Mol. Biol.,1992,19:781~792
    Apel K. and Hirt H.. Reactive oxygen species: metabolism, oxidative stress and signaltransduction. Annu. Rev. Plant Biol.,2004,55:373~399
    Balogi Z., T r k Z., Balogh G., Jósvay K., Shigapova N., Vierling E., Vígh L., Horváth L..Heat shock lipid in cyanobacteria during heat/light-acclimation. Arch. Biochem. Biophys.,2005,436:346~354
    Bandurska H.. In vivo and in vitro effect of proline on nitrate reductase activity under osmoticstress in barley. Acta. Physiol. Plant.,1993,15:83~88
    Banzet N., Richaud C., Deveaux Y., Kazumaier M., Gagnon J., Triantaphylides C..Accumulation of small heat shock proteins including mitochondrial HSP22, induced byoxidative stress and adaptive response in tomato cells. Plant J.,1998,13:519~527
    Basha E., Friedrich K.L., Vierling E.. The N-terminal arm of small heat shock proteins isimportant for both chaperone activity and substrate specificity. J. Biol. Chem.,2006,281:39943~39952
    Basha E., Jones C., Wysocki V., Vierling E.. Mechanistic differences between two conservedclasses of small heat shock proteins found in the plant cytosol. J. Biol. Chem.,2010,285:11489~11497
    Basha E., Lee G. J., Demeler B., Vierling E.. Chaperone activity of cytosolic small heat shockproteins from wheat. Eur. J. Bio.Chem.,2004a,271:1426~1436
    Basha E., Lee G.J., Breci L.A., Hausrath A.C., Buan N.R., Giese K.C., Vierling E.. Theidentity of proteins associated with a small heat shock protein during heat stress in vivoindicates that these chaperones protect a wide range of cellular functions. J. Biol. Chem.,2004b,279:7566~7575
    Belkhodja R., Morales F., Abadia A., Gomez-Aparisi J. and Abadia J.. ChlorophyllFluorescence as a Possible Tool for Salinity Tolerance Screening in Barley (Hordeumvulgare L.). Plant Physiol.,1994,104:667~673
    Berry J. and Bjorkman O.. Photosynthetic response and adaptation to temperature in higherplants. Annu. Rev. Plant Physiol.,1980,31:491~543
    B sl B., Grimminger V. and Walter S.. The molecular chaperone Hsp104a molecular machinefor protein disaggregation. J. Struct. Biol.,2006,156:139~148
    Boston R.S., Viitanen P.V., Vierling E.. Molecular chaperones and protein folding in plants.Plant Mol. Biol.,1996,32:191~222
    Buchner J., Brinkmann U., Pastan I.. Renaturation of a single chain immunotoxin facilitatedby chaperones and protein disulfide isomerase. Biotechnol.,1992,10:682~685
    Buchner J.. Hsp90&Co. a holding for folding. Trends Biochem. Sci.,1999,24:136~141
    Bukau B. and Horwich A.L.. The Hsp70and Hsp60chaperone machines. Cell,1998,92:351~366
    Chan-Schaminet K.Y., Baniwal S.K., Bublak D., Nover L. and Scharf K.D.. Specificinteraction between tomato HsfA1and HsfA2creates hetero-oligomeric superactivatorcomplexes for synergistic activation of heat stress gene expression. J. Biol. Chem.,2009,31:20848~20857
    Charng Y.Y., Liu H.C., Liu N.Y., Hsu F.C., Ko S.S.. Arabidopsis Hsa32, a novel heat shockprotein, is essential for acquired thermotolerance during long recovery after acclimation.Plant Physiol.,2006,140:1297~1305
    Chen T.H.H., Murata N.. Enhancement of tolerance of abiotic stress by metabolic engineeringof betaines and other compatible solutes. Curr. Opin. Plant Biol.,2002,5:250~257
    Cho E.K., Hong C.B.. Molecular cloning and expression pattern analyses of heat shockprotein70genes from Nicotiana tabacum. J. Plant Biol.,2004,47:149~159
    Coca M.A., Almoguera C. and Jordano J.. Expression of sunflower low molecular weight heatshock proteins during embryogenesis and persistence after germination: localization andpossible functional implications. Plant Mol. Biol.,1994,25:479~492
    Crafts-Brandner S.J. and Salvucci M.E.. Analyzing the impact of high temperature and CO2on net photosynthesis: biochemical mechanisms, models and genomics. Field Crop. Res.,2004,90:75~85
    Dafny-Yelin M., Tzfira T., Vainstein A., Adam Z.. Non-redundant functions of sHSP-CIs inacquired thermotolerance and their role in early seed development in Arabidopsis. PlantMol. Biol.,2008,67:363~373
    Ding C.K., Wang C.Y., Gross K. C., Smith D. L.. Reduction of chilling injury and transcriptaccumulation of heat shock proteins in tomato fruit by methyl jasmonate and methylsalicylate. Plant Sci.,2001,161:1153~1159
    Donahue J.L., Okpodu C.M., Cramer C.L., Grabau E.A. and Alscher R.G.. Responses ofAntioxidants to Paraquat in Pea Leaves (Relationships to Resistance). Plant Physiol.,1997,113:249~257
    Downs C.A., Heckathom S.A.. The mitochondria small heat-shock protein protectsNADH:ubiquinone oxidoreductase of the electron transport chain during heat stress inplants. FEBS Lett.,1998,430:246~250
    Duan Y.H., Guo J., Ding K., Wang S.J., Zhang H., Dai X.W., Chen Y.Y., Govers F., HuangL.L., Kang Z.S.. Characterization of a wheat HSP70gene and its expression in responseto stripe rust infection and abiotic stresses. Mol. Biol. Rep.,2011,38:301~307
    Easton D.P.. The Hspl10and Grp170stress proteins: newly recognized relatives of theHsp70s. Cell Stress Chaperon.,2000,5:276~290
    Ehrnsperger M., Graber S., Gaestel M., Buchner J.. Binding of non-native protein to HSP25during heat shock creats a reservoir of folding intermediates for reactivation. EMBO J.,1997,16:221~229
    Ellis R.J.. The general concept of molecular chaperones. Philos. Trans. R. Soc. Lond. B. Biol.Sci.,1993,339:257~261
    Fink A.L.. Chaperone-mediated protein folding. Physiol. Rev.,1999,79:425~449
    Fiszer A., Wysocka A., Jarzab M., Lisowska K., Krawczyk Z.. Structure of gene flankingregions and functional analysis of sequences upstream of the rat HSP70.1stress gene.Biochem.. Biophys. Acta.,2003,1625:77~87
    Forrciter C., Kirschner M., Nover L.. Stable transformation of an Arabidopsis Cell suspensionculture with firefly luciferase providing a cellular system for analysis of chaperoneactivity in vivo. Plant Cell,1997,9:2171~2181
    Foyer C.H. and Noctor G.. Redox regulation in photosynthetic organisms: signaling,acclimation and practical implications. Antioxid. Redox Sign.,2009,11:861~905
    Foyer C.H. and Noctor G.. Redox sensing and signaling associated with reactive oxygen inchloroplasts, peroxisomes and mitochondria. Physiol. Plant.,2003,119:355~364
    Friedrich K.L., Giese K.C., Buan N.R., Vierling E.. Interactions between small heat shockprotein subunits and substrate in small heat shock protein-substrate complexes. J. Biol.Chem.,2004,279:1080~1089
    Georgopoulos C. and Welch W.J.. Role of the major heat shock proteins as molecularchaperones. Annu. Rev. Cell Biol.,1993,9:601~634
    Gething M.J. and Sambrook J.. Protein folding in the cell. Nature,1992,355:33~45
    Gille G., Singler K.. Oxidative stess in living cells. Folia Microbiol.,1995,2:131~152
    Giorno F., Wolters-Arts M., Grillo S., Scharf K., Vriezen W.H., Mariani C.. Developmentaland heat stress-regulated expression of HsfA2and small heat shock proteins in tomatoanthers. J. Exp. Bot.,2010,61:453~462
    Govind C.K., Hasegawa A., Koyama K., Gupta S.K.. Delineation of a conserved B cellepitope on bonnet monkey (Macaca radiata) and human zona pellucida glycoprotein-Bby monoclonal antibodies demonstrating inhibition of sperm-egg binding. Biol. Rep.,2000,62:65~75
    Grover A., Agarwal M., Katiyar-Agarwal S., Sahi C., Agarwal S.. Production of hightemperature tolerant transgenic plants through manipulation of membrane lipids. Curr.Sci.,2000,79,557~559
    Guan J.C., Jinn T.L., Yeh C.H., Feng S.P., Chen Y.M., Lin C.Y.. Characterization of thegenomic structures and selective expression profiles of nine class I small heat shockprotein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Mol. Biol.,2004,56:795~809
    Gupta S.C., Sharma A., Mishra M., Mishra R., Chowdhuri D.K.. Heat shock proteins intoxicology: how close and how far? Life Sci.,2010,86:377~384
    Halliwell B.. Antioxidant characterization. Methodology and mechanism. Biochem.Pharmacol.,1995,49:1341~1348
    Hamilton E.W., Coleman J.S.. Heat-shock proteins are induced in unstressed leaves ofNicotiana attenuate (Solanaceae) when distant leaves are stressed. Am. J. Bot.,2001,88:950~55
    Harndahl U., Hall R.B., Osteryoung K.W., Vierling E., Bornman J.F. and Sundby C.. Thechloroplast small heat shock protein undergoes oxidation-dependent conformationalchanges and may protect plants from oxidative stress. Cell Stress Chaperon.,1999,4:129~138
    Hartl F.U. and Maria J.. Molecular chaperones in cellular protein folding. Curr. Opin. Struct.Biol.,1995,5:92~102
    Hartl F.U., Hayer-Hartl M.. Molecular chaperones in the cytosol: from nascent chain to foldedprotein. Science,2002,295:1852~1858
    Hartl F.U.. Molecular chaperones in cellular protein folding. Nature,1996,381:571~580
    Haslbeck M., Ignatiou A., Saibil H., Helmich S., Frenzl E., Stromer T., Buchner J.. A domainin the N-terminal part of Hsp26is essential for chaperone function and oligomerization.J. Mol. Biol.,2004,343:445~455
    Haslbeck M., Walke S., Stromer T., Ehrnsperger M., White H.E., Vhen S., Saibil H.R.,Buchner J.. Hsp26: a temperature-regulated chaperone. EMBO J.,1999,18:6744~6751
    Heckathom S.A., Downs C.A., Sharkey T.D., Coleman J.S.. The small methionine-richchloroplast heat-shock protein protects photosystem II electron transport during heatstress. Plant Physiol.,1998,116:439~444
    Heckathorn S.A., Ryan S.L., Baylis J.A., Wang D.F., Hamilton E.W., Cundiff L., Dawn S.L..In vivo evidence from an Agrostis stolonifera selection genotype that chloroplastsmallheat-shock proteins can protest photosystem II during heat stress. Funct. Plant Biol.,2002,29:933~944
    Horwitz J.. A-crystalin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA,1992,99:1279~1284
    Hu W., Hu G., Han B.. Genome-wide survey and expression profiling of heat shock proteinsand heat shock factors revealed overlapped and stress specific response under abioticstresses in rice. Plant Sci.,2009,176,583~590
    Hu X., Liu R., Li Y., Wang W., Tai F., Xue R., Li C.. Heat shock protein70regulates theabscisic acid-induced antioxi dant response of maize to combined drought and heat stress.Plant Growth Regul.,2010,60:225~235
    Hubert D.A., Tornero P., Belkhadir Y., Krishna P., Takahashi A., Shirasu K., Dangl J.L..Cytosolic HSP90associates with and modulates the Arabidopsis RPM1diseaseresistance protein. EMBO J.,2003,22:5679~5689
    Iqbal N., Farooq S., Arshad R., Hameed A.. Differential accumulation of high and lowmolecular weight heat shock proteins in Basmati rice (Oryza sativa L.) cultivars. Genet.Resour. Crop Evol.,2010,57:65~70
    Jackson-Constan D., Akita M., Keegstra K.. Molecular chaperones involved in chloroplastprotein import. Biochim. Biophys. Acta.,2001,1541:102~113
    Jakob U., Gaestel M., Engel K., Buchner J.. Small heat shock proteins are molecularchaperones. J. Biol.Chem.,1993,268:1515~1520
    Jaya N., Garcia V. and Vierling E.. Substrate binding site flexibility of the small heat shockprotein molecular chaperones. Proc. Natl. Acad. Sci. USA,2009,106:15604~15609
    Jiang C., Xu J., Zhang H., Zhang X., Shi J., Li M., Ming F.. A cytosolic class I small heatshock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses toEscherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ.,2009,32:1046~1059
    Jolly C., Morimoto R.I.. Stress and the cell nucleus: dynamics of gene expression andstructural reorganization. Gene Expr.,1999,7:261~270
    Jonak C., Kiegerl S., Ligterink W., Barker P.J., Huskisson N.S., Hirt H.. Stress signaling inplants:a mitogen-activated protein kinase pathway is activated by cold and drought. Proc.Natl. Acad. Sci. USA,1996,93:11274~11279
    Kim K.P., Park S.M., Hong C.B.. Tobacco mitochondrial small heat shock protein NtHSP24.6adopts a dimeric configuration and has a broad range of substrates. BMB Rep.,2011,44:816~820
    Kim K.H., Alam I., Kim Y.G., Sharmin S.A., Lee K.W., Lee S.H., Lee B.H.. Overexpressionof a chloroplast-localized small heat shock protein OsHSP26confers enhanced toleranceagainst oxidative and heat stresses in tall fescue. Biotechnol. Lett.,2012,34:371~377
    Kim H.J., Hwang N.R., Lee K.J.. Heat shock responses for understanding diseases of proteindenaturation. Mol. Cells,2007,23:123~131
    Kotak S., Larkindale J., Lee U., von Koskull-D ring P., Vierling E., Scharf K.D.. Complexityof the heat stress response in plants. Curr. Opin. Plant Biol.,2007a,10:310~316
    Kotak S., Vierling E., Baumlein H.&von Koskull-Doring P.. A novel transcriptional cascaderegulating expression of heat stress proteins during seed development of Arabidopsis.Plant Cell,2007b,19:182~195
    Krishna P., Gloor G.. The Hsp90family of proteins in Arabidopsis thaliana. Cell Stress Chap.,2001,6:238~246
    Kroeger P.E., Sarge K.D., Morimoto R.I.. Mouse heat shock transcription factors1and2prefer a trimeric binding site but interact differently with the HSP70heat shock element.Mol. Cell Biol.,1993,13:3370~3383
    Landry S.J., Zeilstra R.J., Fayet O.. Characterization of a functional important mobile domainof GroES. Nature.1993,364:255~258
    Larkindale J., Mishkind M., Vierling E.. Plant responses to high temperature. In PlantAbiotic Stress. Edited by Jenks M.A., Hasegawa P.M.. Blackwell Publishing,2005,100~144
    Laskowska E. Matuszewska E., Kuczynska-Wisnik D.. Small heat shock proteins and protein-misfolding diseases. Curr. Pharm. Biotech.,2010,11:146~157
    Lee B.H., Won S.H., Lee H.S.. Expression of the chloroplast-localized small heat shockprotein by oxidative stress in rice. Gene,2000a,245:283~290
    Lee G.J., Pokala N. and Vierling E.. Structure and in vitro molecular chaperone activity ofcytosolic small heat chock proteins from pea. J.Biol.Chem.,1995,27:10432~10438
    Lee G.J., Roseman A.M., Saibil H.R., Vierling E.. A small heat shock protein stably bindsheat-denatured model substrates and can maintain a substrate in a folding-competentstate. EMBO J.,1997,16:659~671
    Lee G.J., Vierling E.. A small heat shock protein cooperates with heat shock protein70systems to reactivate a heat-denatured protein. Plant Physiol.,2000b,122:189~198
    Lee G.J., Vierling E.. Expression, purification, and molecular chaperone activity of plantrecombinant small heat shock proteins. Method Enzymol.,1998,290:350~365
    Lee K.W., Cha J.Y., Kim K.H., Kim Y.G., Lee B.H., Lee S.H.. Overexpression of alfalfamitochondrial HSP23in prokaryotic and eukaryotic model systems confers enhancedtolerance to salinity and arsenic stress. Biotechnol. Lett.,2012,34:167~174
    Leroux M.R., Melki R., Gordon B., Batelier G., Candido E.P.. Structure-function studies onsmall heat shock protein oligomeric assembly and interaction with unfolded polypeptides.J. Biol. Chem.,1997,272:24646~24656
    Levy-Rimler G., Bell R.E., Ben-Tal N., Azem A.. Type I chaperonins: not all are created equal,FEBS Lett.,2002,529:1~5
    Lindquist S., Crig E.A.. The heat-shock proteins. Annu. Rev. Genet.,1988,22:631~677
    Lindquist S.. Varying patterns of protein synthesis in Drosophila during heat shock:implications for regulation. Dev. Biol.,1980,77:463~479
    Liu D., Lu Z., Mao Z., Liu S.. Enhanced Thermotolerance of E. coli by Expressed OsHSP90from Rice (Oryza sativa L.). Curr. Microbiol.,2009,58:129~133
    Liu J., Mariko S.. Molecular cloning the gene of small heat shock protein in the mitochomdriaand endoplasmic reticulum of tomato. Acta Bot Sin.,2001,43:138~145
    Liu Y., Burch-Smith T., Schiff M., Feng S., Dinesh-Kumar S.P.. Molecular chaperone HSP90associates with resistance proteinn and its signaling proteins SGT1and Rar1to modulatean innate immune response in plants. J. Biol. Chem.,2004,279:2101~2108
    Liversly M.A., Bray C.M.. Heat shock and recovery in aged wheat aleurone layers. Seed Sci.Res.,19933:179~186
    Lopez-Matas M.A., Nu ez P., Soto A., Allona I., Casado R., Collada C., Guevara M.A.,Aragoncillo C., Gomez L.. Protein cryoprotective activity of a cytosolic small heat shockprotein that accumulates constitutively in chestnut stems and is up-regulated by low andhigh temperatures. Plant Physiol.,2004,134:1708~1717
    L w D., Br ndle K., Nover L., Forreiter C.. Cytosolic heat-stress proteins HSP7.7class I andHSP17.3class II of tomato act as molecular chaperones in vivo. Planta,2000,211:575~582
    Malik M.K., Slovin J.P., Hwang C.H., Zimmerman J. L.. Modified expression of a carrotsmall heat shock protein gene HSP17.7results in increased or decreased thermotolerancedouble dagger. Plant J.,1999,20:89~99
    Mamedov T.G., Shono M.. Molecular chaperone activity of tomato (Lycopersicon esculentum)endoplasmic reticulum-located small heat shock protein. J. Plant Res.,2008,121:235~243
    Mansfield M.A., Lingle W.L., Key J.L.. The effect of lethal heat shock on nonadaped andthermtolerant root cells of glycine max. Journal of Ultrastruture Research,1988,99:96~100
    Mayer M.P., Bukau B.. HSP70chaperones: cellular functions and molecular mechanism. CellMol. Life Sci.,2005,62:670~684
    Mchaourab H.S., Godar J.A.&Stewart P.L.. Structure and mechanism of protein stabilitysensors: chaperone activity of small heat shock proteins. Biochemistry,2009,48:3828~3837
    Miernyk J.A.. Protein folding in the plant cell. Plant Physiol.,1999,121:695~703
    Mittler R., Blumwald E.. Genetic engineering for modern agriculture:challenges andperspectives. Annu. Rev. Plant Biol.,2010,61:443~462
    Mittler R., Vanderauwera S., Gollery M., Van Breusegem F.. Reactive oxygen gene networkof plants. Trends Plant Sci.,2004,9:490~498
    Mittler R.. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci.,2002,7:405~410
    Mogk A., Deuerling E., Vorderwulbecke S., Vierling E., Bukau B.. Small heat shock proteins,ClpB and the DnaK system form a functional trade in reversing protein aggregation.Mole Microbiol.,2003,50:585~595.
    M ller I.M., Jensen P.E. and Hansson A.. Oxidative modifications to cellular components inplants. Annu. Rev.Plant Boil.,2007,58:459~481
    M ller I.M.. Plant mitochondria and oxidative stress: electron transport, NADPH turnover,and metabolism of reactive oxygen species. Annu. Rev. Plant Boil.,2001,52:561~591
    Morimoto R.I., Kline M.P., Bimston D.N., Cotto J.J.. The heat-shock response: regulation andfunction of heat-shock proteins and molecular chaperones. Essays Biochem.,1997,32:17~29
    Munnik T., Ligterink W., Meskiene T., Calderini O., Beyerly J., Musgrave A., Hrit H..Distinct osmo-sensing protein kinase pathways are involved in signalling moderate andsevere hyper-osmotic stress. Plant J.,1999,20:381~388
    Murakami T., Matsuba S., Funatsuki H., Kawaguchi K., Saruyama H., Tanida M., Sato Y..Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance andUV-B resistance to rice plants. Mol. Breed.,2004,13:165~175
    Mycko M.P., Cwiklinska H., Walczak A., Libert C., Raine C.S., Selmaj K.W.. A heat shockprotein gene (HSP70.1) is critically involved in the generation of the immune response tomyelin antigen. Eur. J. Immunol.,2008,38:1999~2013
    Nakamoto H., Vígh L.. The small heat shock proteins and their clients. Cell. Mol. Life Sci.,2007,64:294~306
    Nelson R.J., Ziegelhoffer T., Nicolet C., Werner-Washburne M. and Craig E.A.. Thetranslation machinery and70kDa heat shock protein cooperate in protein synthesis. Cell,1992,71:97~105
    Neta-Sharir I., Isaacson T., Lurie S., Weiss D.. Dual role for tomato heat shock protein21:protecting photosystem II from oxidative stress and promoting color changes during fruitmaturation. Plant Cell,2005,17:1829~1838
    Nieto-Sotelo J., Martínez L.M., Ponce G., Cassab G.I., Alagón A., Meeley R.B., Ribaut J.M.and Yang R.. Maize HSP101plays important roles in both induced and basalthermotolerance and primary root growth. Plant Cell,2002,14:1621~1633
    Nover L., Scharf K.D.. Heat stress proteins and transcription factor. Cell Mol. Life Sci.,1997,53:80~103
    Ouyang Y., Chen J., Xie W., Wang L., Zhang Q.. Comprehensive sequence and expressionprofile analysis of Hsp20gene family in rice. Plant Mol. Biol.,2009,70:341~357
    Panaretou B., Zhai C.. The heat shock proteins: their roles as multi-component machines forprotein folding. Fungal Biol. Rev.,2008,22:110~119
    Park S.M., Hong C.B.. Class I small heat-shock protein gives thermotolerance in tobacco. J.Plant Physiol.,2002,159:25~30
    Parsell D.A. and Lindquist S.. The function of heat sbock proteins in stress tolerance:degradation and reactivation of damaged proteins. Annv. Rev. Genet.,1993,27:437~496
    Parsell D.A., Lindquist S.. The function of heat-shock proteins in stress tolerance: degradationand reactivation of damaged proteins. Annu. Rev. Genet.,1993,27:437~496
    Pegoraro C., Mertz L., Maia L., Rombaldi C., Oliveira A.. Importance of Heat Shock Proteinsin Maize. J.Crop Sci. Biotech.,2011,14:85~95
    Pratt W.B., Toft D.O.. Regulation of signaling protein function and trafficking by theHSP90/HSP70-based chaperone machinery. Exp. Biol. Med.,2003,228:111~133
    Price B.D., Calderwood S.K.. Ca2+is essential for multistep activation of the heat shock factorin permeabilized cells. Mol. Cell Biol.,1992,11:3365~3368
    Quinn P. and Williams W.. Environmentally induced changes in chloroplast membranes andtheir effects on photosynthetic function. Topics in photosynthesis,1985,6:1~47
    Ramakrishna W., Deng Z., Ding C.K., Handa A.K. and Ozminkowski R.H.. A novel smallheat shock protein gene, vis1, contributes to pectin depolymerization and juice viscosityin tomato fruit. Plant Physiol.,2003,131:725~735
    Ritossa F.. A new puffing pattern induced by temperature shock and DNP in Drosophila. CellMol. Life Sci.,1962,18:571~573
    Rizhsky L., Liang H., Shuman J., Shulaev V., Davletova S. and Mittler R.. When defensepathways collide. The response of Arabidopsis to a combination of drought and heatstress. Plant Physiol.,2004,134:1683~1696
    Rouch J.M., Bingham S.E., Sommerfeld M.R.. Protein expression during heat stress inthermo-intolerance and thermotolerance diatoms. J. Exp. Mar. Biol. Ecol.,2004,306:231~243
    Sabehat A., Lurie S., Weiss D.. Expression of small heat shock proteins at low temperatures.Plant Physiol.,1998,117:651~658
    Sage R.F. and Kubien D.S.. The temperature response of C3and C4photosynthesis. PlantCell Environ.,2007,30:1086~1106
    Sangster T.A. and Queitsch C.. The HSP90chaperone complex, an emerging force in plantdevelopment and phenotypic plasticity. Curr. Opin. Plant Biol.,2005,8:86~92.
    Sanmiya K., Suzuki K., Egawa Y., Shono M.. Mitochondrial small heat-shock proteinenhances thermotolerance in tobacco plants. FEBS Lett.,2004,557:265~268
    Sarkar N.K., Kim Y.K., Grover A.. Rice sHSP genes: genomic organization and expressionprofiling under stress and development. BMC Genomics,2009,10:393~394
    Sato Y., Yokoya S.. Enhanced tolerance to drought stress in transgenic rice plantsoverexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep.,2008,27:329~334
    Savchenko G.E., Klyuchareva E.A., Abrabchik L.M., Serdyuchenko E.V.. Effect of periodicheat shock on the membrane system of etioplasts. Russ. J. Plant Physiol.,2002,49:349~359
    Scarpeci T.E., Zanor M.I., Valle E.M.. Investigating the role of plant heat shock proteinsduring oxidative stress. Plant Signal. Behav.,2008,3:856~857
    Scharf K.D., Siddiuqe M., Vierling E.. The expanding family of Arabidopsis thaliana smallheat stress proteins and a new family of proteins containing α-crystallin domains (Acdproteins). Cell Stress Chaperon.,2001,6:225~237
    Schrader S.M., Kleinbeck K.R. and Sharkey T.D.. Rapid heating of intact leaves reveals initialeffects of stromal oxidation on photosynthesis. Plant Cell Environ.,2007,30:671~678
    Schramm F., Larkindale J., Kiehlmann E., Ganguli A., Englich G., Vierling E., VonKoskull-D ring P.. A cascade of transcription factor DREB2A and heat stresstranscription factor HsfA3regulates the heat stress response of Arabidopsis. Plant J.,2008,53:264~274
    Schulze-Lefert P.. Plant immunity: the origami of receptor activation. Curr. Biol.,2004,14:22~24
    Schulze-Osthoff K., Bauer M.K., Vogt M. and Wesselborg S.. Oxidative stress and signaltransduction. Int. J. Vitam. Nutr. Res.,1997,67:336~342
    Shopland L.S. and Lis J.T.. HSF recruitment and loss at most Drosophila heat shock loci iscoordinated and depends on proximal promoter sequences. Chromosoma,1996,105:158~171
    Siddique M., Gernhard S., von Koskull-Do¨ ring P., Vierling E., Scharf K.D.. The plant sHSPsuperfamily: five new membersin Arabidopsis thaliana with unexpected properties. CellStress Chaperon.,2008,13:183~197
    Skowyra D., Georgopoulos C., Zylicz M.. The E Coli dnak gene product, the Hsp70homolog:Can reactivate heat-inactivated RNA polymerise in an ATP hydrolysis-dependentmanner. Cell,1990,62:939~944
    Song N.H., Ahn Y.J.. DcHSP7.7, a small heat shock protein in carrot, is tissue-specificallyexpressed under salt stress and confers tolerance to salinity. New Biotech.,2011,28:698~704
    Song S.Q., Fredlund K.M., Moller I.M.. Changes in low-molecular weight heat shock protein22of mitochondria during high-temperature accelerated ageing of beta vulgaris. Seeds,2001,27:73~80
    Storti R.V., Scott M.P., Rich A. and Pardue M.L.. Translational control of protein synthesis inresponse to heat shock in D. melanogaster cells. Cell,1980,22:825~834
    Stromer T., Ehrnsperger M., Gaestel M., Buchner J.. Analysis of the interaction of small heatshock proteins with unfolding proteins. J. Biol. Chem.,2003,278:18015~18021
    Su P.H., Li H.M.. Arabidopsis stromal70kD heat shock proteins are essential for plantdevelopment and important for thermotolerance of germinating seeds. Plant Physiol.,2008,146:1231~1241
    Süle A., Vanrobaeys F., Hajós G., Van Beeumen J., Devreese B.. Proteomic analysis of smallheat shock protein isoforms in barley shoots. Phytochemistry,2004,65:1853~1863
    Sun J.h., Chen J.Y., Kuang J.F., Chen W.X., Lu W.J.. Expression of sHSP genes as affectedby heat shock and cold acclimation in relation to chilling tolerance in plum fruit.Postharest Biol. Tec.,2010,55:91~96
    Sun W., Bernard C., Cotte B.. AtHSP17.6A encoding a small heat shock protein inArabidopsis can enhance osmotolerance upon overexpresion. Plant J.,2001,27:407~415
    Sun W., Van Montagu M., Verbruggen N.. Small heat shock proteins and stress tolerance inplants. Biochim. Biophy. Acta.,2002,1577:1~9
    Sung D.Y., Kaplan F., Guy C.L.. Plant HSP70molecular chaperones: protein structure, genefamily, expression and function. Physiol. Plantarum,2001,113:443~451
    Sung D.Y., Kaplan F., Lee K.J., Guy C.L.. Acquired tolerance to temperature extremes. TrendsPlant Sci.,2003,8:179~187
    Swindell W.R., Huebner M., Weber A.P.. Transcriptional profiling of Arabidopsis heat shockproteins and transcription factors reveals extensive overlap between heat and non-heatstress response pathways. BMC Genomics,2007,8:125~140
    Tabaeizadeh Z.. Drought-induced responses in plant cells. Inter Re Cytol,1998,182:193~247
    Tanaka K., Namba T., Arai Y., Fujimoto M., Adachi H., Sobue G., Takeuchi K., Nakai A. andMizushima T.. Genetic evidence for a protective role for heat shock factor1and heatshock protein70against colitis. J. Biol. Chem.,2007,282:23240~23252
    Thomashow M.F.. Plant cold acclimation: Freezing tolerance genes and regulatorymechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1999,50:571~599
    T r k Z., Goloubiniff P., Horváth I., Tsvetkova N.M., Glatz A., Balogh G., Varvasovszki V.,Los D.A.,Vierling E., Crowe J.H., Vígh L.. Synechocystis HSP17is an amphitropicprotein that stabilizes heat-stressed membranes and binds denatured proteins forsubsequent chaperone-mediated refolding. Proc. Natl. Acad. Sci.,2001,98:3098~3103
    Tripp J., Mishra S.K., Scharf K.D.. Functional dissection of the cytosolic chaperone networkin tomato mesophyll protoplasts. Plant Cell Environ.,2009,32:123~133
    Tsvetkova N.M., Horváth I., T r k Z., Wolkers W.F., Balogi Z., Shigapova N., Crowe L.M.,Tabin F., Vierling E., Crowe J.H., Vígh L.. Small heat-shock proteins regulate membranelipid polymorphism. Proc. Natl. Acad. Sci., USA,2002,99:13504~13509
    Vacca R.A., de Pinto M.C., Valenti D., Passarella S., Marra E., De Gara L.. Production ofreactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment ofmitochondrial metabolism are early events in heat shock-induced programmed cell deathin tobacco bright-yellow2cells. Plant Physiol.,2004,134:1100~1112
    Veinger L., Diamant S., Buchner J., Goloubinoff P.. The heat-shock protein IbpB fromEscherichiacoli stabilizes stress-denatured proteins for subsequent refolding by amultichaperone network. J. Biol. Chem.,1998,273:11032~11037
    Vener A.V.. Environmentally modulated phosphorylation and dynamics of proteins inphotosynthetic membranes. Biochim. Biophys. Acta.,2007,1767:449~457
    Vlachoasios K.E., Kadyrzhanova D.K., Dilley D.R.. Heat treatment prevents chilling injury oftomoto (Lycopersicon esculentum) fruits: heat shock genes and heat shock proteins in theresistance of tomato fruit to low temperatures. Acta Horticulturae,2001,553:543~547
    Vierling E.. The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol.Biol.,1991,42:579~620
    Volkov R.A., Panchuk I.I., Mullineaux P.M., Schoffl F.. Heat stress-induced H2O2is requiredfor effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol.,2006,61:733~746
    Wahid A., Gelani S., Ashraf M., Foolad M.R.. Heat tolerance in plants: an overview. Environ.Exp. Bot.,2007,61:199~223
    Wahid A., Shabbir A.. Induction of heat stress tolerance in barley seedlings by pre-sowingseed treatment with glycinebetaine. Plant Growth Reg.,2005,46:133~141
    Wang W., Vinocur B. and Altman A.. Plant responses to drought, salinity and extremetemperatures: towards genetic engineering for stress tolerance. Planta,2003,218:1~14
    Wang W., Vinocur B., Shoseyov O., Altman A.. Role of plant heat-shock proteins andmolecular chaperones in the abiotic stress response. Trends Plant Sci.,2004,9:244~252
    Waters E.R., Lee G.J.. Evolution, structure and function of the small heat shock proteins inplants. J.Exp.Bot.,1996,47:325~338
    Wehmeyer N., Hernandez L.D., Finkelstein R.R., Vierling E.. Synthesis of small heat-shockproteins is part of the developmental program of late seed maturation. Plant Physiol.,1996,112:747~757
    Welch W.J.. Mammalian stress response: cell physiology, structure/function of stress proteins,and implications for medicine and disease. Physiol. Rev.,1992,72:1063~1081
    Xiong L., Schumaker K.S. and Zhu J.K.. Cell signaling during cold, drought, and salt stress.Plant Cell,2002,14(Suppl.): S165~S183
    Xue Y., Xiong A., Li X., Zha D. and Yao Q.. Over-expression of heat shock protein geneHSP26in Arabidopsis thaliana enhances heat tolerance. Biol. Plantarum,2010,54:105~111
    Yamada K., Fukao Y., Hayashi M., Fukazawa M., Suzuki I., Nishimura M.. Cytosolic HSP90regulates the heat shock response that is responsible for heat acclimation in Arabidopsisthaliana. J. Biol. Chem.,2007,282:37794~37804
    Yamori W., Suzuki K., Noguchi K., Nakai M. and Terashima I.. Effects of rubisco kinetics andrubisco activation state on the temperature dependence of the photosynthetic rate inspinach leaves from contrasting growth temperatures. Plant Cell Environ.,2006,29:1659~1670
    Yeh C.H., Chang P.L., Yeh K.W., Lin W.C., Chen Y.M., Lin C.Y.. Expression of a geneencoding a16.9kDa heat shock protein OsHSP16.9, in Escherichia enhancesthermotolerance. Proc. Natl. Acad. Sci., USA,1997,94:10967~10972
    Yordanov I., Dilova S., Petkova R., Pangelova T., Goltsev V.. Mechanisms of the temperaturedamage and acclimation of the photosynthetic apparatus. Photobiochem. Photobiophys,1986,12:147~155
    Zhang J.H., Wang L.J., Pan Q.H., Wang Y.Z., Zhan J.C., Huang W.D.. Accumulation andsubcellular localization of heat shock proteins in young grape leaves duringcross-adaptation to temperature stresses. Scientia Horticulturae,2008,117:231~240
    Zhu J.K.. Plant salt tolerance. Trends Plant Sci.,2001,6:66~71
    Zhu Y., Wang Z., Jing Y.,Wang L., Liu X., Liu Y., Deng X.. Ectopic over-expression ofBhHsf1, a heat shock factor from the resurrection plant Boea hygrometrica, leads toincreased thermotolerance and retarded growth in transgenic Arabidopsis and tobacco.Plant Mol. Biol.,2009,71:451~467

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700