光期高温与暗期高温对水稻米质和籽粒蛋白表达影响的差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候变暖已经成为不可逆转的变化趋势,给生态环境和粮食安全生产带来了重大影响,并且这种气温升高的潜在影响将进一步加剧。目前气候变暖对农作物生产的影响倍受各国科学家和政府的重视。温室气体所导致的气候变化使平均气温升高,且夜间温度上升幅度更为明显。水稻生长期特别是开花及灌浆期的高温热害导致结实率大幅降低甚至绝收,同时影响稻米品质。近数十年来,国内外关于高温对水稻产量和米质影响的研究较多,水稻高温遗传与生理基础研究已成为热点方向。研究籽粒形成过程中光期和暗期的高温影响差异,将对充分认识和评估气温升高对水稻产量和品质的影响有一定参考意义。
     本研究选取高温适应性不同的4个中籼稻品种9311、蜀恢527、N22和特籼占,利用人工气候箱在灌浆期进行不同的温度处理:光期高温(35℃/27℃)、暗期高温(27℃/35℃)和对照(28℃/20℃),时间为受精后持续20 d,对灌浆期不同温度处理对稻米品质和籽粒蛋白表达谱的差异进行分析,旨在为揭示灌浆期光期高温和暗期高温胁迫下引起的水稻籽粒形成和品质变化的差异分子生态机理积累一定基础。主要结果如下:
     1.高温处理下各品种水稻籽粒都比对照灌浆速率大且成熟早,暗期高温对籽粒鲜重的影响大于光期高温;直链淀粉的积累在灌浆前期受高温促进,而后期受高温抑制,两种高温处理对灌浆期直链淀粉量的差异影响主要发生在灌浆早期,各品种间差异表现不一;高温处理降低了粒重、糙米率、精米率、整精米率、直链淀粉量和胶稠度,使垩白度增加,不同高温处理间、品种间的差异只是这些特征的变化幅度不同,其中整精米率和垩白度的变化幅度较大;与光期高温相比,暗期高温对粒重和精米率的影响较大,对整精米率的影响较小;两种高温处理对糙米率、垩白度和直链淀粉含量的差异影响在各品种间表现不一。
     2.用双向电泳技术对不同灌浆时期不同高温处理下籽粒的蛋白表达谱进行分析,确定了81个高温处理差异表达蛋白点,经质谱分析后成功鉴定出66个差异蛋白,将其按功能分成8类:碳水化合物代谢、氨基酸代谢、胁迫与防御蛋白、信号转导、蛋白合成与定位、多功能、功能未知和其它分类蛋白;同时对这66个差异表达蛋白点响应不同高温处理的表达变化进行了分析,暗期高温和光期高温间呈现出5种不同的蛋白表达变化类型;不同品种中,暗期高温和光期高温间的差异表达蛋白的变化类型具有相同点和特异性。
     3.在成功鉴定的所有蛋白中,11个蛋白质拥有2-5个同源异构体,对它们在两个品种的4个灌浆阶段中的表达变化进行了分析,获得水稻籽粒中包括PPDK和支链淀粉酶在内的同源异构体响应不同高温胁迫的动态表达谱,大部分同源异构体及其在9311和特籼占两个品种间的表达变化类型不同;通过分析发现cyPPDKB同源异构体的表达量与垩白度的大小负相关,可能由于cyPPDKB的表达量受到不同程度的抑制而导致暗期高温和光期高温处理间垩白度的不同。
     4.水稻灌浆期高温胁迫激发了水稻灌浆籽粒中包括h型硫氧还蛋白、过氧化物氧还酶、Cu/ZnSOD、抗坏血酸过氧化物酶、热激蛋白和乙二醛酶Ⅰ在内的一些胁迫与防御蛋白的差异表达,其在光期高温和暗期高温下的表达变化类型不同;利用实时荧光定量RT-PCR对5个胁迫与防御蛋白的编码基因Trx h、APX、2-Cys Prx、Cu/ZnSOD和HSP70进行转录分析,发现大多数蛋白的蛋白水平与其转录水平的表达变化并不一致,但可以肯定的是水稻灌浆期间参与暗期高温和光期高温抗性的分子机制不同,在耐高温性不同的品种中发挥作用的胁迫与防御蛋白有差异。
     5.在水稻籽粒品质形成中灌浆期高温适应性强的品种具有的特点为:cyPPDKB的表达量较高,其在高温胁迫下受抑制程度较小;高温会促进各时期大部分支链淀粉酶同源异构体的表达,并产生对光期高温和暗期高温响应较快的同源异构体;含stress responsive alpha-beta (A/B) barrel结构域蛋白表达量较高,且同源异构体蛋白点60在早期有表达。
     本研究为揭示灌浆期光期高温和暗期高温胁迫下引起的水稻籽粒形成和品质变化的差异分子生态机理提供了进一步研究的基本数据和线索。
Global warming has become an irreversible trend and had a major impact to the ecological environment and food safety, and, the potential impact of rising temperature would be further exacerbated. At present, the effect of climate warming on crop production gets much of the attention of scientists and governments in the world. The daily mean temperature is elevated owing to the climate change caused by atmospheric greenhouse gas, and the night temperature rise is more evident. The seed setting rate significantly reduced or even crop failure and quality declined were caused by heat stress in rice growing season, especially at the flowering and grain-filling stages. In recent decades, there were more researches on the high temperature on rice yield and quality at home and abroad. Studies on the rice genetic and physiological basis of high temperature have become a hot spot direction. Researches on the different effects of day and night high temperature during grain formation will have a certain reference value for fully understanding and assessing the impact of temperature increasing on rice yield and quality.
     In this study, four middle-season indica rice varieties '9311', Shuhui527, N22 and Texianzhan with different high temperature adaptation were selected. During rice grain-filling stage, the treatment temperatures of the control, night high temperature (NHT), and day high temperature (DHT) were 28℃/20℃,27℃/35℃, and 35℃/27℃, respectively, and, all the treatments were carried out in plant incubators and maintained for 20 days after fertilization. The different influences of NHT and DHT on rice quality and seed proteins expression profiles during grain filling were studied, to accumulate a certain foundation for revealing the different molecular ecological mechanisms of variations in rice grain formation and quality induced by DHT and NHT stress during grain filling. The main results were as follows:
     1. Compared with the control, the grain-filling rate and maturation of the grains from plants of all varieties exposed to high temperature were faster, and, the effect of NHT on the fresh weights was more serious than that of DHT. The accumulation of amylose was increased and suppressed by heat treatment at the early and late stage, respectively. The different influences of DHT and NHT on the amylose content during grain filling stage mainly occurred at the early grain-filling stage, which among varieties were inconsistent. High temperature treatments decreased grain weight, brown rice rate, milled rice rate, head rice rate, amylose content and gel consistency, and increased chalkiness degree. The differences between NHT and DHT or among rice varieties were just the distinct change extents of the above symptoms, and the changing amplitudes of head rice rate and chalkiness degree were larger among them. Compared with DHT, NHT exerted more serious effects on the grain weight and milled rice rate and less effect on head rice rate, while, the different effects of DHT and NHT on brown rice rate, chalkiness degree and amylose content among varieties were not consistent.
     2. After analyzing protein expression profiles of rice filling grains at different grain filling stages under different heat treatments by two-dimensional gel electrophoresis (2-DE),81 differentially expressed proteins in response to high temperature were determined. Through mass spectrometry analysis,66 out of 81 differentially expressed proteins were successfully identified, which were classified into eight groups according to their functions:carbohydrate metabolism, amino acid metabolism, stress and defense proteins, signal transduction, protein synthesis and destination, miscellaneous, unknown function and others function. After the expression changes in 66 differentially expressed proteins in response to different high temperature treatments analyzed, five distinct expression change patterns between NHT and DHT could be revealed. And, there were the same and specific protein expression change patterns between NHT and DHT in different varieties.
     3. Among all of the successfully identified proteins,11 proteins possessed 2-5 isoforms, whose expression variations were monitored at four grain filling stages in two varieties ('9311' and Texianzhan). The dynamic expression profiles of isoforms, including PPDK and pullulanase, in response to different high temperature (DHT and NHT) were displayed by proteomic approach in rice filling grains. Most of the isoforms identified displayed different expression change patterns between NHT and DHT in '9311' and Texianzhan. There were negative correlation between the expression amount of cyPPDKB isoforms and grain chalkiness degree, and it may be because of different suppressed extent of expression amount of cyPPDKB resulted in different grain chalkiness between NHT and DHT.
     4. High temperature stress during grain filling stimulated the differential expression of some stress and defense proteins in rice filling grains, including h-type thioredoxin (Trx h), peroxiredoxins (Prxs), Cu/Zn superoxide dismutase (Cu/ZnSOD), ascorbate peroxidase (APX), heat shock proteins (HSPs) and glyoxalasesⅠ. The expression change patterns of stress and defense proteins induced by DHT and NHT treatments were distinct. Five genes encoding stress and defense proteins including Trx h, APX,2-Cys Prx, Cu/ZnSOD and HSP70 were selected for transcripts analysis by real-time quantitative RT-PCR (qRT-PCR). The results showed that not all the protein levels were correlated with their corresponding transcript levels. However, the molecular mechanism of seed proteins involved in NHT and DHT tolerance during grain filling should be different, and the distinct stress and defense proteins played main role in rice varieties with different high temperature tolerance.
     5. In rice quality formation, the characteristics of high temperature adaptable rice varieties during grain-filling stage included:the expression amount of cyPPDKB was higher and suppressed extent under high temperature stress was smaller; high temperature would increase the protein expression of most of pullulanase isoforms at most grain filling stages, and, there was isoforms with more faster responses to high temperature; the expression amount of stress responsive A/B barrel domain containing protein was higher, and its isoform protein spot 60 expressed at early stage.
     The results in this study provided the basic data and clues for further research on revealing the different molecular ecological mechanisms of variations in rice grain formation and quality induced by DHT and NHT stress during grain filling.
引文
1.包劲松,徐冀骥,吴文清,等.早稻异季育种中稻米食用与蒸煮品质变化特征的研究.浙江大学学报(农业与生命科学版),2000,26:103-106
    2.蔡水文,陈良碧.水稻灌浆期温度对籽粒淀粉积累和FBP酶活性的影响.农业现代化研究,2004,25(4):310-312
    3.陈卫卫.耐高温水稻资源高温诱导表达蛋白鉴定与分析.[硕士学位论文].武汉:华中农业大学图书馆,2010
    4.陈义芳.粒重差异的四个水稻品种颖果发育的比较.[硕士学位论文].扬州:扬州大学图书馆,2003
    5.陈豫,曲乐庆,贾旭.水稻种子储藏蛋白及其基因表达.遗传,2003,25(3):367-372
    6.程方民,丁元树,朱碧岩.稻米直链淀粉含量的形成及其与灌浆结实期温度的关系.生态学报,2000a,20(4):646-652
    7.程方民,胡东维,丁元树.人工控温条件下稻米垩白形成变化及胚乳扫描结构观察.中国水稻科学,2000b,14:83-87
    8.程方民,张嵩午,吴永常,等.稻米胶稠度与结实期温度间的关系.西北农业大学学报,1996,24(5):16-20
    9.程方民,张嵩午.水稻籽粒灌浆过程中稻米品质动态变化及温度影响效应.浙江大学学报(农业与生命科学版),1999,25:347-350
    10.程方民,钟连进.不同气候生态条件下稻米品质性状变异及影响的主要气候因子分析.中国水稻科学,2001,15:187-192
    11.程方民,朱碧岩.气象生态因子对稻米品质影响的研究进展.中国农业气象,1998,19(5):39-45
    12.戴云云,丁艳锋,刘正辉,等.花后水稻穗部夜间远红外增温处理对稻米品质的影响.中国水稻科学,2009,23(4):414-420
    13.高如嵩,张嵩午.稻米品质气候生态基础研究.西安:陕西科学技术出版社,1994顾蕴洁,熊飞,王忠,等.水稻和小麦胚乳发育的比较.南京师大学报(自然科学版),2001,24(1):62-66
    14.何秀英,伍时照,宋美芳,等.水稻籽粒发育和胚乳淀粉粒形成的研究.广东农业科学,2000,2:8-10
    15.黄英金,罗永锋,黄兴作,等.水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系.中国水稻科学,1999,13:205-210
    16.黄英金,漆映雪,刘宜柏,等.灌浆成熟期气候因素对早籼稻米蛋白质及其4种组分含量的影响.中国农业气象,2002,23(2):9-13
    17.江绍玫,徐朗莱,万建民.水稻谷蛋白研究进展.江西农业大学学报,2002,24:14-19
    18.姜维梅,周敏,李太贵.早籼垩白米形成的形态解剖学的研究.浙江大学学报,2002,29(4):459-463
    19.金正勋,秋太权,孙艳丽,等.结实期温度对稻米理化特性及淀粉谱特性的影响.中国农业气象,2001,22(2):1-6
    20.李成荃.杂交水稻生产面临的挑战及其对策.安徽农业科学,1992,20(2):97-102
    21.李林,沙国栋,陆景淮.水稻灌浆期温光因子对稻米品质的影响.中国农业气象,1989,10(3):33-38
    22.李木英,石庆华,胡志红,潘晓华,谭雪明.高温胁迫对不同早稻品种胚乳淀粉合成酶类活性的影响.中国农业科学,2007,40(8):1622-1629
    23.李欣,顾铭洪,潘学彪.稻米品质研究Ⅱ.灌浆期间环境条件对稻米品质的影响.江苏农学院学报,1989,10(1):7-12
    24.李雅娟,崔成焕.稻米品质与结实期温度.东北农业大学学报,1996,27(3):223-230
    25.林茂锋.金早系列水稻品种稻米品质的气象条件.福建农业大学学报,1994,23(3):368-371
    26.刘家富,汪庆平,黄兴琦,庄云华.不同海拔条件下稻米品质初步研究.云南农业科技,1986,5:27-30
    27.刘巧泉,周丽慧,王红梅,顾铭洪.水稻种子贮藏蛋白合成的分子生物学研究进展.分子植物育利,,2008,6(1):1-15
    28.刘奕,程方民.稻米中蛋白质和脂类与稻米品质的关系综述.中国粮油学报,2006,21(4):6-10转24
    29.吕文彦,邵国军,曹萍,韩勇,邱福林.辽宁省水稻品质兼及品质与产量关系的研究V.稻谷灌浆与稻米品质.辽宁农业科学,2001,6:19-21
    30.马彬林,杨长桃,钟金仙,吴兰英,谢小丹.不同生育时期对汕优63稻米品质的影响.三明农业科技,1994,2:21-22
    31.马国辉.环境生态对中国稻米品质的影响.农业现代化研究,1998,19:146-149孟亚利,高如嵩,张嵩午.影响稻米品质的主要气候生态因子研究.西北农业大学学报,1994,22(1):40-43
    32.孟亚利,周治国.结实期温度与稻米品质的关系.中国水稻科学,1997,11:51-54
    33.任久江.气候波动对水稻产量的影响.西南农业大学学报,1991,13(3):275-279
    34.阮松林,马华升,王世恒,等.植物蛋白质组学研究进展Ⅰ.蛋白质组关键技术.遗传,2006,28(11):1472-1486
    35.沈波,陈能.温度对早籼稻米垩白发生与胚乳形成的影响.中国水稻科学,1997,11(3):183-186
    36.沈鹏,金正勋,罗秋香,金学泳,孙艳丽.水稻灌浆过程中籽粒淀粉合成关键酶活性与蒸煮食味品质的关系.中国水稻科学,2006,20(1):58-64
    37.盛婧,陶红娟,陈留根.灌浆结实期不同时段温度对水稻结实与稻米品质的影响.中国水稻科学,2007,21(4):396-402
    38.时光春,倪丕冲,宋家祥,等.水稻84-15的细胞胚胎学研究.作物学报,1996,22(6):657-660
    39.舒庆尧,徐光华,夏英武,等.稻米表观直链淀粉含量研究进展.浙江农业学报,1998,10(1):47-54
    40.唐湘如,余铁桥.灌浆成熟期温度对稻米品质及有关生理生化特性的影响.湖南农学院学报,1991,17(1):1-9
    41.王红梅,刘巧泉,顾铭洪.稻米蛋白营养品质及其遗传改良.植物生理学通讯,2007,43(2):391-396
    42.王守海.灌浆结实期气候条件对稻米糊化温度的影响.安徽农业科学,1987,1:16-18
    43.王志方.甘蓝型油菜低硼胁迫下的根系蛋白质组学研究.[硕士学位论文].武汉:华中农业大学图书馆,2010
    44.王忠,李卫芳,顾蕴洁,等.水稻胚乳的发育及其养分输入的途径.作物学报,1995,21(5):520-527
    45.韦克苏.高温胁迫对早籼稻胚乳灌浆相关基因的表达调控.[硕士学位论文].杭州:浙江大学图书馆,2008
    46.谢新华,肖听,李晓方,刘邻渭.稻米蛋白质的研究进展.广东农业科学,2003,6:2-4
    47.杨建昌,彭少兵,顾世梁,R.M.Visperas,朱庆森.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化.作物学报,2001,27(2):157-164
    48.杨泽敏.温度与施肥对稻米品质的影响及其籽粒发育的酶动态与显微结构研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    49.殷延勃,朱美静,马洪文,等.环境因子对宁夏水稻品质性状的影响—水稻主要品质性状对环境因子的逐步回归分析.宁夏农林科技,2002,2:17-19
    50.余德谦,朱旭彤.农作物器官建成.北京:农业出版社,1992,108-113
    51.袁隆平.水稻光、温敏核不育系的提纯和原种生产.杂交水稻,1994,6:1-3
    52.张标金.特异耐高温水稻N22开花期耐高温遗传基础研究.[硕士学位论文].武汉:华中农业大学图书馆,2009
    53.张宪银,薛庆中.水稻种子贮藏蛋白分子生物学研究进展.浙江农业学报,2000,12(2):108-111
    54.赵式英.灌浆期气温对稻米食用品质的影响.浙江农业科学,1983,4:178-181
    55.钟连进.温度对早籼稻米品质影响的淀粉理化基础与代谢特征研究.[博士学位论文].杭州:浙江大学图书馆,2004
    56.钟旭华,曾宪江,徐益群,张佩莲,曾晓春.稻米垩白度与籽粒灌浆特征参数的关系研究.江西农业大学学报,1996,18(4):387-393
    57.周德益,张嵩午,高如嵩,等.稻米综合品质与结实期气候因子的关系研究.西北农业大学学报,1994,22(2):6-15
    58.周广洽,谭周磁.水稻结实期温度对米粒外观品质和淀粉形成的影响.湖南农业科学,1986,6:5-9
    59.周广治,徐孟亮,谭周磁,等.温光对稻米蛋白质及氨基酸含量的影响.生态学报,1997,17:537-542
    60.朱碧岩,程方民,吴永常.结实期温度对稻米粒重和整精米率形成动态的影响.西北农业学报,1996,5(4):31-35
    61.朱碧岩,黎杰强,程方民,王长发.稻米直链淀粉含量形成动态及结实期温度的影响.华南师范大学学报(自然科学版),2000(1):94-98
    62.朱庆森,曹显祖,骆亦其.水稻籽粒灌浆的生长分析.作物学报,1988,14(3):182-193
    63.Aalen RB. Peroxiredoxin antioxidants in seed physiology. Seed Sci Res,1999, 9:285-295
    64.Adachi T, Izumi H, Yamada T, Tanaka K. Gene structure and expression of rice seed allergenic proteins belonging to the alpha-amylase/trypsin inhibitor family. Plant Mol Biol,1993,21:239-248
    65.Akiko K, Naoko E, Kyuya H, Toshiaki M, HikarHs S, et al. The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol,1999,121:399-410
    66.Berger F. Endosperm development. Curr Opin Plant Biol,1999,2:28-32
    67.Berkowitz O, Jost R, Pollmann S, Masle J. Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. Plant Cell,2008, 20:3430-3447
    68.Blum H, Beier H, Gross HJ. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis,1987,8:93-99
    69.Blumenthal C, Stone PJ, Gras PW, Bekes F, Clarke B, et al. Heat-shock protein 70 and dough-quality changes resulting from heat stress during grain filling in wheat. Cereal Chem,1998,75:43-50
    70.Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bingding. Anal Biochem, 1976,72:248-254
    71.Brown RC, Lemmon BE, Olsen OA. Development of the endosperm in rice (Oryza saliva L):cellularization. J Plant Res,1996,109:301-313
    72.Chastain CJ, Heck JW, Colquhoun TA, Voge DG, Gu XY. Posttranslational regulation of pyruvate, orthophosphate dikinase in developing rice (Oryza sativa) seeds. Planta, 2006,224:924-934
    73.Dietz K. Plant peroxiredoxins. Annu Rev Plant Biol,2003,54:93-107
    74.Duan MJ, Sun SSM. Profiling the expression of genes controlling rice grain quality. Plant Mol Biol,2005,59:165-178
    75.Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, et al. Maximum and minimum temperature trends for the globe. Science,1997,277:364-367
    76.Finnie C, Melchior S, Roepstorff P, Svensson B. Proteome analysis of grain filling and seed maturation in barley. Plant Physiol,2002,129:1308-1319
    77.Fujino Y. Rice lipids. Cereal Chem,1978,55:559-571
    78.Fujita N, Toyosawa Y, Utsumi Y, Higuchi T, Hanashiro I, et al. Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza saliva L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. J Exp Bot,2009, 60:1009-1023
    79.Gelhaye E, Rouhier N, Jacquot JP. The thioredoxin h system of higher plants. Plant Physiol Biochem,2004,42:265-271
    80.Greenbaum D, Colangelo C, Williams K, Gerstein M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol,2003,4:117
    81.Gu R, Fonseca S, Puskas LG, Hackler L Jr, Zvara A, et al. Transcript identification and profiling during salt stress and recovery of Populus euphratica.Tree Physiol,2004,24: 265-276
    82.Hayashi NR, Terazono K, Kodama T, Igarashi Y. Structure of ribulose 1,5-bisphosphate carboxylase/oxygenase gene cluster from a thermophilic hydrogen-oxidizing bacterium, Hydrogenophilus thermoluteolus, and phylogeny of the fructose 1,6-bisphosphate aldolase encoded by cbb A in the cluster. Biosci Biotechnol Biochem,2000,64:61-71
    83.He GC, Kogure K, Suziki H. Development of endosperm and synthesis of starch in rice grain ⅢStarch property as affected by the temperature during grain development. Jpn J Crop Sci,1990,59:340-345
    84.Hirano HY, Sano Y. Comparison of waxy gene regulation in the endosperm and pollen in Oryza saliva L. Genes Genet Syst,2000,75:245-249
    85.Imaizumi N, Ku MS, Ishihara K, Samejima M, Kaneko S, et al. Characterization of the gene for pyruvate, orthophosphate dikinase from rice, a C3 plant, and a comparison of structure and expression between C3 and C4 genes for this protein. Plant Mol Biol, 1997,34:701-716
    86.IPCC. Climate Change 2001-the Scientific Basis[M]. Oxford UK:Cambridge University,2001:101-125
    87. Ishimaru T, Matsuda T, Ohsugi R, Yamagishi T. Morphological development of rice caryopses located at the different positions in a panicle from early to middle stage of grain filling. Funct Plant Biol,2003,30:1139-1149
    88. Ishiwatari Y, Fujiwara T, McFarland KC, Nemoto K, Hayashi H, et al. Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport through plasmodesmata. Planta,1998,205:12-22
    89. Ishiwatari Y, Honda C, Kawashima I, Nakamura S, Hirano H, et al. Thioredoxin h is one of the major proteins in rice phloem sap. Planta,1995,195:456-463
    90. Iyengar R, Rose IA.Concentration of activated intermediates of the fructose-1, 6-bisphosphate alsolase and triose phosphate isomerase reactions. Biochemistry,1981, 20:1223-1229
    91. Jiang H, Dian W, Wu P. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochemistry,2003,63:53-59
    92. Juliano BO, Perez CM, Gomez KA. Variability in protein content of rice. Kalikasan, 1972,1 (1):74-81
    93. Kang HG, Park S, Matsuoka M, An G. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J,2005,42:901-911
    94. Karl TR, Kukla G, Razuvayev VN, Changery MJ, Quayle RG, et al. Global warming: evidence for asymmetric diurnal temperature change. Geophys Res Lett,1991,18: 2253-2256
    95. Kato T. Change of suerose synthase activity in developing endosperm of rice cultivars. Crop Sci,1995,35:827-831
    96. Kawakatsu T, Hirose S, Yasuda H, Takaiwa F. Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiol,2010,154(4):1842-1854
    97. Kim ST, Cho KS, Jang YS, Kang KY.Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis, 2001,22:2103-2109
    98. Konig J, Baier M, Horling F, Kahmann U, Harris G, et al.The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proc Natl Acad Sci USA,2002,99:5738-5743
    99. Kubo A, Fujita N, Harada K, Matsuda T, Satoh H, et al. The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol,1999,121:399-410
    100.Laino P. Shelton D, Finnie C, De Leonardis AM, Mastrangelo AM, et al. Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress. Proteomics,2010,10:2359-2368
    101.Larkin PD, Park WD. Transcript accumulation and utilization of alternate and non-consensus splice sites in rice granule-bound starch synthase are temperature-sensitive and controlled by a single-nucleotide polymorphism. Plant Mol Biol,1999,40:719-727
    102.Lee DG, Ahsan N, Lee SH, Kang KY, Bahk JD, et al.A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics,2007,7:3369-3383
    103.Lee JY, Lee DH.Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiol,2003,132:517-529
    104.Li QF, Zhang GY, Dong ZW, Yu HX, Gu MH, et al.Characterization of expression of the OsPUL gene encoding a pullulanase-type debranching enzyme during seed development and germination in rice. Plant Physiol Biochem,2009,47:351-358
    105.Lin SK, Chang MC, Tsai YG, Lur HS. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics,2005,5:2140-2156
    106.Lisle AJ, Martin M, Fitzgerald MA. Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chem,2000,77:627-632
    107.Lytle BL, Peterson FC, Kjer KL, Frederick RO, Zhao Q, et al. Structure of the hypothetical protein At3gl7210 from Arabidopsis thaliana. J Biomol NMR,2004, 28:397-400
    108.Martin C, Smith AM. Starch biosynthesis. Plant Cell,1995,7:971-985
    109.Matsue Y. Influence of abnormal weather in 1993 on the palatability and physicochemical characteristics of rice. Jpn J Crop Sci,1995,64:709-713
    110.Mechin V, Balliau T, Chateau-Joubert S, Davanture M, Langella O, et al. A two-dimensional proteome map of maize endosperm. Phytochemistry,2004, 65:1609-1618
    111.Mechin V, Thevenot C, Le Guilloux M, Prioul JL, Damerval C. Developmental analysis of maize endosperm proteome suggests a pivotal role for pyruvate orthophosphate dikinase. Plant Physiol,2007,143:1203-1219
    112.Moons A, Valcke R, Van Montagu M. Low-oxygen stress and water deficit induce cytosolic pyruvate orthophosphate dikinase (PPDK) expression in roots of rice, a C3 plant. Plant J,1998,15:89-98
    113.Muench DG, Wu YJ, Zhang YS, Li XX, Boston RS, et al. Molecular cloning, expression and subcellular localization of a BiP homolog from rice endosperm tissue. Plant Cell Physiol,1997,38:404-412
    114.Nishi A, Nakamura Y, Tanaka N, Satoh H. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol,2001,127: 459-472
    115.Nuruzzaman M, Gupta M, Zhang CJ, Wang L, Xie WB, et al. Sequence and expression analysis of the thioredoxin protein gene family in rice. Mol Genet Genomics,2008,280:139-151
    116.Ogawa M, Tanaka K, Kasai Z. Accumulation of phosphorus, magnesium and potassium in developing rice grains:followed by electron microprobe x-ray analysis focusing on the alcurone layer. Plant and Cell Physiol,1979,20:19-27
    117.Pan ZY, Guan R, Zhu SP, Deng XX.Proteomic analysis of somatic embryogenesis in Valencia sweet orange(Citrus sinensis Osbeck). Plant Cell Rep,2009,28:281-289
    118.Peng SB, Huang JL, Sheehy JE, Laza RC, Visperas RM, et al. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA,2004, 101:9971-9975
    119.Pomerening JR, Valente L, Kinzy TG, Jacobs TW. Mutation of a conserved CDK site converts a metazoan Elongation Factor 1Bβ subunit into a replacement for yeast eEF1Ba. Mol Gen Genomics,2003,269:776-788
    120.Pradet-Balade B, Boulme F, Beug H, Mullner EW, Garcia-Sanz JA.Translation control:bridging the gap between genomics and proteomics? Trends Biochem Sci, 2001,26:225-229
    121.Prasad PVV, Boote KJ, Allen LH, Sheehy JE, Thomas JMG. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crop Res,2006,95:398-411
    122.Rabilloud T. Mechanisms of protein silver staining in polyacrylamide gels:a ten years synthesis. Electrophoresis,1990,11:785-794
    123.Ramachandran C, Raghavan V. Changes in nuclear DNA content of endosperm cells during grain development in rice (Oryza sativa). Ann Bot,1989,64:459-468
    124.Resurreccion AP, Hara T, Juliano BO, Yoshida S. Effect of temperature during ripening on grain quality of rice. Soil Sci Plant Nutr,1977,23:109-112
    125.Ruuska SA, Girke T, Benning C, Ohlrogge JB. Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell,2002,14:1191-1206
    126.Sasaki T, Burr B. International rice genome sequencing project:the effort to completely sequence the rice genome. Curr Opin Plant Biol,2000,3:138-141
    127.Schaeffer GW, Sharpe FT. Electrophoretic profiles and amino acid composition of rice endosperm proteins of a mutant with enhanced lysine and total protein after backcrosses for germplasm improvements. Theor Appl Genet,1997,95:230-235
    128.Schmidt MW, Houseman A, Ivanov AR, Wolf DA. Comparative proteomic and transcriptomic profiling of the fission yeast Schizosaccharomyces pombe. Mol Syst Biol,2007,3:79
    129.Serrato AJ, Cejudo FJ. Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta,2003,217:392-399
    130.Shin SY, Lee HS, Kwon SY, Kwon ST, Kwak SS. Molecular characterization of a cDNA encoding copper/zinc superoxide dismutase from cultured cells of Manihot esculenta. Plant Physiol Biochem,2005,43:55-60
    131.Singla-Pareek SL, Reddy MK, Sopory SK. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA, 2003,100:14672-14677
    132.Stacy RA, Nordeng TW, Culianez-Macia FA, Aalen RB.The dormancy-related peroxiredoxin anti-oxidant, PER1, is localized to the nucleus of barley embryo and aleurone cells. Plant J,1999,19:1-8
    133.Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell,2006,18:2051-2065
    134.Takeda Y, Hatano S, Sentoku N, Matsuoka M. Homologs of animal eyes absent (eya) genes are found in higher plants. Mol Gen Genet,1999,262:131-138
    135.Takemoto Y, Coughlan SJ, Okita TW, Satoh H, Ogawa M, et al. The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol,2002,128:1212-1222
    136.Tamaki M, Ebata M, Tashiro T, Ishikawa M. Physio-ecological sutides on quality formation of rice kernel. Ⅰ. Effect of nitrogen top-dressed at full heading time and air temperature during ripening period on quality of rice kernel. Jpn J Crop Sci,1989, 58:653-658
    137.Tanaka K, Ogawa M, Kasai Z. The rice scutellum.Ⅱ.A comparison of scutellar and alcurone electron-energy-dispersive x-ray analysis. Cereal Chem,1997,54:684-689
    138.Tanaka N, Fujita N, Nishi A, Satoh H, Hosaka Y, et al. The structure of starch can be manipulated by changing the expression levels of starch branching enzyme Ⅱb in rice endosperm. Plant Biotechnol J,2004,2:507-516
    139.Tanaka Y, Hayashida S, Hongo M. Quantitative relation between feces protein particles and rice protein bodies. J Agric Chem Soc Jpn,1975,49:425-429
    140.Tetlow IJ. Understanding storage starch biosynthesis in plants:a means to quality improvement. Can J Bot,2006,84:1167-1185
    141.Umemoto T, Terashima K. Activity of granule-bound starch synthase is an important determinant of amylose content in rice endosperm. Funct Plant Biol,2002,29: 1121-1124
    142. Wang ET, Wang JJ, Zhu XD, Hao W, Wang LY, et al. Control of rice grain-filling and yield by a gene with potential signature of domestication. Nat Genet,2008, 40:1270-1274
    143.Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci,2004,9: 244-252
    144.Wang YH, Zhu SS, Liu SJ, Jiang L, Chen LM, et al.The vacuolar processing enzyme OsVPEl is required for efficient glutelin processing in rice. Plant J,2009, 58:606-617
    145.Wang ZF, Wang ZH, Shi L, Wang LJ, Xu FS. Proteomic alterations of Brassica napus root in response to boron deficiency. Plant Mol Biol,2010,74:265-278
    146. Wen TN, Luthe DS. Biochemical characterization of rice glutelin. Plant Physiol,1985, 78:172-177
    147.Wong JH, Balmer Y, Cai N, Tanaka CK, Vensel WH, et al. Unraveling thioredoxin-linked metabolic processes of cereal starchy endosperm using proteomics. FEBS Lett,2003,547:151-156
    148.Wood ZA, Schroder E, Robin Harris J, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci,2003,28:32-40
    149.Wu G, Nie L, Zhang W. Integrative analyses of posttranscriptional regulation in the yeast Saccharomyces cerevisiae using transcriptomic and proteomic data. Curr Microbiol,2008,57:18-22
    150.Xie GS, Kato H, Sasaki K, Imai R.A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Lett, 2009,583:2734-2738
    151.Xu SB, Li T, Deng ZY, Chong K, Xue YB, et al. Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. Plant Physiol,2008,148:908-925
    152.Yamakawa H, Hirose T, Kuroda M, Yamaguchi T. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol,2007,144:258-277
    153.Yamasaki Y, Nakashima S, Konno H. Pullulanase from rice endosperm. Acta Biochim Pol,2008,55:507-510
    154. Yang XH, Liang Z, Lu CM. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol,2005,138:2299-2309
    155.Yoshida S, Satake T, Mackill DS. High temperature stress in rice. IRRI Research Paper Series,1981,67
    156.Yoshida S. Physiological aspects of grain yield. Annu Rev Plant Physiol,1972, 231:437-464
    157.Zhang AD, Xie CY, Chen HC, Jin ML. Identification of immunogenic cell wall-associated proteins of Streptococcus suis serotype 2. Proteomics,2008, 8:3506-3515

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700