适于直播的水稻种质资源筛选及种子活力和幼苗耐缺氧能力优异等位变异的发掘
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻直播是一种轻型、高效、节水的栽培方式,为欧美等国和许多发达地区广泛采用。随着我国经济的快速发展,大量劳动力从农村转向城市,水稻直播栽培面积开始呈逐年上升的趋势。直播种子成苗好坏是直播栽培成功与否的第一关。影响直播种子成苗的主要因素是缺氧胁迫和低温胁迫。培育具有耐缺氧能力和高活力的直播水稻品种是将会提高直播稻田间成苗率的途径之一。太湖流域是水稻主栽区,品种资源具有广泛的遗传多样性。为发掘种子活力和幼苗耐缺氧能力优异等位变异及其载体材料,本论文进行了以下3项研究。一是选取297个太湖流域水稻品种资源对种子活力和幼苗耐缺氧能力进行遗传变异研究,并对种子活力和幼苗耐缺氧能力与直播成苗能力进行相关分析。二是利用一个籼粳交BIL群体和一个粳粳交RIL群体对种子活力和幼苗耐缺氧能力进行QTL分析。BIL群体由Nipponbare/Kasalath//Nipponbare组合98个家系构成;RIL群体由秀水79/C堡组合247个家系构成。三是利用由94个太湖流域水稻核心种质构成的自然群体对种子活力和幼苗耐缺氧能力进行关联作图分析。获得的主要结果如下:
     1.5个生态类型297个水稻地方品种间种子活力和幼苗耐缺氧能力的遗传变异系数分别为19.5%和15.2%。这两个性状的遗传变异主要存在于早熟晚粳生态型中。种子活力指数、缺氧条件下芽鞘长度均与水直播14天的幼苗高及成苗指数呈极显著正相关。从早熟晚粳中筛选到薄稻3、硬头茎、三百粒头、大稻头、乌金香糯、荒三石4和晚八哥头这7个高活力和耐缺氧能力的品种资源,可供适于直播的水稻新品种选育利用。
     2.对于种子活力性状,在籼粳交BIL群体的双亲中,Kasalath有利等位变异数目(6个)多于Nipponbare(1个);在粳粳交RIL群体的双亲中,C堡有利等位变异数目(8个)多于秀水79(1个);在太湖流域水稻自然群体中共检测到42个控制种子活力性状的优异等位变异。
     BIL群体中,亲本Kasalath有2个控制根长的有利等位变异,分别位于第1和第7染色体上,与之紧密连锁的RFLP标记是C813和R3089;有2个控制苗高的有利等位变异,分别位于第7和第8染色体上,与之紧密连锁的RFLP标记为C847和C166;有2个控制幼苗干重的有利等位变异,位于第7和第8染色体上,与之紧密连锁的RFLP标记是R3089和C166。Nipponbare只有1个控制干重的有利等位变异位,位于第1染色体上,与之紧密连锁的RFLP标记是C122。
     RIL群体中,亲本C堡有2个控制根长的有利等位变异,位于第1和第2染色体上,有利等位变异为RM486-112bp和RM48-240bp;4个控制苗高的有利等位变异,位于第2、3、8和11染色体上,有利等位变异为RM48-240bp、RM545-220bp. RM6948-116bp和RM206-165bp;2个控制幼苗干重的有利等位变异,位于第2和第6染色体上,有利等位变异是RM2127-175bp和RM454-170bp。秀水79只有1个控制干重的有利等位变异位,位于第1染色体上,有利等位变异是RM525-143bp。
     太湖流域水稻自然群体中,检测到42个控制种子活力性状的优异等位变异,其中控制根长的优异等位变异17个,控制苗高的优异等位变异13个,控制幼苗干重的优异等位变异12个。第1染色体上控制根长的优异等位变异RM486-112bp,第8染色体上控制苗高的优异等位变异RM6948-116bp,在RIL群体中也被检测到。
     3.对于幼苗耐缺氧能力,在籼粳交BIL群体的双亲中各有3个有利等位变异;在粳粳交RIL群体的双亲中,2个有利等位变异均来源于C堡。在太湖流域粳稻自然群体中共检测到6个优异等位变异。
     BIL群体中,亲本Nipponbare有3个控制幼苗耐缺氧能力的有利等位变异,分别位于第2、第3和第9染色体上,与之紧密连锁的RFLP标记为C747、C1488和R2272;亲本Kasalath有3个控制幼苗耐缺氧能力的有利等位变异,分别位于第5、第8和第12染色体上,与之紧密连锁的RFLP标记为R830、C1121和R642。
     RIL群体中,2个控制幼苗耐缺氧能力的有利等位变异均来自亲本C堡,分别位于第2和第7染色体上,有利等位变异为RM525-140 bp和RM418-250 bp。
     大湖流域水稻自然群体中检测到的6个控制幼苗耐缺氧能力的优异等位变异分别是RM112-127bp、RM317-164bp、RM317-157bp、RM311-176bp、RM311-170bp和RM20-205bp。
     4.获得了42个携带种子活力优异等位变异的载体材料和6个携带幼苗耐缺氧能力优异等位变异的载体材料。
     在关联群体中发掘出的42个携带种子活力优异等位变异的载体材料中,携带根长效应值较大的优异等位变异载体材料为滇屯502选早、扬稻6号和南农粳62401;携带苗高效应值较大的为开青和籼恢429;携带幼苗干重效应值较大的为滇屯502选早和C堡。有的载体材料同时携带2个性状优异等位变异,如扬稻6号同时携带根长和苗高有利等位变异,孔雀青同时携带根长和干重有利等位变异,籼恢429同时携带苗高和幼苗干重有利等位变异。另一方面,一些载体材料同时携带同一活力性状的2个以上的有利等位变异,如阳光200携带根长的两个有利等位变异,恶不死糯稻、苏粳4号和水晶白稻携带干重的两个有利等位变异。也有一些品种既携带有2个性状优异等位变异,同时又携带其中的一个性状2个以上优异等位变异,如滇屯502选早携带2个根长和1个幼苗干重优异等位变异,开青携带2个苗长和1个根长优异等位变异。
     在关联群体中发掘出的6个携带幼苗耐缺氧能力优异等位变异的载体材料,分别为开青、白芒糯、镇稻88、有芒早稻、粗杆黄稻和C堡,其中以镇稻88中优异等位变异的效应值最大。
     开青、镇稻88和C堡等品种既携带水稻种子活力又携带幼苗耐缺氧能力优异等位变异,可考虑优先用作培育适于水稻直播品种的亲本资源。
Direct seeding in rice (Oryza sativa L.) is a cultivation pattern of light-labor, high effect and water-saving. It is widely adopted in America, Europe and other developed countries. With the rapid development of national economy in our country, and more and more labor force moving from countryside to city, the areas of direct sowing in rice is increasing year after year. Whether the cultivation of direct seeding in rice is successful is first determined by the situation of seedling establishment in the field. Anoxic stress and lower temperature stress are the main factors affecting seedling establishment in direct seeding rice field. Breeding rice cultivars with anoxic tolerance and high vigor is one of the ways to improve seedling establishment in direct sowing field. Rice has been widely cultivated in the Taihu lake region, Jiangsu Province, and maintained broad genetic diversity during the long history of rice cultivation. In order to discovery favorable alleles for seed vigor and seedling tolerance to anoxia, we conducted following studies. Firstly, genetic variation of seed vigor and seedling tolerance to anoxia, and the correlations between the traits mentioned above with seedling establishment index were studied by using 297 accessions of rice in Tai lake region. Secondly, QTL mapping was carried out for the traits of seed vigor and seedling tolerance to anoxia by using a BIL population (98 lines) made from a backcross of Nipponbare (japonica)/Kasalath (indica)//Nipponbare and a RIL population (247 lines) made from a cross between Xiushui 79 (japonica cultivar) and C Bao(japonica restorer). Thirdly, association mapping was conducted for the traits of seed vigor and seedling tolerance to anoxia by using a natural population composed of 94 accessions from Taihu lake region. The main results were obtained as follows:
     1. Genetic coefficient of variation was 19.5% for seed vigor and 15.2% for tolerance to anoxia among the 297 accessions(belong to five ecotypes). The genetic variations of the two traits were mainly existed in early maturity late japonica rice ecotype. Highly significant positive correlations were found between the two traits respectively with 14-day-seedling height and seedling establishment index. Seven accessions with high seed vigor and high tolerance to anoxia were screened out from early maturity late japonica rice ecotype. They were Bodao3, Yingtoujing, Sanbailitou, Dadaotou, Wujinxiangnuo, Huangsanshi4, Wanbagetou. They could be utilized as parents in breeding programs which aim to develop varieties suitable for direct seeding technology.
     2. For trait of seed vigor, six favorable alleles in Kasalath and one favorable allele in Nipponbare were detected in BIL population, and eight favorable alleles in C-Bao and one favorable allele in Xiushui79 were detected in RIL population. Forty-two favorable alleles for seed vigor trait were explored in the natural population.
     In BIL population, Kasalath carried two favorable alleles for root length which located on 1 and 7 chromosomes tightly linked to RFLP marker C813 and R3089, two favorable alleles for shoot height which located on 7 and 8 chromosomes tightly linked to RFLP marker C847 and C166, and two favorable alleles for seedling dry weight which located on 7 and 8 chromosomes tightly linked to RFLP marker R3089 and C166. Nipponbare only carried one favorable allele for seedling dry weight which located on 1 chromosomes tightly linked to RFLP marker C122.
     In RIL population, C-Bao carried two favorable alleles, RM486-112bp and RM48-240bp, controlling root length which located on 1 and 7 chromosomes. Four favorable alleles, RM48-240bp, RM545-220bp, RM6948-116bp and RM206-165bp, controlling shoot height which located on 2,3,8 and 11 chromosomes, and two favorable alleles, RM2127-175bp and RM454-170bp, controlling seedling dry weight which located on 2 and 6 chromosomes. Xiushui79 only carried one favorable allele RM525-143bp controlling seedling dry weight which located on 2 chromosomes.
     In the natural population, totally 42 favorable alleles were detected for the traits of seed vigor. Among them, seventeen favorable alleles were for root length, thirteen were for shoot height, and twelve were for seedling dry weight. The favorable allele, RM486-112bp, detected on chromosome 1, for root length, and the favorable allele RM6948-116bp, detected on chromosome 8, for shoot height, were also detected in the RIL population.
     3. For seedling anoxic tolerance, Kasalath and Nipponbare both carried three favorable alleles in BIL population. All favorable alleles for the trait came from C-Bao in RIL population. Six favorable alleles for seedling anoxic tolerance were explored in the natural population.
     In BIL population, Nipponbare carried three favorable alleles controlling seedling anoxic tolerance which located on chromosomes 2,3 and 9, tightly linked to RFLP marker C747, C1488 and R2272. Kasalath carried three favorable alleles controlling seedling anoxic tolerance which located on chromosomes 5,8 and 12, tightly linked to RFLP marker R830, C1121 and R642.
     In RIL population, two favorable alleles, RM525-140bp and RM418-250bp, were detected on chromosome 2 and chromosome 7 in C-Bao for seedling anoxic tolerance.
     Six favorable alleles for seedling anoxia tolerance detected in natural population were RM112-127bp, RM317-164bp, RM317-157bp, RM311-176bp, RM311-170bp and RM20-205bp.
     4. Torty-two accessions carring favorable alleles for seed vigor and 6 accessions carring favorable alleles for seedling anoxic tolerance were discovered.
     Among the 42 accessions discovered in the natural population, Diantun 502 xuan zao, Yangdao 6 hao and Nannongjing62401 carried positive allele with larger effect for root length. Kaiqing and Huixian429 carried positive allele with larger effect for shoot height. Diantun 502 xuan zao and C-Bao carried positive allele with larger effect for seedling dry weight. Some materials carried favorable alleles for two seed vigor traits such as Yangdao6hao (root length and shoot height), Kongqueqing(root length and dry weight), Huixian429(shoot height and dry weight). On the other hand, some materials carried more than two favorable alleles for one seed vigor traits such as Yangguang2000 (root length), Ebushinuodao(dry weight), shujing4hao(dry weight) and shuijingbaidao(dry weight). Some materials carried two favorable alleles for two seed vigor traits as well as two favorable alleles for one seed vigor traits such as Diantun 502 xuan zao(two for root length and one for dry weight) and Kaiqing(two for shoot height and root length).
     Six varieties possessing favorable alleles for anoxic tolerance discovered in natural population were Kaiqing, Baimangdao, Zhendao88, Youmangzaodao, cuganhuangdao and C-Bao. Zhendao88 carried positive allele with the largest effect for anoxic tolerance.
     Kaiqing, Zhendao88 and C-Bao which carried favorable alleles not only for seed vigor but also for anoxic tolerance could be utilized as parents in breeding programs which aim to develop varieties suitable for direct seeding technology.
引文
1. Allard R W. Formulas and tables to facilitate the calculation of recombination values in heredity [J]. Hilgardia,1956,24:235-278
    2. Andersen J R, Lubberstedt T. Functional marker in plants [J].Trends Plant Sci,2003,8:554-560
    3. Aiazzi M, Arguello J A, DiRienzo J, Guzman C A. Deterioration in Atriplex cordobensis(Gansogeret Stucke) seeds:natural and accelerated ageing [J]. Seed Science and Technology,1996,25:147-155
    4. Ardlie K, Liu-Cordero S N, Eberle M A, Daly M, Barrett J, Winchester E, Lander E S, Kruglyak L. Low-Than-Expected linkage disequilibrium between tightly linked marker in humans suggests a role for gene conversion [J]. The American Journal of Human Genetic,2001,69:582-589
    5. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production[J]. Science,2005,309(5735): 741-745
    6. Aung U, McDonald M B. Changes in esterase activity associated with peanut (Arachis hypogaea L.) seed deterioration[J]. Seed Science and Technology,1995,23:101-111
    7. Ayahiko S, Takeshi I, Kaworu E, Takeshi E, Hiromi K, SaekoK, Masahiro Y. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics,2008,40(8): 1023-1028
    8. Begnami C N, Cortelazzo A L. Cellular alterations during accelerated aging of French bean seeds[J]. Seed Science and Technology,1996,24:295-303
    9. Braverman J M, Hudson R R, Kaplan N L, Langley C H, Stephan W. The hitchhiking effect on the sites frequency spectrum of DNA polymorphisms[J]. Genetics,1995,140:783-796
    10. Breseghello F, Sorrells M S. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) Cultivars[J]. Genetics,2006,172:1165-1177
    11. Buckler E S, Thornsberry J M. Plant molecular diversity and applications to genomics[J]. Curr Opin in Plant Biol,2002,5:107-110
    12. Burke J M, Tang S, Knapp S J and Rieseberg LH. Genetic analysis of sunflower domestication[J]. Genetics,2002,161:1257-1267
    13. Camus-kalandavelu L, Veyrieras J B, Madur D. Maize adaptation temperate climate:relationship with population structure and polymorphism in Dwarf8 gene[J]. Genetics,2006,172:2249-2463
    14. Causse M A, Fulton T M, Cho Y G, Ahn S N, Chunwongse J, Wu K, Xiao J, Yu Z H, Ronald P C, Hamington S E, Second G, McCouch S R, Tanksley S D. Saturated molecular map of the rice genome based on an interspecific backcross population[J]. Genetics,1994,138:1251-1274
    15. Ching A, Caldwell K S, Jung M, Dolan M, Smith O S, Tingey S T, Morgante M, Rafalski A J. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines[J]. BMC Genetics,2002,3:19
    16. Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping[J]. Genetics, 1994,138:963-971
    17. Corder E H, Saunders A M, Risch N J, Strittmatter W J, Schmechel D E, Gaskell P C, Rimmler J B, Locke P A, Conneally P M, Schmader K E. Protective effect of apolipoprotein Etype 2 allele for late onset Alzheimer disaese[J]. Nat Genet,1994,7:180-184
    18. Cui K H, Peng S B, Xing Y Z, Xu C G, Yu S B, Zhang Q. Molecular dissection of seedling-vigor and associated physiological traits in rice[J]. Theor Appl Genet,2002,105:745-753
    19. Devlin B, Risch N A. A comparison of linkage disequilibrium measures for fine-scale mapping[J]. Genomics,1995,29:311-322
    20. Devlin B, Roeder K. Genomic control for association studies [J]. Biometrics,1999,55:997-1004
    21. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Edl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1[J]. Genes & Development,2004,18(8):926-936
    22. Falush D, Stephens M, Pritchard J K. Inference of population structure using multilocus genotype data:dominant marker and null alleles[J]. Mol Notes,2007,7:574-578
    23. Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theor.Appl.Genet,2006,112(6):1164-1171
    24. Fan T W M, Lane A N, Higashi R M. In Vivo and In Vitro Metabolomic analysis of anaerobic rice coleoptiles revealed unexpected pathways[J]. Russian Journal of Plant Physiology,2003,50: 787-793.
    25. Ferguson J M, TeKrony D M, Egli D B. Changes during early soybean seed and axis deterioration: I seed quality and mitochondrial respiration [J]. Crop Science,1990,30:175-182
    26. Flink-Garcia S A, Thorusberry J M, Buckler E S. Structure of linkage discquilibrium in plant[J]. Annu Rer Plant Biol,2003,54:357-374
    27. Frantz J M, Bugbee B. Anaerobic conditions improve germination of a gibberellic acid deficient rice[J]. Crop Sci,2002,421 (2):651—654
    28. Frary A, Nesbitt T C, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2:A quantitative trait locus key to the evolution of tomato fruit size[J].Science,2000,289: 85-88
    29. Fred T T, Chen C C, Garry N M. Morphological development of rice seedling in water at controlled oxygen levels[J]. Agronomy Journal,1981,73:556-560
    30. Edward M D, Stuber C W, Wendel J F. Molecular marker facilitated investigations of quantitative trair loci in maize. I. Numbers, genomic distribution and types of gene action[J]. Genetics,1987, 116:113-125
    31. Emile J M, Mohamed E E, Elizabeth V, Gerda J R, Hetty B V, Steven P C, Dick V, Maarten K. Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions and landsberg erecat and Shakdara using a new recombinant inbred line population[J]. Plant Physiology,2004,135:432-443
    32. Hagenblad J, Nordborg M. Sequence variation and haplotype structure surrounding the flowering time locus FRI in Arabidopsis thaliana[J]. Genetics,2002,161:289-298
    33. Harr B, Kauer M, Schlotterer C. Hitchhiking mapping:A population-based finemapping strategy for adaptive mutations in Drosophila melanogaster[J]. Proc Nail Acad Sci USA,2002,99: 12949-12954
    34. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S Y, Antonio B A, Parco A, Kajiya H, Huang N, Khush G S, Sasaki T. A high-density rice genetic linkage map with 2275 marker using a single F2 population[J]. Genetics,1998,148:479-494
    35. He G M, LuoX J, Tian F, Li K G, Zhu Z F, Su W, Qian X Y, FuY C, Wang X K, Sun C Q,and Yang J.S. Haploype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice[J]. Genome Res,2006,16(5):618-626
    36. Hua J P, Xing Y Z, Xu C G, Sun XL, Yu S B, Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance[J]. Genetics,2002,162: 1885-1895
    37. Huang S H, Greenway H, Colmer T D, Millar H. Protein synthesis by rice coleoptiles during prolonged anoxia:implications for glycolysis, growth and energy utilization[J].Annals of Botany, 2005,96:703-715
    38. Huang Z, Yu T, S L, Yu S B, Zhang Z H, Zhu Y G. Identification of chromosome regions associated with seedling vigor in rice[J]. Acta Genetica Sinica,2004,31 (6):596-603
    39. Hudson R R, Bailey K, Skarecky D, Wiatowski J K, Ayala F J. Evidence for positive selection in the superoxide disrnutase (Sod) region of Drosophila melanogaster[J]. Gentics,1994,136:1329-1340
    40. Huttly G A, Easteal S, Southey M C, Tesoriero A, Giles G C. Adaptive evolution of thr tumour suppressor BRCA1 in humans and chimpanzees[J]. Nat Genet,2000,25:410-413
    41. Gant B S, Long A D. The lowdown on disequilibrium[J]. Plant Cell,2003,15:1502-1506
    42. Garris A G, McCouch S R, Krescovich S K. Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding xa5 locus of rice (Oryza sativa L) [J]. Genetics, 2003,165:757-769
    43. Gibbs J, Morrell S, Valdez A. Regulation of alcoholic fermentation in coleoptiles rice cultivars differing in tolerances to anoxia[J]. Journal of Experimental Botany,2000,51:785-796
    44. Golovina E A. Wolkers W F, Hoesktra F A. Behavior of membranes and proteins during natural seed ageing[J]. Basic and Applied Aspects of Seed Biology,1997:787-796.
    45. Gupta I J, Schmitthenner A F, McDonald M B. Effect of storage fungi on seed vigor of soybean[J]. Seed Science and Technology,1993,21:581-591
    46. Ingvarsson P K. Nucleotide polymorphism and linkage disequilibrium with and among natural populations of european apen (Populus tremula L., Salicacease) [J]. Genetics,2005,169:945-953
    47. Jeng T L, Sung J M. Hydration effect on lipid peroxidation and peroxide-scavaging enzyme activity of artificially age peanut seed[J]. Seed Science and Technology,1994,22:531-539
    48. Jannoo A, Grivet L, Dookun A, D'Hont A, Glaszmann J C. Linkage disequilibrium in morden sugercane cultivars [J]. Theor Appl Genet,1999,99:1053-1060
    49. Jin J, Huang W, Gao J P, Yang J, Shi M, Zhu M Z, Luo D, Lin H X. Genetic control of rice plant architecture under domestication[J]. Nature Genetics,2008,40(11):1365-1369
    50. Jone D B, Peteson M L. Rice seedling vigor at sub-optimal temperyures[J]. Crop Sci,1976,16: 102-105
    51. Jung M, Ching A, Bhattramakki D, Dolan M, Thingey S, Margante M, Rafalski A. Linkage disequilibrium and sequence diversity in 500-kbp region adh1 locus in elite maize gemplasm[J]. Theor Appl Genet,2004,109:681-689
    52. Kalpana R, Madhava R K V. On the ageing mechanism in pigeonpea (Cajanus cajan(L.)Millsp.) seeds[J]. Seed Science and echnology,1995,23:1-9
    53. Kalpana R, Madhava R K V. Lipid changes during accelerated aging of seeds of pigeonpea (Cajanus cajan(L.)Millsp.)cultivars[J]. Seed Science and Technology,1996,24:475-485
    54.Kalpana R, Madhava R K V. Protein metabolism of seeds of pigeonpea(Cajanus cajan(L.)Millsp.)cultivars during accelerate ageing[J]. Seed Science and Technology,1997,25: 271-279
    55. Kalpana R, Madhava R K V. Nucleic acid metabolism of seeds of pigeonpea (Cajanus cajan(L.)Millsp.)cultivars during accelerated ageing[J]. Seed Science and Technology,1997,25: 293-301
    56. Kohn M H, Pelz H J and Wayne R K. Natural selection mapping of the warfarin-resistance gene[J]. Proc Natl Acad Sc USA,2000,97:7911-7915
    57. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions[J]. Plant Cell Physiol,2002,43(10):1096-1105
    58. Konishi S, Izawa T, Lin S Y, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seed shattering duringrice domestication[J]. Science,2006,312(5778):1392-1306
    59. Kraakman A T W, Niks R E. Vandenberg P M M M, Stam P, Eeuwijk F A V. Linkage disequilibrium mapping in yield and yield stability of modern spring barley cultivars[J]. Genetics,2004,168: 435-446
    60. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antoni B A, Shomura A, Shimizu T, Lin S Y, Inoue T, Fukuta A,Shimano T, Kuboki Y, Toyama T, Miyamoto Y. Kirihar T, Hayasaka K, Miyao A, Monna L.300 kilobase interval genetic map of rice including 883 expressed sequences[J]. Nature Genet,1994,8:365-376
    61. Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics,1989,121:185-199
    62. Li C B, Zhou A L, SangT. Rice domestication by reducing shattering[J]. Science,2006,311(5769): 1936-1939
    63. Maynard S J, Haigh J. The hitch-hiking effect of a favorable gene. Genet Res,1974,23:23-35
    64. McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosome[J]. Theor Appl Genet,1988,26:815-829
    65. McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerk G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR marker for rice (Oryza sativa L.) [J]. DNA Research,2002,9:199-207
    66. McCouch S R. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.) [J]. Theor Appl Genet,2000,100:697-712
    67. McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature[J]. Rice Genet Newslett,1997,14:11-13
    68. Nishimura A, Ashikari M, Lin S, Takashi T, Angeles E R, Yamamoto T, Matsuoka M. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems[J]. Proc. Natl. Acad. Sci.USA,2005,102(33):11940-11944
    69. Nurminsky D,Aguiar D D, Bustamante C D, Hard D L. Chromosomal effects of rapid gene evolution in Drosophila melanogaster[J]. Science,2001,291:128-130
    70. Nordborg M, Hu T T, Ishino Y, Jhaveri J, Toomajian C. The pattern of polymorphism in Arabidopsis thaliana[J]. Plos Biol,2005,3:e196
    71. Nordborg M, Hu T T, Ishino Y, Jhaveri J, Berry C C, Chory J, Hagenblad J, Kreitman M. Maloof J N, Noyes T, Oefner P J. The extent of linkage disequilibrium in Arabidopsis thaliana[J]. Nature Genetic,2002,30:191-193
    72. Olsen K M, Purugganan M D. Molecular evidence on the origin and evolution of glutinous rice[J]. Genetics,2002,162:941-950
    73. Payseur B A, Cutter A D and Nachman M W. Searching for evidence of positive selection in the human genome using patterns of microsatellite variability [J]. Mol Biol Evol,2002,19:1143-1153
    74. Pearce D M E, Jackson M B. Comparison of growth responses of barngard grass and rice tosubmergence, ethylene, carbon dioxide, and oxygen shortage[J]. Annals of Botany,1991,68: 201-209
    75. Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Hintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N. "Green revolution" genes encode mutant gibberellin response modulators[J]. Nature,1999,400:256-261
    76. Perez M A, Arguello J A. Deterioration in peanut (Arachis hypogaea L. cv. Florman) seeds under natural and accelerated aging[J]. Seed Science and Technology,1995,23:439-445
    77. Perry DA. Seed vigor and field establishment[J]. Hortic Abstr,1972,42:334-342
    78. Pritchard J K, Stephens M, Donnelly P. Inference Of population structure using multilocus genotype data[J].Genetics,2000a,155:945-959
    79. Purugganan M D, Boyles A L and Suddith J I. Variation and selection at the CAULIFLOWER floral homeotic gene accompanying the evolution of domesticated Brassica oleracea[J]. Genetics,2000, 155:855-862
    80. Rafalski A. Novel genetic mapping tools in plants:SNPs and LD-based approaches[J]. Plant Science, 2002a,162:329-333
    81. Rao K V M, Kalpana R. Carbohy drates an d the ageing process in seeds of pigeonpea (Cajanus cajan(L.) Millsp.) cultivars. Seed Science and Technology,1994,22:495-501
    82. Rasika Lasanthi-Kudahettigel, Leonardo Magneschil, Elena Loreti. Transcript Profiling of the Anoxic Rice Coleoptile[J]. Plant Physiology,2007,51:785-796
    83. Reich D E, Cargill M, Bolk S, Ireland J, Sabeti P C, Richter D J, Lavery T, Kouyoumjian R, Farhadian S F, Ward R. Linkage disequilibrium in the human genome[J]. Nature,2001,411: 199-204
    84. Redona E D, Mackill D J. Genetic variation for seedling-vigor traits in rice[J]. Crop Science,1996a, 36:285-290
    85. Redona E D, Mackill D J. Molecular mapping of quantitative trait loci in japonica rice. Genome, 1996c,39:395-403
    86. Remington D L, Thornsberry J M, Mstsuoka Y, Wilson L M, Whitt S R, Doebley J, Kresovich S, Goodman M M, Buckler E S. Structure of linkage disequilibrium and phenotypic association in the maize genome[J]. Proc Natl Acad Sci USA,2001,98:11479-114784
    87. Ren Z H, Gao J P, Li L G., Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nature Genetics,2005, 37(10):1141-1146
    88. Risch N J. Searching for genetic determinants in the new millennium. Nature,2000,405:847-856
    89. Schlotterer C. A microsatellite-based multilocus screen for the identification of local selective sweeps[J]. Genetics,2002,160:753-763
    90. Scoa E S, Laura U G, Maria M L, Mike P, Dean D P. Vitamin E is essential for seed longevity and for preventing lipid peroxidatio during germination[J]. Plant Cell,2004,16:1419-1432
    91. Sivritepe H O, Dourado A M. The effects of humidification treatments on viability and the accumulation of chromosomal aberrations in pea seeds[J]. Seed Science and Technology,1994,22: 337-348
    92. Setter E S, Ella E S, Valdez A P. Relationship between coleoptile elongation and alcoholic fermentation in rice exposed to anoxia. Ⅱ[J]. Cultivar Differences[J]. Annals of Botany,1994,74: 273-279
    93. Sen L T H, Ranamukhaarachchi S L, Zoebisch M A, et al. Meskuntavo W. Effects of early-inundation and water depth on weed competition and grain yield of rice in the Central Plains of Thailand [C]. Dutscher Tropentag 2002 Witzenhausen October 9-11,2002 Conference on International Agricultural Research for Development
    94. Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL forrice grain width and weight encodes a reviously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics,2007,39(5):623-630
    95. Storz J F. Using genome scans of DNA polymorphism to infer adaptive population divergence[J]. Mol Ecol,2005,14:671-688
    96. Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6 a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2[J]. Proc. Nat. Acad.Sci.USA, 2001,98(14):792-792
    97. Tan L B, Li X R, Liu F X, Sun X Y, Li C G, Zhu Z F, Fu Y C, Cai H W, Wang X K, Xie D X, Sun C Q. Control of a key transition from prostrate to erect growth in rice domestication[J]. Nature Genetics,2008,40(11):1360-1364
    98. Tanksley S D,Nelson J C. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines [J]. Theor Appl Genet,1996,92:191-203
    99. Tan L B, Li X R, Liu F X, Sun X Y, Li C G., Zhu Z F, Fu Y C, Cai H W, Wang X K, Xie D X, Sun C Q. Control of a key transition from prostrate to erect growth in rice domestication[J]. Nature Genetics,2008,40(11):1360-1364
    100. Tan Y E, LiJX, Yu S B, Xing Y Z, Xu C G, Zhang Q. The three important traits for cooking andeating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63[J]. Theor Appl Genet,1999,99:642-648
    101. Temnykh S, DeCklerck G, Lukashova A, Lipovich L, Cartinhiur S, McCouch S R. Computational and experimental analysis of microsatellites in rice(Oryza sativa L.):frequency, length variation, transposon associations,and genetic marker potential[J]. Genome Res,2001,11:1441-1452
    102. Temnykh S, Park W D, Ayres N M, Cartinhour S, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch S R. Mapping and genome organization of microsatellite sequences in rice(Oryza sativa L.) [J]. Theor Appl Genet,2000,100:697-712
    103. Tenaillon M, Sawkins M C, Long A D, Anderson L K, Gaut R L, Doebley J F, Gaut B S. Patterns of DNA sequence polymorphism along chromosome 1 of maize(Zea mays ssp.mays L.) [J]. Proc Natl Acad Sci USA,2001,98:9661-9666
    104. Thapliyal R C, Connor K F. Effects of accelerated ageing on viability, leachate exudation, and fatty acid content of Dalbergiasissoo Roxb Seeds[J]. Seed Science and Technology,1997,25:311-319
    105. Thoday J M. Location of polygenes[J]. Nature,1961,191:368-370
    106. Thornsberry J D, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler I E. Dwarf8 polymorphism associate with variation in flowering time[J]. Nat Genet,2001,28:286-289
    107. Trawatha S E, TeKrony D M, Hildebrand D F. Relationship of soybean seed quality to fatty acid and C6 aldehyde levels during storage[J]. CropScience,1995,35:1415-1422
    108. Ueda T, SatoT, Hidema J, Hirouchi T, Yamamoto K, Kumagai T, Yano M. qUVR-10, a major quantitative trait locus forultraviolet-B resistanceinrice,encodes cyclobutane pyrimidine dimer photolyase[J]. Genetics,2005,171(4):1941-1950
    109. Vigouroux Y, Mcmullen M, Hittinger C T, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J. Identifying genes of agronomic importance in maize by screening microsatellites for evidence of evidence of selection during domestication[J]. Pro Natl Sci USA,2002,99:9650-9655
    110. Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effect and QTL× environment interation by mixed linear model approaches[J]. Theoetical and Applied Genetics,1999,99:1255-1264
    111. Wang E, Wang J J, Zhu X D, Wei H, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nature Genetics,2008,40(11):1370-1374
    112. Wang E, Wang J J, Zhu X D, Wei H, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Wang Y S, Barratt B J, Clayton D G, Todd J A. Genome-wide association studies:theoretical and practical concern[J]. Nat Rev Genet,2005,6:109-118
    113. Whitt S R, Wilson L M, Tenaillon M I, Gaut B S, Buckler E S. Genetic diversity and selection in the maize starch pathway[J]. Pro Natl Acad Sci USA,2002,99:12959-12962
    114. Wilson L M, Whitt S R, Ibanez A M, Rocheford T R, Goodman M M, Buckler I E. Dissection of maize kernel compostion and starch production by candidate gene association[J]. Plant cell,2004, 16:2719-2733
    115. Wright S I, Bi I V, Schroeder S G, Yamasaki M, Doebley J F, McMullen M D, Gaut B S. The Effect of artificial selection on the maize genome[J]. Science,2005,308:1310-1314
    116. Wootton J C, Feng X, Ferdig M T, Cooper R A, Mu J, Baruch D I, Magill A J, Su X Z. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum[J]. Nature,2002,418: 320-323
    117. Wu K S, Tankeley S D. Abundance, polymorphism and genetic mapping of microsatellites in rice[J]. Mol Gen Genet,1993,241:225-235
    118. Woodstock L W.1969. Proc Int Seed Test Ass,34(2):273-280
    119. Xue W Y, XingY Z, WengX Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in is an important regulator of Ghd7 headingdate andyield potential in rice[J]. Nature Genetics,2008,40:761-767
    120. Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail A M, Bailey-Serres J, Ronald P C, Mackill D J. SublA is an ethylene-response-factor-like gene that confers submergence tolerance to rice[J]. Nature,2006,442(7103):705-708
    121. Yamauchi M, Aguilar A M, Vaughan D A, Seshu D V. Rice (Oryza sativa L.) germplasm suitable for direct sowing under flooded soil surface[J]. Euphytica,1993,67:177-184
    122. Yamauchi M, Winn Tun. Rice seed vigor and seedling establishment in anaerobic soil [J]. Crop Sci, 1996,36:680-686
    123. Yamauchi M, Biswas J k. Rice cultivar difference in seedling establishment in flooded soil[J]. Plant and Soil,1997,189:145-153
    124. Yamasaki M, Tenaillon M I, Bi l V, Schroeder S G, Sanchez-Villeda H, Doebley J F, Gaut B S, McMullen M D. A large-scale screen for artficial selection in maize identifies candidate agronomic loci for domestication and crop improvement[J]. Plant Cell,2005,17:2859-2872
    125. Yano M, Kata Y Y, Ashikari M, Yamanouchi U, Monna L,Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANTS[J]. Plant Cell,2000,12: 2473-2483
    126. Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q. TAC1, a major quantitative trait locus controlling tillerangle inrice[J]. Plant Jounal, 2007,52(5):891-898
    127. Yu J M, Pressoir G, Briggs W H, Vroh B I, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B. A unified mixed-mode method for association mapping that accounts for multiple levels of relatedness[J]. Nat Genet,2006,38:203-208
    128. Zhang G. Q, He Z.H. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nature Genetics,2008,40(11):1370-1374
    129. Zhang N, Xu Y, Akash M, McCouch S, Oard J H. Identification of candidate markers associated with agronomic traits in rice using discriminant analysis[J]. Theor Appl Genet,2005 110:721-729
    130. Zhang Q F. Natural variation in Ghd7 is an important regulator of headingdate and yield potential in rice[J]. Nature Genetics,2008,40:761-767
    131. Zhang Z H, Yu S B, Yu T, Huang Z, Zhu Y G. Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.) [J]. Field Crops Research, 2005,91:161-170
    132. Zeng Z B. Precision mapping of quantitative trait loci[J]. Genetics,1994,136:1457-1468
    133.Zondervan K T, Cardon R C. The complex interplay among factors that influence allelic association[J]. Nat Rev Genet,2004,5:89-100
    134.陈健.水稻栽培方式的演变与发展研究[J].沈阳农业大学学报,2003,34(5):389-393
    135.陈翻身,许四五.水稻直播栽培三个技术瓶颈问题形成原因及对策[J].中国稻米,2006(2):33-34
    136.曹立勇,朱军,任立飞,赵松涛,颜启传.水稻幼苗活力相关性状的QTLs定位和上位性分析[J].作物学报,2002,28(6):809-815
    137.侯名语,江玲,王春明.水稻种子低氧发芽力的QTL定位和上位性分析[J].中国水稻科学,2004,18(6):483-488.
    138.黄柳柳,洪德林.不同生态类型粳稻品种3个幼苗性状的遗传变异及其与株高的相关性分析 [J].南京农业大学学报,2005,28(4):11-15
    139.盖钧镒.试验统计与方法[M].北京:中国农业出版社,2000:35-125
    140.郭媛,程保山,洪德林.粳稻SSR连锁图谱的构建及恢复系卷叶性状QTL分析[J].中国水稻科学,2009,23(3):256-262
    141.金千瑜,欧阳由男,陆永良.我国南方直播稻若干问题及其技术对策研究[J].中国农学通报,2001,17(5):44-47
    142.景德道,刁立平,钱华飞.水稻直播与移栽的比较及相应育种策略[J].江西农业学报,2008,20(7):17-20.
    143.金伟栋,洪德林.太湖流域粳稻地方品种遗传多样性研究[J].生物多样性,2006,14(6):479-487
    144.金伟栋,洪德林.太湖流域粳稻地方品种核心种质的构建[J].江苏农业学报,2007,23(6):516-525
    145.金伟栋,程保山,洪德林.基于SSR标记的太湖流域粳稻地方品种遗传多样性研究[J].中国农业科学,2008,41(11):3822-3830
    146.李家义,支巨振.1993国际种子检验规程[M].上海:上海科学技术出版社,1994:105-144
    147.李建雄,余四斌,徐才国,谈移芳.“汕优63”的产量及其构成因子的数量性状基因位点分析[J].作物学报,2000,26:892-898
    148.林鹿,傅家瑞.花生种子贮藏蛋白质合成和累积与活力的关系热带亚热带植物学报[J].1995,4(1):57-60
    149.林鹿,傅家瑞.花生种子活力的形成[J].中山大学学报(自然科学版),1996,35:23-27
    150.刘军,黄上志,傅家瑞,汤学军.种子活力与蛋白质关系的研究进展[J].植物学通报,2001,18(1):46-51
    151.倪安丽,张文明,王昌初.主要农作物种子纸卷法发芽试验初报[J].种子科技,1992,1:23-23
    152.乔婷婷,姚明哲,周炎花,马春雷,王新超,陈亮,杨亚军.植物关联分析的研究进展及其在茶树分子标记辅助育种上的应用前景[J].中国农学通报,2009,25(6):165-170
    153.沈金雄,易斌,傅廷栋,杨光圣.植物数量性状基因定位研究概述[J].植物学通报,2003,20(3):257-263
    154.王洋,张祖立,张亚双,崔红光.国内外水稻直播种植发展概况[J].农机化研究,2007,1:48-51
    155.汤学军,傅家瑞,黄上志.决定种子寿命的生理机制研究进展种子[J].1996,6:29-32.
    156.陶嘉玲,郑光华.种子活力.1991,科学出版社
    157.王才林,邹江石,汤陵华,丁金龙,张敏,周裕兴,宇田津彻朗,藤原宏志.太湖流域新石器时期的古稻作[J].江苏农业学报,2000,16(3):129-138
    158.吴文革,陈烨,钱银飞.水稻直播栽培的发展概况与研究进展[J].中国农业科技导报,2006,8(4):32-36
    159.邢永忠,徐才国.作物数量性状基因研究进展[J].遗传,2001,23(5):498-502徐吉臣,李晶昭,郑先武,邹亮星,朱立煌.苗期水稻根部性状的QTL定位[J].遗传学报,2001,28:433-438
    160.徐云碧,朱立煌.分子数量遗传学[J].北京:中国农业科技出版社,1994.86-88.
    161.严长杰,顾铭洪.高代回交QTL分析与水稻育种[J].遗传,2000,22:419-422
    162.杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展[J].作物学报2007,33(8):523-530
    163.郑光华.种子生理研究[M].北京:科学出版社,2004:597-603
    164.曾雄生.直播稻的历史研究[J].中国农史,2005,2:2-12
    165.周建群.水稻栽培方式研究进展[J].湖南农业科学,2009,(2):51-54
    166.张学勇,童依平,游光霞,郝晨阳,盖红梅,王兰芬,李滨,董玉琛,李振声.选择牵连效应分析:发掘重要基因的新思路[J].中国农业科学,2006,39(8):1526-1535

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700