四级钛表面纳米锌离子注入沉积改性的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和立题依据
     种植体的表面微形貌是影响种植体及种植体长期存活的重要因素。由于钛自身不具备抗菌性能,而种植体周围炎是导致种植义齿失败的主要原因之一。
     几乎所有常用的牙科种植材料都没有诱导成骨的效用,或者诱导成骨的能力很弱,不能达到理想的骨结合效果。
     现有的种植体表面处理方法存在着各自的弱点与不足,同时具有良好的生物相容性和抗菌性能的种植材料国内外尚未见报道。
     理想的种植体表面形貌尚未明确且表面处理技术均来自于国外。
     意义:扩大种植义齿适应症、提高种植义齿的长期成功率、减轻患者的经济负担、提高病人的生存质量。
     材料和方法
     1.全方位离子注入与沉积装置是哈尔滨工业大学现代焊接生产技术国家重点实验室自主研发的第四代等离子体浸没离子注入沉积装置;
     2.首都医科大学北京口腔医学院研究所进行预实验且已完成部分实验;
     3.首都医科大学和中科院化学研究所具备先进的仪器设备,可进行改性后表面形貌的检测,并对此项研究提供相关的技术指导;
     4.首都医科大学附属北京口腔医院研究所设备先进,是全国最具权威的菌库基地之一,技术成熟,能支持并完成本实验的微生物部分及细胞分子水平的实验;
     5.动物模型选用小型猪,这也是首医王松灵教授领导的课题小组的一大特色,掌握一定的技术和方法;
     纯钛表面处理方法及其特性的研究:
     应用全方位离子注入与沉积技术,通过扫描电镜(SEM)、激光共聚焦显微镜(CO-FOCAL)、x线衍射仪(XRD)、X线光电子能谱分析(XPS)、透射电镜(TEM)等分析表面特性及成分。
     生物安全性研究:
     成骨细胞的复苏和培养、细胞毒性试验(MTT)、细胞粘附和增殖实验、扫描电镜观察(SEM)、丫啶橙染色法、PI流式细胞仪分析、成骨细胞粘着斑的形成、成骨细胞细胞外基质的形成和表达、免疫荧光法检测I型胶原的形成、Realtime-PCR检测I型胶原mRNA的表达、蛋白印迹法(Western Blotting)检测I型胶原蛋白的表达。动物体内对比研究
     建立动物模型,将实验组鈦片(Zn-Ti)与对照组(cp-Ti)分别植入小型猪颌骨内,不同时间(30d;60d;90d)采集标本,进行组织形态学及扫描电镜观察。
     结果:
     1.纯钛表面处理方法及其特性的评价
     (1) X线光电子能谱分析
     X线光电子能谱分析表明,经过PIIID(全方位等离子体浸没离子注入与沉积)改性后的钛片表面新出现了锌和氧元素的信号。同时,随着锌离子注入沉积时间的延长,锌含量逐渐增加,在Zn-Ti-80 min组时,锌含量最高。
     (2)扫描电镜(SEM)
     通过扫描电镜(SEM)可见在纯钛组(cp-Ti),材料表面有少量的微小裂隙,锌离子注入沉积组,Zn-Ti-20 min和Zn-Ti-40 min组,改性后材料表面整体呈现云雾状的光滑表面。在锌离子注入沉积后的Zn-Ti-60 min and Zn-Ti-80 min组的钛片上表面呈现出均匀的“蜂窝状”纳米级样结构,直径约60-100nm,深度随着注入沉积时间的延长而增加,到80min组时深度约为200nm;该表面光滑9级,粗糙度0.4um。
     2.抑菌实验
     锌离子注入沉积钛表面可以减少变形链球菌的粘附,间接的提升其有抑菌功能。变形链球菌定植在钛表面的数量及菌体形态显示;在Zn-Ti-60 min和Zn-Ti-80 min组时变形链球菌的数量远远少于Zn-Ti-20 min和Zn-Ti-40 min组。Zn-Ti-80 min组的钛片表面几乎没有菌体附着,只能看见少数残存的菌落碎片。
     3.生物安全评价
     (1) MG-63细胞形态变化
     在体外实验中,经过全方位离子注入沉积改性后的锌、钛离子表面对MG - 63细胞的形貌的影响,通过扫描电镜分析表明;在纯钛组表面细胞数量及伸展均不足,改性后的钛片组表面细胞数量远远比纯钛组密度高,且伸展充分,Zn-Ti-80 min组最明显。
     (2)在6小时时间点上,各组间(纯钛组与改性组)比较分析,细胞增殖数量经统计学分析p>0.05,无统计学意义;在24小时时间点上,改性后的各组与纯钛组经统计学分析p<0.05,有统计学意义;但是Zn-Ti-60 group和Zn-Ti-80 group之间没有统计学意义。
     4.体内试验
     经过组织学的前期处理后,进行硬组织磨片,特殊三色染色,得出的染色后结果分析表明;经过锌离子注入沉积改性后的钛片组(Zn-Ti)周围骨融合与骨再生情况明显优于纯钛组(cp-Ti)。
     结论:
     通过以上实验数据表面,四级钛表面纳米锌离子注入沉积改性技术可以提高种植体的生物相容性及抗菌性,这对于今后我们研发具有自主知识产权的新型表面改性技术的种植体意义重大,并且发掘其潜在的临床应用价值。
Background and Purpose
     Implant surface microtopography is an important factor influencing implant osseointegration and its long-term survival. The titanium itself does not have anti-bacterial properties; peri-implant inflammation is one of the major factors leading to implant failure. Almost all implanting materials show no or little effectiveness of bone induction. The available treatment methods of implant surface have their own weakness and shortcoming. The implanting material with good biocompatibility and antimicrobial properties has not yet been reported. The ideal implant surface topography remains undefined. The purpose of the present study is to modify the implant surface using nano-zinc ion deposition for increasing of the adaptability of implant denture and improving the long-term implant success rate.
     Materials and Methods
     The fourth-generation plasma immersion ion implantation deposition device were used to generated the ion implantation and deposition. The device was designed by the national Laboratory of Advanced Welding Production Technology,a famous institute of the Harbin Institute of Technology. Experiments were performed at the Beijing Institute of Stomatology, School of Stomatology, Capital Medical University.
     Evaluation of the titanium surface properties
     Plasma immersion ion implantation and deposition technologies, electron microscopy (SEM), laser scanning confocal microscope (CO-FOCAL), x-ray diffraction instrument (XRD), X ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were used to analyze of the surface properties and composition.
     Antimicrobial test
     The morphological observation of colonies and assessment of the results, colony count, the influence of colony adhesion and colony morphology were used to evaluate the antimicrobial effect of modified implant surface.
     Biological safety
     Osteoblast recovery and cultivation, cytotoxicity test (MTT), cell adhesion and proliferation experiments, cell adhesion and proliferation experiments, acridine orange staining, PI flow cytometry, formation of osteoblast adhesion plaque, formation and expression of extracellular matrix of osteoblast cells were used to assess the biological safety. Immunofluorescent assay of the formation of collagen type I, real time-PCR detection of mRNA expression of collagen type I, and Western blotting were performed to detect the expression of collagen type I.
     In vivo study
     Miniature pigs were used for this in vivo study as a large animal model. Titanium Plate (Zn-Ti; experimental group) and cp-Ti (the control group) were implanted into miniature pig jaws; samples were taken at different time points (30d; 60d; 90d) for histological and scanning electron microscopy observation.
     Results
     1. Evaluation of the titanium surface properties
     (1) X ray photoelectron spectroscopy
     The full range of X ray photoelectron spectroscopy indicated that the main difference of zinc PIIID (plasma immersion ion implantation and deposition) on the disc was the appearance of the signals of zinc and oxygen. At the same time, the relative atomic concentration of zinc increased gradually with the ion- implanting time, highest concentration of zinc was found in Zn-Ti-80 min (d) group compared with that of other groups.
     (2) Scanning electron microscope (SEM)
     Tiny minor fissures were existed in the surfaces cp-Ti, Zn-Ti-20 min and Zn-Ti-40 min, which presented a smooth shape. However, A good many of homogeneously sporadic distributed.
     micropores on Zn-Ti-60 min and Zn-Ti-80 min surfaces. Especially, surfaces of Zn-Ti-80 min appeared the nano- scale space, which indicated impacting into the basal material on its surface.Diameter about 60-100nm, as the depth of implantation and deposition , diameter about 200nm; the smooth surface about grade 9, roughness 0.4um.
     2. Antimicrobial test
     The zinc implanted titanium could affect adherence and the form of S.mutans group. The adherence amount of bacteria in Zn-Ti-60 min and -80 min group were significantly less than those in cp-Ti group, Zn-Ti-20 min and -40 min group. The similar results were found in the volume of bacterium on modified surface during the ion-implanted and deposition procedure, e.g. few bacterial colony in Zn-Ti-80min.
     3. Biological safety
     (1) MG-63 cells were of irregular polygon shapes
     SEM analysis revealed that Zn-Ti In vitro the morphologies of MG-63 cells were influenced ,which were revealed through the analysid of SEM.
     An increased cell-to-substrate contact ratio was found in the spreading and flattening of cells on the Zn-Ti discs,which was faster than the ratio of those grew on the cp-Ti discs.The density of zinc ion improved the cells activities, such as proliferation, differentiation and externalization. Furthermore, the implanting time was contributed with the density of cells, which on the cp-Ti had far less and shorter fibrillar extensions.
     (2) The number of cells which were observed in different times.No statistical differences were found after 6 hours.However, the number of cells attached on Zn-Ti surfaces increased rapidly compared with the cp-Ti surfaces after 24 hours. The trend was more significantly with the time extended. But no significant difference were found between the Zn-Ti-60 group and the Zn-Ti-80 group.
     4. In vivo study
     The grinded bone-implant slices were obtained after histological pretreatment. Bone integration and osteogenesis with bone regenerative materials were clearly detected. Much better bone regeneration was found in experimental groups (Zn-Ti) compared with the control groups (cp-Ti).
     Conclusion
     Our data demonstrated that implant modification using the nano-zinc implantation and deposition technologies can improve biocompatibility and antimicrobial properties of implants, which may have potential wide clinical application for dental implantation.
引文
[1]. Wall, I., et al. , Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells in vitro. Bone, 2009. 45(1): p. 17-26.
    [2]. Das, K., S. Bose and A. Bandyopadhyay, Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater, 2007. 3(4): p. 573-85.
    [3]. Sandor, G.K., R.P. Carmichael and B.M. Brkovic, Dental implants placed into alveolar clefts reconstructed with tongue flaps and bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2010. 109(2): p. e1-7.
    [4]. Shibata, Y., et al. , Antibacterial titanium plate anodized by being discharged in NaCl solution exhibits cell compatibility. J Dent Res, 2004. 83(2): p. 115-9.
    [5]. Wang, L., et al. , Fourth-generation plasma immersion ion implantation and deposition facility for hybrid surface modification layer fabrication. Rev Sci Instrum, 2008. 79(2 Pt 1): p. 023306.
    [6]. Maitz, M.F., et al. , Bioactivity of titanium following sodium plasma immersion ion implantation and deposition. Biomaterials, 2005. 26(27): p. 5465-73.
    [7]. Liu, H.X., et al. , [XPS characterization of TiN layer on bearing steel surface treated by plasma immersion ion implantation and deposition technique]. Guang Pu Xue Yu Guang Pu Fen Xi, 2009. 29(9): p. 2585-9.
    [8]. Mendonca, G., et al. , The effects of implant surface nanoscale features on osteoblast-specific gene expression. Biomaterials, 2009. 30(25): p. 4053-62.
    [9]. Cooper, L.F., et al. , Formation of mineralizing osteoblast cultures on machined, titanium oxide grit-blasted, and plasma-sprayed titanium surfaces. Int J Oral Maxillofac Implants, 1999. 14(1): p. 37-47.
    [10]. Molly, L., Bone density and primary stability in implant therapy. Clin Oral Implants Res, 2006. 17 Suppl 2: p. 124-35.
    [11]. Nasatzky, E., J. Gultchin and Z. Schwartz, [The role of surface roughness in promoting osteointegration]. Refuat Hapeh Vehashinayim, 2003. 20(3): p. 8-19, 98.
    [12]. Schwartz, Z., et al. , Differential effects of bone graft substitutes on regeneration of bone marrow. Clin Oral Implants Res, 2008. 19(12): p. 1233-45.
    [13]. Kasai, K., et al. , Case report of lymphoepithelioma-like carcinoma of the lung--lymphoid population consisting of cytotoxic T cells in resting state. Pathol ResPract, 1999. 195(11): p. 773-9.
    [14]. Nayab, S.N., F.H. Jones and I. Olsen, Modulation of the human bone cell cycle by calcium ion-implantation of titanium. Biomaterials, 2007. 28(1): p. 38-44.
    [15]. Nayab, S.N., F.H. Jones and I. Olsen, Effects of calcium ion-implantation of titanium on bone cell function in vitro. J Biomed Mater Res A, 2007. 83(2): p. 296-302.
    [16]. Lumbikanonda, N. and R. Sammons, Bone cell attachment to dental implants of different surface characteristics. Int J Oral Maxillofac Implants, 2001. 16(5): p. 627-36.
    [17]. Sammons, R.L., et al. , Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration. A scanning electron microscopic study. Clin Oral Implants Res, 2005. 16(6): p. 657-66.
    [18]. Keller, J.C., et al. , Effects of implant microtopography on osteoblast cell attachment. Implant Dent, 2003. 12(2): p. 175-81.
    [19]. Kanagaraja, S., et al. , Cellular reactions and bone apposition to titanium surfaces with different surface roughness and oxide thickness cleaned by oxidation. Biomaterials, 2001. 22(13): p. 1809-18.
    [20]. Kern, P. and O. Zinger, Purified titanium oxide with novel morphologies upon spark anodization of Ti alloys in mixed H2SO4/H3PO4 electrolytes. J Biomed Mater Res A, 2007. 80(2): p. 283-96.
    [21]. Zhao, G., et al. , Osteoblast-like cells are sensitive to submicron-scale surface structure. Clin Oral Implants Res, 2006. 17(3): p. 258-64.
    [22]. Zinger, O., et al. , Differential regulation of osteoblasts by substrate microstructural features. Biomaterials, 2005. 26(14): p. 1837-47.
    [23]. Bachle, M. and R.J. Kohal, A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin Oral Implants Res, 2004. 15(6): p. 683-92.
    [24]. Ko, H.C., et al. , Initial osteoblast-like cell response to pure titanium and zirconia/alumina ceramics. Dent Mater, 2007. 23(11): p. 1349-55.
    [25]. Jayaraman, M., et al. , Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials, 2004. 25(4): p. 625-31.
    [26]. Matsuzaka, K., et al. , The attachment and growth behavior of osteoblast-like cells on microtextured surfaces. Biomaterials, 2003. 24(16): p. 2711-9.
    [27]. Morton, D., et al. , Early loading after 21 days of healing of nonsubmerged titanium implants with a chemically modified sandblasted and acid-etched surface: two-yearresults of a prospective two-center study. Clin Implant Dent Relat Res, 2010. 12(1): p. 9-17.
    [28]. Broggini, N., et al. , The Influence of PRP on Early Bone Formation in Membrane Protected Defects. A Histological and Histomorphometric Study in the Rabbit Calvaria. Clin Implant Dent Relat Res, 2010.
    [29]. Bornstein, M.M., et al. , Early loading at 21 days of non-submerged titanium implants with a chemically modified sandblasted and acid-etched surface: 3-year results of a prospective study in the posterior mandible. J Periodontol, 2010. 81(6): p. 809-18.
    [30]. Kimyai, S., et al. , Effect of three prophylaxis methods on surface roughness of giomer. Med Oral Patol Oral Cir Bucal, 2010.
    [31]. Badillo-Perona, V., et al. , Peri-implant bone mechanobiology. Review of the literature. Med Oral Patol Oral Cir Bucal, 2010.
    [32]. Ivanoff, C.J., et al. , Histologic evaluation of the bone integration of TiO(2) blasted and turned titanium microimplants in humans. Clin Oral Implants Res, 2001. 12(2): p. 128-34.
    [33]. Ferguson, S.J., et al. , Biomechanical comparison of different surface modifications for dental implants. Int J Oral Maxillofac Implants, 2008. 23(6): p. 1037-46.
    [34]. Cornelini, R., et al. , Immediate loading of implants with 3-unit fixed partial dentures: a 12-month clinical study. Int J Oral Maxillofac Implants, 2006. 21(6): p. 914-8.
    [35]. Thomas, V., et al. , Fabrication, characterization of chitosan/nanosilver film and its potential antibacterial application. J Biomater Sci Polym Ed, 2009. 20(14): p. 2129-44.
    [36]. Chou, L., et al. , Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J Cell Sci, 1995. 108 ( Pt 4): p. 1563-73.
    [37]. Wang, C., et al. , Proliferation and bone-related gene expression of osteoblasts grown on hydroxyapatite ceramics sintered at different temperature. Biomaterials, 2004. 25(15): p. 2949-56.
    [38]. Weng, D., et al. , Osseotite vs. machined surface in poor bone quality. A study in dogs. Clin Oral Implants Res, 2003. 14(6): p. 703-8.
    [39]. Rasmusson, L., J. Roos and H. Bystedt, A 10-year follow-up study of titanium dioxide-blasted implants. Clin Implant Dent Relat Res, 2005. 7(1): p. 36-42.
    [40].曾绍先等.医用生物陶瓷及其临床应用[J].1997,90-98.
    [41].田从学等.经基磷灰石的实验合成研究[J].2003,20-24.
    [42]. Kim, M.J., et al. , Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. J Biomed Mater Res A, 2006. 79(4): p. 1023-32.
    [43].阎洪等.金属陶瓷涂层的研究与发展[J].1995,146- 149.
    [44]. Li, H., K.A. Khor and P. Cheang, Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray. Biomaterials, 2002. 23(1): p. 85-91.
    [45]. Kokubo, T., et al. , Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res, 1990. 24(6): p. 721-34.
    [46]. Barrere, F., et al. , Nucleation of biomimetic Ca-P coatings on ti6A14V from a SBF x 5 solution: influence of magnesium. Biomaterials, 2002. 23(10): p. 2211-20.
    [47]. Barrere, F., et al. , Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials, 2004. 25(14): p. 2901-10.
    [48]. Kim, H.M., et al. , Formation of bioactive functionally graded structure on Ti-6Al-4V alloy by chemical surface treatment. J Mater Sci Mater Med, 2000. 11(9): p. 555-9.
    [49]. Boyd, A.R., et al. , Characterisation of calcium phosphate/titanium dioxide hybrid coatings. J Mater Sci Mater Med, 2008. 19(2): p. 485-98.
    [50]. Nie, X., et al. , Effects of solution pH and electrical parameters on hydroxyapatite coatings deposited by a plasma-assisted electrophoresis technique. J Biomed Mater Res, 2001. 57(4): p. 612-8.
    [51]. Rossler, S., et al. , Electrochemically assisted deposition of thin calcium phosphate coatings at near-physiological pH and temperature. J Biomed Mater Res A, 2003. 64(4): p. 655-63.
    [52]. Junker, R., et al. , Loaded Microplasma-sprayed CaP-coated Implants in vivo. J Dent Res, 2010.
    [53]. Heidenau, F., et al. , A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization. J Mater Sci Mater Med, 2005. 16(10): p. 883-8.
    [54]. Li, H., K.A. Khor and P. Cheang, Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray. Biomaterials, 2002. 23(1): p. 85-91.
    [55]. Uchida, M., et al. , Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res A, 2003. 64(1): p. 164-70.
    [56]. Chosa, N., et al. , Characterization of apatite formed on alkaline-heat-treated Ti. J Dent Res, 2004. 83(6): p. 465-9.
    [57]. Liu, X.M., et al. , Surface characteristics, biocompatibility, and mechanical properties of nickel-titanium plasma-implanted with nitrogen at different implantation voltages. JBiomed Mater Res A, 2007. 82(2): p. 469-78.
    [58]. Kirchhoff, H., et al. , Probing the organization of photosystem II in photosynthetic membranes by atomic force microscopy. Biochemistry, 2008. 47(1): p. 431-40.
    [59]. Maitz, M.F., et al. , Surface endotoxin contamination and hemocompatibility evaluation of materials. J Biomed Mater Res B Appl Biomater, 2009. 90(1): p. 18-25.
    [60]. Gan, B.K., et al. , Plasma immersion ion implantation treatment of polyethylene for enhanced binding of active horseradish peroxidase. J Biomed Mater Res A, 2008. 85(3): p. 605-10.
    [61]. Wang, L., et al. , Fourth-generation plasma immersion ion implantation and deposition facility for hybrid surface modification layer fabrication. Rev Sci Instrum, 2008. 79(2 Pt 1): p. 023306.
    [62]. Xu, G., et al. , Oxygen ion implantation at 20 to 2000 keV into polysulfone for improvement of endothelial cell adhesion. Colloids Surf B Biointerfaces, 2000. 19(3): p. 237-247.
    [63]. Maitz, M.F., et al. , Ion beam treatment of titanium surfaces for enhancing deposition of hydroxyapatite from solution. Biomol Eng, 2002. 19(2-6): p. 269-72.
    [64].蔡玉荣等.用化学处理法制备具有梯度表面结构的生物活性钛[J].2000,15-16.
    [65]. Liu, X.M., et al. , Surface characteristics, biocompatibility, and mechanical properties of nickel-titanium plasma-implanted with nitrogen at different implantation voltages. J Biomed Mater Res A, 2007. 82(2): p. 469-78.
    [66]. Krupa, D., et al. , Effect of dual ion implantation of calcium and phosphorus on the properties of titanium. Biomaterials, 2005. 26(16): p. 2847-56.
    [67]. Lee, B.H., et al. , In vivo behavior and mechanical stability of surface-modified titanium implants by plasma spray coating and chemical treatments. J Biomed Mater Res A, 2004. 69(2): p. 279-85.
    [68]. Morra, M., Advancements in carbohydrate bioactivity and implications for the surface modification of biomaterials. J Appl Biomater Biomech, 2007. 5(1): p. 1-10.
    [69]. Wu, G., et al. , [Researches on surface modification for prevention of bacterial adhesion to implanting biomaterials]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2000. 17(1): p. 84-6.
    [70]. Mohite, A.D., et al. , Observation of the triplet exciton in EuS-coated single-walled nanotubes. Nat Nanotechnol, 2009. 4(7): p. 425-9.
    [71]. Maitz, M.F., et al. , Bioactivity of titanium following sodium plasma immersion ionimplantation and deposition. Biomaterials, 2005. 26(27): p. 5465-73.
    [72].熊信柏,马威,刘宝林等.钛种植体表面微弧氧化处理后的生物力学及组织形愁学研究[J].2005,189-191.
    [73]. Yang, B., et al. , Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials, 2004. 25(6): p. 1003-10.
    [74]. Wang L P, W.Y.H.Y., Surface. 2007. p. 6585-6588.
    [75]. Li, L.H., et al. , Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials, 2004. 25(14): p. 2867-75.
    [76]. Yang, C., et al. , Cytotoxicity study of a novel implant material modified by microarc oxidation. J Huazhong Univ Sci Technolog Med Sci, 2006. 26(6): p. 720-2.
    [77]. Song, W.H., et al. , Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials, 2004. 25(17): p. 3341-9.
    [78]. Puleo, D.A. and A. Nanci, Understanding and controlling the bone-implant interface. Biomaterials, 1999. 20(23-24): p. 2311-21.
    [79]. LeBaron, R.G. and K.A. Athanasiou, Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Eng, 2000. 6(2): p. 85-103.
    [80]. Grzesik, W.J. and P.G. Robey, Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J Bone Miner Res, 1994. 9(4): p. 487-96.
    [81]. Xiao, S.J., et al. , Immobilization of the cell-adhesive peptide Arg-Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment. J Mater Sci Mater Med, 1997. 8(12): p. 867-72.
    [82]. Rammelt, S., et al. , Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials, 2006. 27(32): p. 5561-71.
    [83]. Schuler, M., et al. , Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study. Biomaterials, 2006. 27(21): p. 4003-15.
    [84]. Kroese-Deutman, H.C., et al. , Influence of RGD-loaded titanium implants on bone formation in vivo. Tissue Eng, 2005. 11(11-12): p. 1867-75.
    [85]. Branemark, P.I., et al. , Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl, 1977. 16: p. 1-132.
    [86]. Branemark, P.I., et al. , [Intraosseous implants]. Odontostomatol Implantoprotesi,1980(1): p. 24-5.
    [87]. Cooper, L.F., et al. , Formation of mineralizing osteoblast cultures on machined, titanium oxide grit-blasted, and plasma-sprayed titanium surfaces. Int J Oral Maxillofac Implants, 1999. 14(1): p. 37-47.
    [88]. Zhu, L., et al. , Corrosion test, cell behavior test, and in vivo study of gradient TiO2 layers produced by compound electrochemical oxidation. J Biomed Mater Res A, 2006. 78(3): p. 515-22.
    [89]. Bornstein, M.M., et al. , Early loading of nonsubmerged titanium implants with a chemically modified sand-blasted and acid-etched surface: 6-month results of a prospective case series study in the posterior mandible focusing on peri-implant crestal bone changes and implant stability quotient (ISQ) values. Clin Implant Dent Relat Res, 2009. 11(4): p. 338-47.
    [90]. Broggini, N., et al. , Peri-implant inflammation defined by the implant-abutment interface. J Dent Res, 2006. 85(5): p. 473-8.
    [91]. Gristina, A., Biomaterial-centered infection: microbial adhesion versus tissue integration. 1987. Clin Orthop Relat Res, 2004(427): p. 4-12.
    [92]. Gristina, A.G., Biomaterial-centered infection: microbial adhesion versus tissue integration. Science, 1987. 237(4822): p. 1588-95.
    [93]. Steflik, D.E., Basic underpinnings to sound implant techniques: soft tissue response to serviceable dental implants. Dent Implantol Update, 1991. 2(6): p. 50-4.
    [94]. Mombelli, A., et al. , Treatment of peri-implantitis by local delivery of tetracycline. Clinical, microbiological and radiological results. Clin Oral Implants Res, 2001. 12(4): p. 287-94.
    [95]. Buser, D., et al. , Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res, 2004. 83(7): p. 529-33.
    [96]. Nishiguchi, S., et al. , Enhancement of bone-bonding strengths of titanium alloy implants by alkali and heat treatments. J Biomed Mater Res, 1999. 48(5): p. 689-96.
    [97]. Fernandez-Pradas, J.M., et al. , Characterization of calcium phosphate coatings deposited by Nd:YAG laser ablation at 355 nm: influence of thickness. Biomaterials, 2002. 23(9): p. 1989-94.
    [98]. Cleries, L., J.M. Fernandez-Pradas and J.L. Morenza, Bone growth on and resorption of calcium phosphate coatings obtained by pulsed laser deposition. J Biomed Mater Res, 2000. 49(1): p. 43-52.
    [99]. Haynesworth, S.E., et al. , Characterization of cells with osteogenic potential from human marrow. Bone, 1992. 13(1): p. 81-8.
    [100].焦艳军,王钰等.种植体周围炎的微生物学研究[J].2008,44-46.
    [101].Grossner-Schreiber, B., et al. , Plaque formation on surface modified dental implants. An in vitro study. Clin Oral Implants Res, 2001. 12(6): p. 543-51.
    [102].Shibata, Y., et al. , Antibacterial titanium plate anodized by being discharged in NaCl solution exhibits cell compatibility. J Dent Res, 2004. 83(2): p. 115-9.
    [103].Klasen, H.J., A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns, 2000. 26(2): p. 131-8.
    [104].何其庄等.具有核壳结构的纳米二氧化钛负载银离子掺杂稀土离子抗菌剂的合成、表征及抑菌活性研究[J].2009,65-71.
    [105].Hengtrakool, C., G.J. Pearson and M. Wilson, Interaction between GIC and S. sanguis biofilms: antibacterial properties and changes of surface hardness. J Dent, 2006. 34(8): p. 588-97.
    [106].Nurhaerani, et al. , Plasma-based fluorine ion implantation into dental materials for inhibition of bacterial adhesion. Dent Mater J, 2006. 25(4): p. 684-92.
    [107].Yamamoto, K., et al. , Antibacterial activity of silver ions implanted in SiO2 filler on oral streptococci. Dent Mater, 1996. 12(4): p. 227-9.
    [108].Yoshida, K., M. Tanagawa and M. Atsuta, Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials. J Biomed Mater Res, 1999. 47(4): p. 516-22.
    [109].何康,王建荣,刘斌等.载银沸石/PMMA抗菌复合义齿基托材料的研究[J].2009,395-398.
    [110].鲜苏琴等.纳米抗菌复合膜的理化性能及对口腔细菌抗菌功能的实验研究[J].2008,358-341.
    [111].王少鹏等.羧甲基壳聚糖对牙龈牙龈卟啉单胞菌的抑制作用.2008[J]. 636-639.
    [112].张富强等.纳米载银无机抗菌剂对义齿基托树脂细胞毒性的影响[J].2008, 1102-1104.
    [113].Vogel, G.L., et al. , Increased overnight fluoride concentrations in saliva, plaque, and plaque fluid after a novel two-solution rinse. J Dent Res, 1997. 76(3): p. 761-7.
    [114].Overgaard, S., et al. , Hydroxyapatite and fluorapatite coatings for fixation of weight loaded implants. Clin Orthop Relat Res, 1997(336): p. 286-96.
    [115].盛祖立等.含氟磷灰石的构建和表征[J].2007,51-55.
    [116].Wong, M., et al. , Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res, 1995. 29(12): p. 1567-75.
    [117].沈慧等.高锌状态下海马神经元锌内稳态的机制研究[J].2004,2554-2556.
    [118].杨赵海等.硒、锌对索曼神经毒剂诱导大鼠过氧化损伤的保护机制[J].2004, 1792-1793.
    [119].Puckett, S.D., et al. , The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 2010. 31(4): p. 706-13.
    [120].Quirynen, M., et al. , The influence of titanium abutment surface roughness on plaque accumulation and gingivitis: short-term observations. Int J Oral Maxillofac Implants, 1996. 11(2): p. 169-78.
    [121].Bollen, C.M., P. Lambrechts and M. Quirynen, Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater, 1997. 13(4): p. 258-69.
    [122].Wennerberg, A., et al. , Some soft tissue characteristics at implant abutments with different surface topography. A study in humans. J Clin Periodontol, 2003. 30(1): p. 88-94.
    [123].von Eiff, C., R.A. Proctor and G. Peters, Coagulase-negative staphylococci. Pathogens have major role in nosocomial infections. Postgrad Med, 2001. 110(4): p. 63-4, 69-70, 73-6.
    [124].von Eiff, C., G. Peters and C. Heilmann, Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis, 2002. 2(11): p. 677-85.
    [125].Barth, E., et al. , In vitro and in vivo comparative colonization of Staphylococcus aureus and Staphylococcus epidermidis on orthopaedic implant materials. Biomaterials, 1989. 10(5): p. 325-8.
    [126].Hoyle, B.D. and J.W. Costerton, Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res, 1991. 37: p. 91-105.
    [127].Kokubo, T., H.M. Kim and M. Kawashita, Novel bioactive materials with different mechanical properties. Biomaterials, 2003. 24(13): p. 2161-75.
    [128].Wang, X.X., et al. , Bioactive titania-gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials, 2002. 23(5): p. 1353-7.
    [129].Ohtsuki, C., et al. , Bioactivity of titanium treated with hydrogen peroxide solutionscontaining metal chlorides. J Biomed Mater Res, 1997. 35(1): p. 39-47.
    [130].Wang, X.X., et al. , Improvement of bioactivity of H(2)O(2)/TaCl(5)-treated titanium after subsequent heat treatments. J Biomed Mater Res, 2000. 52(1): p. 171-6.
    [131].Wang, X.X., et al. , Bioactive titania-gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials, 2002. 23(5): p. 1353-7.
    [132].吴进明等.钛金属低温生物活化[J].2005,71-73.
    [133].Wei, M., et al. , Apatite-forming ability of CaO-containing titania. Biomaterials, 2002. 23(1): p. 167-72.
    [134].Loset, G.A., S.G. Kristinsson and I. Sandlie, Reliable titration of filamentous bacteriophages independent of pIII fusion moiety and genome size by using trypsin to restore wild-type pIII phenotype. Biotechniques, 2008. 44(4): p. 551-2, 554.
    [135].Shibata, Y., et al. , Antibacterial titanium plate anodized by being discharged in NaCl solution exhibits cell compatibility. J Dent Res, 2004. 83(2): p. 115-9.
    [136].Wang, L., et al. , Fourth-generation plasma immersion ion implantation and deposition facility for hybrid surface modification layer fabrication. Rev Sci Instrum, 2008. 79(2 Pt 1): p. 023306.
    [137].Maitz, M.F., et al. , Bioactivity of titanium following sodium plasma immersion ion implantation and deposition. Biomaterials, 2005. 26(27): p. 5465-73.
    [138].Wang, L., et al. , Fourth-generation plasma immersion ion implantation and deposition facility for hybrid surface modification layer fabrication. Rev Sci Instrum, 2008. 79(2 Pt 1): p. 023306.
    [139].Weng, J., et al. , Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid. Biomaterials, 1997. 18(15): p. 1027-35.
    [140].Grossner-Schreiber, B., et al. , Plaque formation on surface modified dental implants. An in vitro study. Clin Oral Implants Res, 2001. 12(6): p. 543-51.
    [141].Grossner-Schreiber, B., et al. , Modified implant surfaces show different biofilm compositions under in vivo conditions. Clin Oral Implants Res, 2009. 20(8): p. 817-26.
    [142].肖晓蓉等.口腔微生物学及实验技术[M].1993,130.
    [143].Sato, R., et al. , Profiling of bacterial flora in crevices around titanium orthodontic anchor plates. Clin Oral Implants Res, 2007. 18(1): p. 21-6.
    [144].Mombelli, A. and L.P. Samaranayake, Topical and systemic antibiotics in the management of periodontal diseases. Int Dent J, 2004. 54(1): p. 3-14.
    [145].Renvert, S. and G.R. Persson, Periodontitis as a potential risk factor for peri-implantitis. J Clin Periodontol, 2009. 36 Suppl 10: p. 9-14.
    [146].Wang, L., et al. , Fourth-generation plasma immersion ion implantation and deposition facility for hybrid surface modification layer fabrication. Rev Sci Instrum, 2008. 79(2 Pt 1): p. 023306.
    [147].Zaharia, T., et al. , Physical properties of ultrafast deposited micro- and nanothickness amorphous hydrogenated carbon films for medical devices and prostheses. Proc Inst Mech Eng H, 2007. 221(2): p. 161-72.
    [148].OSAMUY.. Influence of particlesize on the antibacterial activity of zinc oxide[J].Inorganic Materials,200l(3):643-646. 2001. p. 643-646.
    [149].Yoshinari, M., et al. , Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials, 2001. 22(14): p. 2043-8.
    [150].Naganawa, T., et al. , In vitro biocompatibility of a new titanium- 29niobium- 13tantalum-4.6zirconium alloy with osteoblast-like MG63 cells. J Periodontol, 2004. 75(12): p. 1701-7.
    [151].Mombelli, A., Etiology, diagnosis, and treatment considerations in peri-implantitis. Curr Opin Periodontol, 1997. 4: p. 127-36.
    [152].周国兴等.种植义齿失败原因的探讨[J]. 2002,172-174.
    [153].吴军正等.细胞培养[M].2004,72-73.
    [154].程继光等.人牙龈成纤维细胞和牙周膜成纤维细胞的培养和生物学特征[J]. 2002,375-377.
    [155].Schuler, M., et al. , Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study. Biomaterials, 2006. 27(21): p. 4003-15.
    [156].Kim, H.K., J.W. Jang and C.H. Lee, Surface modification of implant materials and its effect on attachment and proliferation of bone cells. J Mater Sci Mater Med, 2004. 15(7): p. 825-30.
    [157].夏大弘等.成骨细胞体外培养在种植相关研究中的应用[J].2001,73-75.
    [158].Ratner, B.D., A.B. Johnston and T.J. Lenk, Biomaterial surfaces. J Biomed Mater Res, 1987. 21(A1 Suppl): p. 59-89.
    [159].Schwartz, Z., et al. , Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. J BiomedMater Res, 1996. 30(2): p. 145-55.
    [160].Martin, J.Y., et al. , Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res, 1995. 29(3): p. 389-401.
    [161].Boyan, B.D., et al. , Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1 alpha,25-(OH)2D3. J Biomed Mater Res, 1998. 39(1): p. 77-85.
    [162].Lange, R., et al. , Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material. Biomol Eng, 2002. 19(2-6): p. 255-61.
    [163].Kieswetter, K., et al. , The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med, 1996. 7(4): p. 329-45.
    [164].Weng, D., et al. , Osseotite vs. machined surface in poor bone quality. A study in dogs. Clin Oral Implants Res, 2003. 14(6): p. 703-8.
    [165].Ogawa, T., et al. , Biomechanical evaluation of osseous implants having different surface topographies in rats. J Dent Res, 2000. 79(11): p. 1857-63.
    [166].吴军正等.细胞培养[M].2004,72-73.
    [167].程继光等.人牙馥成纤维细胞和牙周膜成纤维细胞的培养和生物学特征[J].2002,375-377.
    [168].Fukuchi, N., M. Akao and A. Sato, Effect of hydroxyapatite microcrystals on macrophage activity. Biomed Mater Eng, 1995. 5(4): p. 219-31.
    [169].van Luyn, M.J., et al. , Modulation of the tissue reaction to biomaterials. II. The function of T cells in the inflammatory reaction to crosslinked collagen implanted in T-cell-deficient rats. J Biomed Mater Res, 1998. 39(3): p. 398-406.
    [170].Akagawa, Y., et al. , Tissue reaction to implanted biomaterials. J Prosthet Dent, 1985. 53(5): p. 681-6.
    [171].Inanc, B., et al. , Encapsulation and osteoinduction of human periodontal ligament fibroblasts in chitosan-hydroxyapatite microspheres. J Biomed Mater Res A, 2007. 82(4): p. 917-26.
    [172].Inanc, B., et al. , Encapsulation and osteoinduction of human periodontal ligament fibroblasts in chitosan-hydroxyapatite microspheres. J Biomed Mater Res A, 2007. 82(4): p. 917-26.
    [173].Graf, H.L., et al. , Effect of bone sialoprotein and collagen coating on cell attachmentto TICER and pure titanium implant surfaces. Int J Oral Maxillofac Surg, 2008. 37(7): p. 634-40.
    [174].de Jonge, L.T., et al. , The osteogenic effect of electrosprayed nanoscale collagen/calcium phosphate coatings on titanium. Biomaterials, 2010. 31(9): p. 2461-9.
    [175].Hilbig, H., et al. , Implant surface coatings with bone sialoprotein, collagen, and fibronectin and their effects on cells derived from human maxillar bone. Eur J Med Res, 2007. 12(1): p. 6-12.
    [176].Wang, S., et al. , The miniature pig: a useful large animal model for dental and orofacial research. Oral Dis, 2007. 13(6): p. 530-7.
    [177].Nicopoulou-Karayianni, K., U. Bragger and N.P. Lang, Subtraction radiography in oral implantology. Int J Periodontics Restorative Dent, 1997. 17(3): p. 220-31.
    [178].Papaioannou, W., M. Quirynen and D. Van Steenberghe, The influence of periodontitis on the subgingival flora around implants in partially edentulous patients. Clin Oral Implants Res, 1996. 7(4): p. 405-9.
    [179].Quirynen, M., et al. , Periodontal aspects of osseointegrated fixtures supporting an overdenture. A 4-year retrospective study. J Clin Periodontol, 1991. 18(10): p. 719-28.
    [180].Lai, L., et al. , Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science, 2002. 295(5557): p. 1089-92.
    [181].Brezniak, N. and A. Wasserstein, Orthodontically induced inflammatory root resorption. Part I: The basic science aspects. Angle Orthod, 2002. 72(2): p. 175-9.
    [182].王东胜等.塑料包埋技术在口腔硬组织切片中的应用研究[J].2003,256-257.
    [183].王东胜等.手工制作带金属种植体磨片的方法[J]. 2000,187.
    [184].刘增辉等.病理染色技术[M].2000,66-67.
    [185].王东胜等.三种特殊染色法显示不脱钙骨切片中新生骨的比较研究[J].2006, 139-141.
    [186].周以钧等.大鼠实验性牙周炎动物模型研究[J].1996,204-207.
    [187].于世凤等.实用口腔病理学[M].2001,35-40.
    [188].Fischer, R.G. and B. Klinge, Clinical and histological evaluation of ligature-induced periodontitis in the domestic ferret. J Clin Periodontol, 1994. 21(4): p. 230-9.
    [189].Mesimaki, K., et al. , Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg, 2009. 38(3): p. 201-9.
    [190].Haimi, S., et al. , The effect of chemical cleansing procedures combined with peraceticacid-ethanol sterilization on biomechanical properties of cortical bone. Biologicals, 2008. 36(2): p. 99-104.
    [191].Fahlgren, A., et al. , Fluid pressure and flow as a cause of bone resorption. Acta Orthop, 2010. 81(4): p. 508-16.
    [192].Bostrom, M.P. and D.A. Seigerman, The clinical use of allografts, demineralized bone matrices, synthetic bone graft substitutes and osteoinductive growth factors: a survey study. HSS J, 2005. 1(1): p. 9-18.
    [193].Hurzeler, M.B., et al. , Treatment of peri-implantitis using guided bone regeneration and bone grafts, alone or in combination, in beagle dogs. Part 2: Histologic findings. Int J Oral Maxillofac Implants, 1997. 12(2): p. 168-75.
    [194].Sciadini, M.F., J.M. Dawson and K.D. Johnson, Bovine-derived bone protein as a bone graft substitute in a canine segmental defect model. J Orthop Trauma, 1997. 11(7): p. 496-508.
    [195].Ripamonti, U., et al. , Complete regeneration of bone in the baboon by recombinant human osteogenic protein-1 (hOP-1, bone morphogenetic protein-7). Growth Factors, 1996. 13(3-4): p. 273-89,color plates III-VIII,pre.bk.
    [196].Sciadini, M.F. and K.D. Johnson, Evaluation of recombinant human bone morphogenetic protein-2 as a bone-graft substitute in a canine segmental defect model. J Orthop Res, 2000. 18(2): p. 289-302.
    [197].黄盛兴等.膜引导骨再生技术在种植体周围炎治疗中的应用[J].2000,177-179.
    [198].Pasqualucci, L., et al. , BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci U S A, 1998. 95(20): p. 11816-21.
    [199].Dahlin, C., et al. , Treatment of fenestration and dehiscence bone defects around oral implants using the guided tissue regeneration technique: a prospective multicenter study. Int J Oral Maxillofac Implants, 1995. 10(3): p. 312-8.
    [200].巢永烈等.种植义齿学[M].1999,30-31.
    [201].章魁华等.实验口腔病理学[M].2001,67-68.
    [202].王东胜等.种植体骨界面组织形态学研究方法探讨[J].2005,142- 144.
    [203].王东胜等.三种特殊染色法显示不脱钙骨切片中新生骨的比较研究[J].2006,139- 141 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700