保护性耕作措施的综合效应研究及其生态与经济效益评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用综合试验的研究方法,研究了保护性耕作对土壤水分变化规律及水分利用效率、对土壤养分及地温、对作物生长发育和产量构成的影响,并从防止土壤水蚀、风蚀的角度评价了保护性耕作的生态效应。取得了如下主要结论:
     1.旱作农田土壤水分变化动态可分为雨季增墒期、缓慢失墒期和作物生长耗水期3个时期。作物收获前至8月中旬为土壤增墒期,其长短和土壤贮水量的多少与降水特征、地表状况(覆盖材料的有无及其种类)、土壤耕作等有关,免耕秸秆覆盖有利于增加此期土壤的贮水量;雨季增墒期结束至来年作物播种季节为表层土壤缓慢失墒期,此期失墒多少受地表状况的影响较大,免耕秸秆覆盖有很好的抑蒸保墒作用。作物生长期土壤水分状况主要受自然降水、地表蒸发和作物蒸腾耗水3个因素控制,作物生长苗期因受降水和地表蒸发的影响,贮水量呈波动式变化;作物快速生长期,贮水量迅速下降,开花末期达谷值;贮水量下降的幅度主要受作物长势的影响。小麦-豌豆序列比豌豆-小麦序列有利于土壤表层水分的蓄积。
     旱作农田整个土壤剖面(0~200cm)贮水量的变化规律总体与表层0~30cm贮水量的变化动态相似,但就整个土壤剖面上贮水量而言,免耕秸秆覆盖并无明显优势,其抑蒸保墒作用仅表现在耕层0~30cm;序列间在作物生长期0~200cm土壤剖面的贮水量变化幅度差异较大,豌豆一生的耗水量要小于春小麦。
     2.河西灌区水浇地土壤水分状况变化及节水效应研究表明,采用秸秆覆盖是充分利用麦秸资源节水改土、保护生态环境的非工程性的高效生态节水措施。储水定额在900m~3/hm~2较适宜,储水灌溉时期在9月中旬到11月上旬为好。秸秆还田配合适当灌溉量具有很好的节水、保墒作用,以灌溉量600m~3/hm~2+秸秆还田的节水保墒作用最好。
     3.不同保护性措施提高了土壤中氮的含量。试验期间各处理土壤不同层次铵态氮含量均显著增加,特别是表层0~30cm,平均增加至试验初期的6.69倍。耕作处理铵态氮含量增长幅度大于相应的免耕处理,小麦-豌豆轮作模式下T、TP、TS各处理0~30cm铵态氮含量分别增至试验初期的9.78、7.19、8.14倍,而NT、NTP、NTS在0~30cm铵态氮含量则分别增至试验初期的5.00、4.01、6.52倍。轮作模式对铵态氮的变化影响不大。不同轮作模式硝态氮的变化迥然不同,小麦~豌豆轮作中各处理0~30cm硝态氮的平均减少至试验初期的0.97倍,而豌豆-小麦轮作各处理0~30cm硝态氮含量平均增至试验初期的1.42倍。
    
    保护性耕作措施可以增加土壤速效磷含量。轮作方式对O一30cm土壤速效磷的变
    化影响较大,豌豆一小麦轮作各处理平均速效磷含量在试验期间平均增加了193.59%,
    而小麦一豌豆轮作各处理平均增长幅度仅153.66%。在0~200cm土壤速效磷的变化无
    明显差异。在不同耕作方式中,以NTP和NTS表层O一30cm有效磷含量增长较快,
    特别是在表层O一30cm,NTP和NTS处理的绝对增长量和相对增长量都较高。
     不同耕作制度、不同轮作方式降低了土壤速效钾的含量。表层O~30cm速效钾减
    少的幅度大于深层,各处理0一30cm速效钾含量平均减少了巧.24%,0一ZO0cm剖
    面土壤速效钾含量平均减少了2.32%。轮作方式对表层土壤速效钾的变化有明显的作
    用,豌豆一小麦轮作方式使得O一30cm速效钾损失严重,各处理速效钾平均含量减少
    了18.98%;小麦一豌豆轮作各处理O~30cm速效钾含量减少了12.04%。
     4.在播种出苗期间降雨较多的情况下,未覆盖处理及秸秆覆盖处理,水分入渗较
    好,有利于小麦保苗率的提高。但传统耕作结合秸秆还田(Ts)和免耕秸秆覆盖(NTs)
    处理保苗效果较好,有利于总穗数的增加。免耕地膜覆盖处理有利于旱地作物春小麦
    根系发育,叶面积增加和干物质积累强度加大,穗粒数和穗粒重增加,产量提高。与
    传统耕作处理(T)比较,产量提高51.12%(p<0.01),与免耕秸秆覆盖处理(NTs)
    比较,产量提高17.22%(p<0.01);免耕秸秆覆盖处理有利于豌豆每株英数和每株粒
    数的增加,使豌豆最高产量达1269.47~1789.72kg小mZ,比免耕不覆盖处理产量提高
    26.37%(加02年,p<0 .05)和58.06%(2003年,p<0.01)。
     在早作雨养条件下,NTP虽然有利于作物产量的增加,但由于种植成本的增加使
    纯收益下降。NTS有利于提高种植作物的纯收益。NTS和N仰比较,春小麦产值降
    低344.4元小mZ(14.64%),纯收益增加60.15元爪mZ(22.71%);豌豆产值增加651.00
    元小mZ(57.87%),纯收益增加1056.00元小mZ(l .64倍);NT和T也有利于提高旱
    地作物的纯收益和产投比。在荒漠绿洲水地条件下,常规耕作、秸秆还田及免耕秸杆
    覆盖3种耕作方式的产值、纯收益和产投比表现出较大差异。秸秆还田方式下产值最
    高,比常规耕作高3.40%,比免耕覆盖高13.02%;免耕覆盖的纯收益和产投比最高,
    比秸秆还田处理分别高74.43%和41 .98%,比常规耕作处理分别高102.71%和46.46
    %。免耕覆盖还具有良好的节水效益。
     5.甘肃中部人工降雨模拟试验和大田实际观测数据分析结果表明:径流量和侵蚀
    量的大小与降雨强度及降雨量的关系非常密切。在较低覆盖度条件下(裸地),降雨
    强度对土壤侵蚀的影响是主因。不同用地的径流和侵蚀速率随雨强的增加而迅速增
    加,坡耕?
With the integrated methods the experiment was conducted to explore the regularity of soil water consumption and water use efficiency, contribution to the change of soil temperature, soil nutrients and moisture , efficiency for growth and development of crops and the yield output in different conservation tillage measure at Dingxi County, a typical semi-arid area of the Loess Plateau and Hexi corridor, and to evaluate the ecological function of conversation tillage by protecting water erosion and wind erosion in these area. The main results showed as follows:1. The dynamic change of soil water in the arid land can be divided into 3 periods: Water-conservation period, water-retaining period and water-consumption period. The water-conservation period begins from beginning of crop harvesting time, ends in mid-August, how lang of water conservation period and how much water can increase depends on rainfall character, covered or naked land and tillage situation. NT could increase the water storage during this period. From the end of water conservation period to sowing time next year is water-retaining and water loss period. In this period how much water loss depends on cover situation of farming land, NTS was suitable for water storage. Soil water situation depends on three factors e.g. natural rainfall, consumption of crops and water loss amount during the growth stage of crops, at seedling stage water storage varied with rainfall and water loss like undulation, at fast growth stage of crops the soil water storage was decreased, and at anthesis stage the water storage retained at the lowest level. The decrease of water storage depends on situation of crop growth. Crop rotation wheat-pea had more effective water storage ability than crop rotation pea-wheat.The variety of water storage in total section (0-200cm) was similar as in upper layer (0-30 cm), however, it was not obvious dominance in NTS at total horizon, it was very important to protect the water in upper layer(0-30cm). Different crop consumes different water amount, the consumption of water by spring wheat was much more than that by pea during the whole growth stage.2, The study on water situation and water-saving under irrigation condition in Hexi Corridor released that straw mulch on spring wheat field is a very important measure for water-saving. The optimum irrigation ration is 900m3 /hm2, conservational irrigation period is from mid- Sep. to the beginning of Nov. Effects of water -storage and water-conservation caused by straw incorporated were apparent. It was suggested that an amount of 600 m3 /hm2 +straw incorporated treatment is the best measure for water-saving and water-storage.3. The content of total N was increased by different conservation tillage measures during the experiment, especially in the top 0-30 cm soil layer, the average content of ammoniacal-N is 6.69 times as much as that before the experiment began. The increase
    
    under plough condition is more than that under no-tillage, the content of ammoniacal-N in soil layer of 0-30 cm in treatment T, TP and TS increased to 9.78, 7.19 and 8.14 times in comparison of the normal respectively. 5.00, 4.01 and 6.52 times in treatment NT, NTP and NTS. The change of ammoniacal-N was not obvious under rotation model, but increase of ammoniacal-N was very apparent in NTS treatment. The change of nitrate-N in rotation of wheat-pea was decreased (-0.97 times) and increased in rotation of pea-wheat (+1.42 times).Conservation tillage improved the content of available P. in the top of soil layer (0-30cm) the content of available P increase up by 193.59% in rotation pea-wheat, while 153.66% in rotation wheat-pea. In different conservation tillage the increase of available P was more in treatment NTP, NTS than that in other treatments. The change of available P in different section layers from 0 to 200 cm had no significantly different.Different tillage and crop rotation systems decreased the content of available K. the content of available K in upper layer (0-3 0cm), decrease more than deep horizon, and the averag
引文
1.白大鹏,赵建强,陈明昌等,整秸秆覆盖免耕条件下黄土高源旱地的养分消长研究[J],土壤学报,1997,34(1):103~106
    2.蔡典雄 王小彬 高绪科 关于持续性保持耕作体系的探讨[J] 土壤学进展,1993,21(1):1~8
    3.陈兰详等,小麦—玉米轮作覆盖稻草对土壤肥力及产量的影响[J],土壤,1996;28(3):156~159
    4.陈垣等,旱作土壤少免耕对作物生长发育的生态效应研究[J],耕作与栽培,1996,2,7~9
    5.程励励等,稻草还田对水稻产量的影响[J],土壤,24(5):234~238
    6.丁昆仑,深松对土壤水分物理特性及夏玉米生长的影响[J],中国农村水利水,1997,7:13~16
    7.丁昆仑、M.J.Hann,耕作措施对土壤特性及作物产量的影响[J],农业工程学报,2000,16(3):49~52
    8.杜守宇等,秸秆覆盖还田的整体功能效应与系列化技术研究[J],干旱地区农业研究,1994,12(2):88~94
    9.樊修武等,盐碱地秸秆覆盖改土增产措施的研究[J],干旱地区农业研究,1993,11(4):13~18
    10.范建 留茬免耕保地表 退耕还林缚沙龙[J]技术创新 2002,5期:13
    11.冯利平等,不同覆盖处理对旱作玉米生育与产量效应的研究(5)[J],干旱地区农业研究,1995,13(1):50~54
    12.甘肃省环境监测中心,《甘肃省沙尘暴尘源分析及地面监测技术研究》,2002.
    13.高绪科.旱地土壤耕作近况及其经验[J].土壤通报,1986,17(5):7
    14.高云超 朱文珊 陈文新 秸秆覆盖免耕土壤微生物量与养分转化的研究[J],中国农业科学1994,27(6):41~49
    15.高云超 朱文珊 陈文新,秸秆覆盖免耕对土壤细菌群落区系的影响[J],生态科学 2000,19(3):27~32
    16.高云超 朱文珊 陈文新,秸秆覆盖免耕土壤细菌和真菌生物量与活性的研究[J]生态学杂志,2001,20(2):30~36
    17.高云超 朱文珊 陈文新,秸秆覆盖免耕土壤真菌群落结构与生态特征研究[J],生态学报2001,21(10):1704~1710
    18.巩杰,黄高宝,李延梅等 少免耕耕作法的农田效应[J]耕作与栽培 2002,4期:13~14
    19.巩杰,黄高宝,陈利顶等 旱作麦田秸秆覆盖的生态综合效应研究[J],2003,21(3):69~73
    20.含思明等,旱地残茬覆盖耕作法的研究[J].干旱地区农业研究,1988(3):5~7
    21.胡芬,麦田秸秆覆盖的节水增产效应[J],中国农业气象,1992,13(6):35~39
    22.黄东迈,免耕少耕条件下土壤肥力与施肥[J],土壤通报,1988,19(2):93~97
    23.黄高宝 西部保护性农业发展战略(未发表,私人交流)2004.1~13
    24.黄丽芬等,长期少免耕对稻麦产量与土壤肥力的影响[J],土壤通报,1998,(3):234~238
    
    25.黄伦先,沈世华 免耕生态系统中土壤动物对土壤养分影响的研究[J],农村生态环境 1996,12(4):8~10
    26.籍增顺等,国外免耕农业研究[J],山西农业科学,1994,22(3):63~68
    27.籍增顺等,旱地玉米免耕整秸秆半覆盖技术及其评价[J](J),干旱地区农业研究,1995,13(2):14~19
    28.籍增顺等,早地玉米小麦免、少耕秸秆覆盖核技术[J],山西农业科学,1994,22(3):1~6
    29.贾大林等,节水农业持续发展研究[J].生态农业研究,1994:2(2):30~36
    30.贾彦宙等,土壤保护性耕作技术应用研究[J].内蒙古农业科技.2002.6:34-38
    31.贾建国 农业部“十五”重点推广50项技术 保护性耕作机械化技术[J]世界农业,2001,11期:34~35
    32.姜秉权,裸土耕作法——少耕和免耕法[J].北京农业大学,1979
    33.姜秉权等,关于少耕法与免耕法研究的几点看法[J].北京农业大学,1980
    34.晋凡生等,免耕覆盖玉米秸秆对旱塬地土壤环境的影响[J],干旱地区农业研究,
    35.景军胜等,旱地油菜地膜覆盖栽培方式研究初报[J],干旱地区农业研究,2000,19(2)11~15
    36.康红等,免耕覆盖对旱地土壤肥力和小麦产量的影响[J],陕西农业科学,2001,(9):16~22
    37.李春勃等,麦秸覆盖旱地棉田少耕培肥效果[J],生态农业研究,1995,3(3):52~55
    38.李笃仁等,华北平原一年两熟地区土壤耕作结构的研究.中国农业科学院土肥所,1982
    39.李海金等,旱地小麦少耕全程覆盖技术研究[J],山西农业科学,1994,22(3):60~62
    40.李洪文等,旱地表土耕作效应研究[J],干旱地区农业研究,2000,18(2):13~18
    41.李生福,陇中半干旱地区少免耕法对土壤含水量的影响初报[J],土壤通报,1994,25(3):133~134
    42.李新举等,免耕对土壤养分的影响[J].土壤通报.2000.31.6
    43.梁勇等,临潭县旱区地膜春小麦覆膜方式对比试验初报[J],干旱地区农业研究,2001,19(2):25~30
    44.林新荣等,有机肥防治油菜缺硼效果的研究[J],浙江农业科学,1985,(2):88~91
    45.蔺海明,陈垣 半干旱地区少免耕对土壤水分动态的影响[J] 甘肃农业大学学报 1996,31(1):32~35
    46.刘鹏程,稻草覆盖还田培肥地力的试验研究[J],土壤肥料,1993(1):35~36
    47.刘振玉等,旱地玉米整秸秆不同覆盖形式的增产效应[J],山西农业科学,2000,28(3):20~22
    48.罗永潘 我国少耕与免耕技术推广应用情况与发展前景[J],耕作与栽培,1991,2期:1~7
    49.马世均,国外旱地农业的发展现状[J],中国农学通报,1989(2):30~31
    50.马占福 刘国华 程志国 等 西北内陆灌溉农业区地膜作物茬少免耕耕作技术研究[J],耕作与栽培 2002,6期:5~8
    51.慕松,玉米覆膜沟穴播综合栽培技术对产量和水分利用效率效应的试验研究[J],干旱地区农业研究,2000,4(18)
    
    52.牛灵安等,曲周试区秸秆还田配施氮磷肥的效应研究[J],土壤肥料,1998,(6):32~35[33]
    53.农业部农业机械化管理司编 保护性耕作技术手册 2002年5月 北京
    54.邱润民,王智斌,左志刚等 陇东地区春玉米保护性耕作栽培的初步试验[J],中国农机化2002,6期:16~18
    55.邱润民,王智斌,左志刚等 陇东地区冬小麦保护性耕作技术试验[J],中国农机化2003,2期:11~13
    56.区伟明等,水稻免耕抛秧经济效益及生态效益分析[J],广东农业科学2000,(6):59~62
    57.沈裕虎等,秸秆覆盖的农田效应[J],干旱地区农业研究,1998,16(1):41~50
    58.孙百揆,高寒易早区少耕法的效果和效益[J],土壤学报,1989,26(2):25~28
    59.孙海国等,植物残体对土壤结构性状的影响[J],生态农业研究,1998,6(3):39~41
    60.王殿武 褚达华,少免耕对旱地土壤物理性质的影响[J],河北农业大学学报,1992,15(2):28~33
    61.王笳等,旱地玉米免耕整秸秆覆盖土壤养分、结构和生物的研究[J],山西农业科学,1994,22(3):17~19
    62.王晓燕等,保护性耕作水土流失测试技术,机械化保护性耕作技术[M],2003.
    63.魏朝富等,垄作免耕下稻田土壤团聚体和水热状况变化的研究[J],土壤学报,1990,27(2:)172~178
    64.温随良 刘军 陇中旱地少免耕覆盖对提高土壤养分效应的研究[J],甘肃农业大学学报1996,31(1):27~31
    65.吴崇海等,高留麦茬的整体效应与配套技术研究[J],干旱地区农业研究,1996,14(1):43~48
    66.吴会军 豫西黄土坡耕地保护耕作对水土保持作用的研究[M],中国农业科学院硕士论文,2001年 北京
    67.吴敬民等,秸秆还田效果及其在土壤培肥中的地位[J],土壤学报,1991,25(5):211~215
    68.吴晓东等,免耕条件下的小麦稀播试验[J],安徽农业科学,1989,(3):30~33。
    69.谢先举,我国旱地免耕研究[J],耕作与栽培,1995,(1):16~20
    70.熊泽海,旱地马铃薯茬免耕效应研究[J],耕作与栽培,1995,(6):5~7
    71.徐春阳等,长期免耕对土壤微生物生物量碳、氮、磷的影响[J],土壤学报,2002.39(1):17~23
    72.徐新宇等,秸秆盖田与减耕下土壤培肥及增产效应的研究[J],耕作与栽培,1999,5:6~9
    73.杨改河等编著,旱区农业理论与实践[M],西安:世界图书出版司西安公司,1993
    74.杨艳敏等,早稻夏季地膜覆盖栽培的生态学效应[J],干旱地区农业研究,2000,3(18)
    75.杨玉爱等,微量元素研究及应用[M],湖北科技出版社,1986,297~306
    76.余晓鹤,土壤表层管理对部分土壤化学性质的影响[J],土壤,1990,(2):158~161
    77.袁家福,麦田秸秆覆盖效应及增产作用[J],生态农业研究,1996,4(3):61~65
    78.张乃生,洛希图 旱地玉米免耕覆盖土壤温度效应[J],山西农业科学,1994,22(3):13~16
    79.张乃生,赵全梅 旱地玉米免耕整秸秆半覆盖技术经济效果评价[J],山西农业科学,1994, 22(3):49~52
    80
    
    80.张振江,长期麦秆直接还田对作物产量与土壤肥力的影响[J],土壤通报,1998,29(4):154~155
    81.张志国,旱地农田覆盖的保墒效应研究[M],中国农业科学院研究生院硕士学位论文,1992,北京
    82.张志国等,长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响[J].土壤学报,1998,35(3):385~389
    83.赵二龙等,旱地小麦留茬少耕覆盖技术研究[J],西北农业学报.1998.4:44~47
    84.赵化春,王晓丽 少耕法与免耕法的起源及发展前景[J],吉林农业科学1991(1):85~88
    85.赵聚宝等,秸秆覆盖对旱地作物水分利用效率的影响[J],中国农业科学,1996;29(2):59~61
    86.周凌云等,麦田秸秆覆盖节水效应研究[J],生态农业研究,1996,4(3):49~52
    87.朱文珊等,秸秆覆盖免耕法的节水培肥增产效益及应用前景[J],干旱地区农业研究,1998,(4):1~2
    88.朱泽亮等,钾肥和稻草对水稻生长及产量的影响[J],土壤学报,1992,24(6):310~314
    89.朱自玺等,秸秆覆盖麦田水分动态及水分利用效率研究[J],生态农业研究,2000,8(1):34~37
    90.庄恒扬等,长期少免耕对稻麦产量及土壤有机质与容重的影响[M],北京科学技术出版社,1991,(344):234~237
    91.左淑珍,中华民族的精耕细作优良传统不能丢[J],农业考古2003,2期:41~44
    92. Paul E.Rasmussen,(杨建译),残茬和肥料对免耕小麦产量的效应[J]麦类作物[M],1998,18(4):59~62
    93. John E.Morrision美国保护性的过去和未来[J],中国机械化旱作节水农业国际研讨会 2000年11月21日,北京:35~39
    94. Staley T.E,耕作方式对土壤微生物量影响的研究[J],水土保持科技情报,2001,(1):12~13
    95. TPNHqeHKO N B.俊贤译.英国土壤耕作的特点[J].Outlook on Agriculture,1986,12(4):205
    96. Barber, S.A.1960: Traus.Int.Congr.Soil Sci.7th. 3:435~442
    97. Benites JR, Derpsch R, McGarry D Current Status and Future Growth Potential of Conservation Agriculture in the World Context[J], ISTROC 2003:120~128
    98. Blevins R L, Thomas G W, Smith M S, Frye W W ,Comelius P L. Changes in soil properties after 10 years continuous non-tilled and conventionally tilled corn[J]. Soil and Tillage Research, 1983, 3:135~146
    99. Bockus WW Shroyer JP, The impact of reduced tillage on soil-borne plant pathogens[J]. Annual Review of Phytopathology 1998, vol.36:485~500
    100. Borresen T Riley H. the need and potential for conservation tillage in Norway[J]. ISTROC, Australia 2003:190~195
    101. Charles A.Norwood, Water use and Yield O Dryland Row Crops as Affected by Tillage[J], Agronomy Journal, 1999, 91(1): 108-115
    
    102. Coote D R and Malcoln Mcgovern C A. Effects of conventional and no-till corn growth in rotation on three soils In Eastern Ontario[J], Canada. Soil & Tillage Research, 1989 (14): 67-84
    103. CTIC.2000 CTIC News Release[M],September 27. 2000. Web site http://www.ctic.purdue.edu
    104. Domzal H and Slowinska-Jurkiewica A. effects of tillage and weather conditions on structure and Physical properties of soil and yield of winter wheatfj]. Soil & Tillage Research, 1987 (10): 225-241
    105. Elen O Long-term experiments with reduced tillage in spring cereals. III. Development of leaf diseases[J]. Crop protection 2003,22(2): 65-71
    106. Elen O plant protection in spring cereal production with reduced tillage. III. Cereal diseases[J], Crop protection 2002, 21(3):195-201
    107. Gao. HW and WY, Li Chinese Conservation Tillage. ISTROC Australia 2003:465-470
    108. Glover B .Triplettetal, Tillage System for Cotton on Silty Upland SoiIs[J], Agronomy Journal , 1996, 88(4)507-512
    109. Huang, GB. RZ. Zhang et al, Conservation Tillage Effects on Spring Wheat and Field Pea in the Western Loess Plateau, China[J], ISTROC, Australia 2003:560-565
    110. Hulugalle S, Weaver T, Scott F et al, Contribution to assessment suitability of land for no-till in Croatia[J], ISTROC, 2003 :572~577
    111. John C.Siemens etal .Growth Analysis of Soybean under No-tillage and Conventional Tillage systems[J], Agronomy Journal , 1999, 91(6):928-933
    112. Kirkegaard J.A A review of trends in wheat yield response to conservation croping in Australia[J], Australian Journal of Experimental Agriculture 1995,35:835-848
    113. Lachnicht SL Parmelee RW McCartney D et al, Characteristics of macroporosity in a reduced tillage agroecosystem with manipulated earthworm populations: implications for infiltration and nutrient transportfJ]. Soil and Biochemistry 1997,29(3- 4):493- 498
    114. Lai R No-tillage effects on soil properties under different crops in western Nigenia[J].Soil Sci, Soc Am Proc, 1976, 40:762-768
    115. Lopez MV Gracia R Arrue JL, Effects of reduced tillage on soil surface properties affecting wind erosion in semiarid fallow lands of Central Aragon[J]. European journal of agronomy, 2000, 12(3):191~199
    116. Marta Birkas M.Jolankai, C.Gyuricza et al Results and consideration in conservation tillage in Hungary[J], ISTROC, 2003 :159-164
    117. Mehdietal B.B., Yield and Nitrogen Content of Corn under different Tillage Practices[J], Agronomy Journal , 1999, 91(4):631- 636
    
    118. Michael E, Salassi Patrick K. Bollich Less tillage,more dollar: reduced-tillage shows yield and cost advantage[J], the Rice Journal, 2001,104(3): 14-15
    119. Mielke L N , Wilhelm W W , Fenster C R .Soil physical characteristics of reduced tillage in a wheat-fallow system[J] .Trans. ASAE, 1984, 27:1724-1728
    120. Milton A Sprague and Glover B Triplettt. No-tillage and surface-tillage agriculture (the Tillage Revolution) [M], A Wiley-Inter-science Publication, 1986 (3): 19, 54
    121.Mrabet Rachid, Mediterranean Conservation Agriculture: Paradigm for croping systems[J] ISTROC, Australia 2003:774-779
    122. Phillips et al, No tillage farming[M], 1972 New York
    123. Ronald E Phillips & Shirley H. Phillips , No-tillage Agriculture Principles and practicesfJ], Van Nostrand Reinhold company , 1984
    124. Tebrugge,F. and A, Bohrnsen Farmers and experts opinion on no-tillage in West-Europe and Nebraska, paper presented at Iworld congress on conservation Agriculture[J], Madrid, Spain, October 1-5, 2001ISTROC, :774~779
    125. Toler JE Murdock EC Keeton A Weed management system for cotton with reduced tillage[J], Weed technology, 2002,16(4):773~78
    126. Torresen KS Skuterud R Plant protection in spring cereal production with reduced tillage IV.changes in the weed flora and weed seedbank[J]. Crop protection, 2002,21(3):179-193
    127. Tracy,P.W.,Carbon,nitrogen,phosphorus and sulfurminera Hzation in plow and no-till arltiration[J],Soil-Sci-Soc-Am-J, 1990,54(2):457-461
    128. Unger P W. Tillage effects on surface soil physical conditions and sorghum emergencefJ]. Soil Sci.Am.1984, 48:1423-1432
    129. Unger,P.W. Organic matter, nutrient and pH distribution in no and conventional-tillage semiarial soil[J].A-gron-J, 1991,83(1):186~189
    130. Walley FL Lafond GP Matus A et al, Water-use efficiency and carbon isotopic composition in reduced tillage systemsfJ]. Soil Science of America Journal, 1999 63(2):356-361
    131. Wilson Rummenie AC Radford BJ Robertson LN et al reduced tellage increases population density of soil macrofauna in a semiarid environment in central Queensland[J], Envronmental Entomology 1999, 28(2): 163-172
    132. Xiao Honglang A study of soil wind erosion in Qinwangchuan[J], Chinese Journal of Arid Land Research, 10(4):259~264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700