三种Bt基因(cry1Ac、cry2A~*和cry9C~*)抗虫水稻的培育及评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是主要粮食作物之一,全世界有超过20亿的人口以水稻为主食。虫害是造成水稻减产的主要原因之一。在现代农业中,使用化学杀虫剂为减少虫害损失起到了巨大作用。但是,化学杀虫剂的使用会不可避免的造成环境污染以及威胁人类健康。
     转基因抗虫作物是近些年兴起的一种新的害虫防治技术,它从1996年开始在世界上大规模种植。这种转基因作物可以表达一种细菌Bacillus thuringiensis(Bt)来源的杀虫蛋白。这种细菌作为一种生物杀虫剂在农业上已经使用了60多年了。Bt作物在农业上的使用可以大幅度的减少杀虫剂的使用量,这不仅直接降低了种植者的种植成本,而且对保护人类的健康和生态环境都有积极的意义。
     本研究通过农杆菌介导的方法,将3个人工合成的Bt基因(cry1Ac、cry2A~*和cry9C~*)分别转入优良的水稻恢复系明恢63中,并获得了一批抗虫性优良的转基因家系。本研究获得的主要研究结果如下:
     1.证实了cry2A~*和cry9C~*这两个由本实验室设计合成的Bt基因能够在转基因水稻中正常表达,转基因植株表现出了良好的抗虫性。因此,这两个基因的人工改造是成功的。
     2.获得了11个外源基因单拷贝插入、抗虫性优良且农艺性状较好的纯合转基因明恢家系,其中Cry1Ac家系2个(命名为TAc-1和TAc-2),Cry2A~*家系4个(命名为T2A-1、T2A-2、T2A-3和T2A-4),Cry9C~*家系5个(命名为T9C-1、T9C-2、T9C-3、T9C-4和T9C-5)。这些转基因家系的选择标准为:高抗虫性,没有明显农艺性状的改变,单拷贝插入和后代分离符合孟德尔遗传规律。这些抗性家系不仅可以用来作为新的抗性育种资源,也可以用于发展双价Bt水稻。
     3.通过室内的抗虫性生物检测,所有的Bt转基因水稻家系均表现出对两种主要的水稻钻蛀害虫三化螟(Tryporyza incertulas walker)和二化螟(Chilo suppressalis walker)的高度抗性。结果显示,所有转基因家系可在5天内彻底杀死一龄三化螟幼虫;彻底或者近似彻底地杀死一龄二化螟幼虫。
     4.研究了二化螟幼虫对Bt水稻茎杆取食的选择性。结果表明,在同时喂饲Bt转基因水稻茎杆和原品种明恢63茎杆时,二化螟幼虫可以辨识Bt茎杆和非Bt茎杆。在仅有3种Bt转基因水稻茎杆(含Cry1Ac,Cry2A~*和Cry9C~*)被喂饲时,二化螟幼虫
Rice is one of the most important crops, and the staple food for over two billion people in the world. Insect damage is one the major cause of yield loss. Synthesized pesticides have significantly contributed to decreasing yield losses caused by the pests in modern agriculture. However, the long-term employment of synthesized pesticide has inevitably led to the environmental pollution and human health problems.
    As a novel pest control technology, genetic modified (GM) insect-resistant crops began to grow on a large scale in 1996. These insect-resistant crops can express the insecticidal proteins from Bacillus thuringiensis (Bt) that has been used in agricultural production as a biological insecticide for more than 60 years. Commercialization of Bt crops has significantly reduced the use of synthetic insecticides. It not only cut down the cost of the growers, but also is friendly to environment and human health.
    In this study, three modified-synthesized Bt genes (cry1Ac, cry2A~* and cry9C~*) were introduced into an elite rice CMS restorer line Minghui 63 respectively, and an array of high insect-resistant transgenic lines were obtained. The main results in this study are as follows:
    1. It was confirmed that the two Bt genes (cry2A~* and cry9C~*), which were designed and synthesized in our lab, could express effectively in the transgenic rice plants. And the transgenic plants exhibited excellent insect resistance. Thus, the artificial modification of the two Bt genes is successful.
    2. Eleven homozygous transgenic lines, including two CrylAc lines (designated as TAc-1 and TAc-2), four Cry2A~* lines (designated as T2A-1, T2A-2, T2A-3 and T2A-4) and five Cry9C~* lines (designated as T9C-1, T9C-2, T9C-3, T9C-4 and T9C-5), were obtained in this study. The selection of these transgenic lines followed the same criteria: high insect-resistance, no significant phenotypic changes, single-copy insertion, and Mendelian segregation. These insect-resistant transgenic lines can be used to produce insect-resistant hybrids and serve as a resistant source for development of two-toxin Bt rice.
    3. All transgenic Bt lines exhibited highly resistant against two main rice stem bores, yellow stem borer (YSB, Tryporyza incertulas walker) and striped stem borer (SSB,
引文
1.闫心甫.转基因植物.科学出版社,北京,2003
    2.林拥军.农杆菌介导的水稻基因转化研究.[博士学位论文].武汉:华中农业大学图书馆,2001
    3.林拥军,陈浩,曹应龙,吴昌银,文静,李亚芳,华红霞.农杆菌介导的牡丹江8号高效转基因体系的建立.作物学报,2002,28:294-300
    4.郭三堆.植物Bt抗虫基因工程研究进展.中国农业科学,1995,28:8-13
    5.贾士荣,郭三堆,安道昌.转基因棉花。科学出版社,北京,2001
    6.黄大防,林敏.农业微生物基因工程.科学出版社,北京,2001
    7. Akhurst R J, James W, Bird L J, Beard C. Resistance to the CrylAc delta-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J Econ Entomol, 2003, 96:1290-1299
    8. Alam M, Datta K, Abrigo E, Oliva N, Tu J, Virmani S S Datta S K. Transgenic insect-resistant maintainer line (IR68899B) for improvement of hybrid rice. Plant Cell Rep, 1999, 18:7-8
    9. Alcantara E P, Aguda R M, Curtiss A, Dean D H, Cohen M B. Bacillus thuringiensis delta-endotoxin binding to brush border membrane vesicles of rice stem borers. Arch Insect Biochem Physiol, 2004, 55:169-177
    10. Alinia F, Ghareyazie B, Rubia L G, Bennett J, Cohen M B. Effect of plant age, larval age, and fertilizer treatment on resistance of a cry1Ab transformed aromatic rice to lepidopterous stem borers and foliage feeder. J Econ Entomol, 2000, 93:484-493
    11. Alstad D N, Andow D A. Managing the evolution of insect resistance to transgenic plants. Science, 1995, 268:1894-1896
    12. Barton K A, Whiteley H R, Yang N S. Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol, 1987, 85:1103-1109
    13. Bashir K, Husnain T, Fatira T, Latif Z, Mehdi S A, Riazuddin S. Field evaluation and risk assessment of transgenic indica basmati rice. Mol Breed, 2004, 13:301-312
    14. Bates S L, Zhao J Z, Roush R T, Shelton A M. Insect resistance management in GM crops: past, present and future. Nat Biotechnol, 2005, 23:57-62
    
    15. Bauer L S. Resistance: a threat to the insecticidal crystal proteins of Bacillus thuringiensis. Fla Entomol, 1995, 78:414-443
    
    16. Bietlot H P L, Vishnubhatla I, Carey P R, Pozsgay M. Characterization of the crysteine residues and disulfide linkages in the protein crystal of Bacillus thuringiensis. Biochem J, 1990, 267:309-305
    
    17. Bosch D, Schipper B, Van der Kleij H, de Maagd R A, Stiekema W J. Recombinant Bacillus thuringiensis crystal proteins with new properties; possibilities for resistance management. Bio/Technology, 1994, 12:915-918
    
    18. Bottrell D G, Barbosa P, Gould F. Manipulating natural enemies by plant variety selection and modification: a realistic strategy? Annu Rev Entomol, 1998, 43:347-367
    
    19. Breitler J C, Marfa V, Royer M, Meynard D, Vassal J M, Vercambre B, Frutos R, Messeguer J, Gabarra R, Guiderdoni E. Expression of a Bacillus thuringiensis cry1B synthetic gene protects Mediterranean rice against the striped stem borer. Plant Cell Rep, 2000,19:1195-1202
    
    20. Burd A D, Gould F, Bradley J R, Van Duyn J W, Moar W J. Estimated frequency of nonrecessive Bt resistance genes in bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in eastern North Carolina. J Econ Entomol, 2003, 96:137-142
    
    21. Carriere Y, Ellers-Kirk C, Liu Y B, Sims M A, Patin A L, Dennehy T J, Tabashnik B E. Fitness costs and maternal effects associated with resistance to transgenic cotton in the pink bollworm (Lepidoptera: Gelechiidae). J Econ Entomol, 2001, 94:1571-1576
    
    22. Chattopadhyay A, Bhatnagar N B, Bhatnagar R. Bacterial insecticidal toxins. Crit Rev Microbiol, 2004, 30:33-54
    
    23. Chen H, Tang W, Xu C G, Li X H, Lin Y J, Zhang Q. Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against rice lepidopteran pests. Theor Appl Genet, 2005,111:1330-1337
    
    24. Cheng X, Sardana R, Kaplan H, Altosaar I. Agrobacterium transformed rice plants expressing synthetic cry1A(b) and cry1A(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci USA, 1998, 95:2767-2772
    
    25. Cohen M B, Gould F, Bentur J S. Bt rice: practical steps to sustainable use. Int Rice Res Notes, 2000,25:4-10
    
    26. Comins H N. The development of insecticide resistance in the presence of migration. J Theor Biol, 1977a, 64:177-197
    
    27. Comins H N. The management of pesticide resistance. J Theor Biol, 1977b, 65:399-420
    
    28. Cummings C E, Armstrong G, Hodgman T C, Ellar D J. Structural and functional studies of a synthetic peptide mimicking a proposed membrane inserting region of a Bacillus thuringiensis delta-endotoxin. Mol Membr Biol, 1994,11:87-92
    
    29. Curtis C F, Cook L M, Wood R J. Selection for and against insecticide resistance and possible methods of inhibiting the evolution of resistance in mosquitoes. Ecol Entomol, 1978, 3:273-287
    
    30. Curtis C F. Theoretical models of the use of insecitide mixtures for the management of resistance. Bull Entomol Res, 1985, 75:259-265
    
    31. Datta K, Vasquez A., Tu J, Torrizo L, Alam M F, Oliva N, Abrigo E, Khush G S, Datta S K. Constitutive and tissuespecific differential expression of the cry1A(b) gene in transgenic rice plants conferring resistance to rice insect pest. Theor Appl Genet, 1998,97:20-30
    
    32. Davis P M, Onstad D W. Seed mixtures as a resistance management strategy for European corn borers (Lepidoptera: Crambidae) infesting transgenic corn expressing CrylAb protein. J Econ Entomol, 2000, 93:937-948
    
    33. De Maagd R A, Kwa M S G, van der Klei H, Yamamoto T, Schipper B, Vlak J M, Stickema W J, Bosch D. Domain III substitution in Bacillus thuringiensis delta-endotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl Environ Microbiol, 1996b, 62:1537-1543
    
    34. De Maagd R A, van der Klei H, Bakker P L, Stiekema W J, Bosch D. Different domains of Bacillus thuringiensis delta-endotoxins can bind to insect midgut membrane proteins on ligand blots. Appl Environ Microbiol, 1996a, 62:2753-2757
    
    35. Du C, Martin P A W, Nickerson K W. Comparison of disulpide contents and solubility at alkaline pH of insecticidal and noninsecticidal Bacillus thuringiensis protein crystals. Appl Environ Microbiol, 1994, 60:3847-3853
    
    36. Escriche B., Ferre J. and Silva F.J. 1997. Occurrence of a common binding site in Mamestra brassicae, Phthorimaea operculella and Spodoptera exigua for insecticidal crystal proteins Cry1A from Bacillus thuringiensis. Insect Biochem Mol Biol, 27: 651-656.
    
    37. Ferre J, Escriche B, Bel Y, Van Rie J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins. FEMS Microbiol Lett, 1995, 132:1-7
    
    38. Ferre J, Real M D, Rie J V. Jansens S, Peferoen M. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc Natl Acad Sci USA, 1991, 88:119-23
    
    39. Ferre J, Van Rie J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol, 2002, 47:501-533
    
    40. Fischhoff D A, Bowdish K S, Perlak F J, Marrone P G, McCoormick S M, Niedermeyer J G, Dean D A, Kusano K K, Mayer E J, Rochester D E, Rogers S G Fraley R T. Insect tolerant transgenic tomato plants. Bio/Technology, 1987, 5:807-813
    
    41. Fiuza L M, Nielsen-Leroux C, Goze E, Frutos R, Charles J F. Binding of Bacillus thuringiensis Cryl toxins to the midgut brush border membrane vesicles of Chilo suppressalis (Lepidoptera: Pyralidae): evidence of shared binding sites. Appl Environ Microbiol, 1996, 62:1544-1549
    
    42. Frutos R, Rang C, Royer M. Managing Insect Resistance to plants producing Bacillus thuringiensis toxin. Critical Rev Biotechnol, 1999,19:227-276
    
    43. Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K. Insect resistant rice generated by introduction of a modified 5 -endotoxin gene of Bacillus thuringiensis. Bio/Technology, 1993,11:1151-1155
    
    44. Gazit E, Bach D, Kerr I D, Sansom M S, Chejanovsky N, Shai Y. The alpha-5 segment of Bacillus thuringiensis delta-endotoxin: in vitro activity, ion channel formation and molecular modelling. Biochem J, 1994, 304:895-902
    45. Gazit E, la Rocca P, Sansom M S P, Shai Y. The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis 6 -endotoxin are consistent with an "unbrella-like" structure of the pore. Proc Natl Acad Sci USA, 1998, 95:12289-12294
    
    46. Georghiou G P, Taylor C E. Operational influences in the evolution of insecticide resistance. J Econ Entomol, 1977, 70:653-658
    
    47. Ghareyazie B, Alinia F, Menguito C A, Rubia L G, De Palma J M, Liwanag E A, Cohen M B, Khush G S, Bennett J. Enhanced resistance to two stem borers in an aromatic rice containing a synthetic cryIA(b) gene. Mol Breed, 1997, 3:401-414
    
    48. Gill S S, Cowles E A, Pietrantonio P V. The model of action of Bacillus thuringiensis endotoxins. Ann Rev Entomal, 1992, 37:615-636
    
    49. Gould F, Andeerson A. Effects of Bacillus thuringgiensis and HD-73 delta-endotoxin on growth, behavior and fitness of susceptible and toxin-adapted strains of Heliothis virescens (Lepidoptera: Noctuidae). Environ Entomol, 1991, 20:30-38
    
    50. Gould F, Anderson A, Reynolds A, Bumgarner L, Moar W. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J Econom Entomol, 1995, 88:1545-1559
    
    51. Gould F, Martynez-Ramyrez A, Anderson A, Ferre J, Silva F J, Moar W J. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc Natl Acad Sci USA, 1992, 89:7986-7990
    
    52. Gould F. Bt-resistance management: theory meets data. Nat Biotechnol, 2003, 21:1450-1451
    
    53. Gould F. Evolutionnary biology and genetically engineered crops. Bioscience, 1988, 38:26-33
    
    54. Gould F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol, 1998, 43:701-726
    
    55. Granero F, Ballester V, Ferre J. Bacillus thuringiensis crystal proteins Cry1Ab and Cry1Fa shared a high-affinity binding site in Plutella xylostella (L.). Biochem Biophys Res Com, 1996, 224:779-783
    56. Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz J L, Brousseau R, Cygler M. Bacillus thuringiensis CrylAa insecticidal toxin: crystal structure and channel formation. J Mol Biol, 1995, 254:447-464
    
    57. Hannay C L, Fitz-James P. The protein crystals of Bacillus thuringiesis Berliner. Can J Microbiol, 1955,1:694-709
    
    58. Hannay C L. Crystalline inclusions in aerobic spore-forming bacteria. Nature, 1953, 172:1004
    
    59. Heckel D G. The complex genetic basis of resistance to Bacillus thuringiensis toxin in insects. Biocontrol Sci Technol, 1994, 4:405-417
    
    60. Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6:271-282
    
    61. High S M, Cohen M B, Shu Q Y, Altosaar I Achieving successful deployment of Bt rice. Trends Plant Sci, 2004, 9:286-292
    
    62. Hofmann C, Luthy P, Hutter R, Pliska V. Bingding of the delta-edotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur J Biochem, 1988b, 173:85-91
    
    63. Hofmann C, Vanderbruggen H, Hofte H, van Rie J, Jansens S, Van Mellaert H. Sepcificity of Bacillus thuringensis 8 -endotoxins is correlated with the presence of high-affinity binding sites in brush-border membrane of target insect midgets. Proc Natl Acad Sci USA, 1988a, 85:7844-7848
    
    64. Hofte H, Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbio Rev, 1989, 53:242-255
    
    65. Husnain T, Asad J, Maqool SB, Datta SK, Riazuddin S (2002) Variability in expression of insecticidal cry1Ab gene in indica Basmati rice. Euphytica, 128:121-128
    
    66. Jackson R E, Bradley J R, Van Duyn J W. Performance of feral and Cry1Ac selected Helicoverpa zea (Lepidoptera: Noctuidae) strains on transgenic cottons expressing one or two Bacillus thuringthesis ssp. kurstaki proteins under greenhouse conditions. J Entomol Sci, 2004, 39:46-55
    
    67. James C. Global Review of Commercialized Transgenic Crops: 1998. ISAAA Briefs, No 8,1998, Ithaca, NY:ISAAA
    
    68. James C. Global Review of Commercialized Transgenic Crops: 1999. ISAAA Briefs, No 12,1999, Ithaca, NY:ISAAA
    
    69. James C. Global review of Commercialized transgenic Crops: 2000. ISAAA Briefs, No 23, 2001, Ithaca, NY:ISAAA
    
    70. James C. Global Review of Commercialized Transgenic Crops: 2001 Feature: Bt Cotton. ISAAA Briefs, No 26, 2002, Ithaca, NY:ISAAA
    
    71. James C. Global Review of Commercialized Transgenic Crops: 2002 Feature: Bt Maize. ISAAA Briefs, No 29, 2003a, Ithaca, NY:ISAAA
    
    72. James C. Global Status of Commercialized Biotech/GM Crops: 2004. ISAAA Briefs, No 32, 2004, Ithaca, NY:ISAAA
    
    73. James C. Global Status of Commercialized Transgenic Crops: 2003. ISAAA Briefs, No 30, 2003b, Ithaca, NY:ISAAA
    
    74. James C. Global status of transgenic crops inl997. ISAAA Briefs, No 5, 1997, Ithaca, NY:ISAAA
    
    75. Johnson M T, Gould F. Interaction of genetically engineered host plant resistance and natural enemies of Heliothis virescens (Lepidoptera: Noctuidae) in tobacco. Environ Entomol, 1992, 21:586-597
    
    76. Kain W C, Zhao J Z., Janmaat A F, Myers J, Shelton A M, Wang P. Inheritance of resistance to Bacillus thuringiensis CrylAc toxin in a greenhouse-derived strain of cabbage looper (Lepidoptera: Noctuidae). J Econ Entomol, 2004, 97:2073-2078
    
    77. Karim S, Dean D H. Toxicity and receptor binding properties of Bacillus thuringiensis 5 -endotoxins to the midgut brush border membrane vesicles of the rice leaf folders, Cnaphalocrocis medinalis and Marasmia patnalis. Curr Microbiol, 2000, 41:276-283
    
    78. Khanna H K, Raina S K. Elite Indica transgenic rice plants expressing modified CrylAc endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas). Transgenic Res, 2002, 11:411-23
    
    79. Knowles B H, Ellar D J. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis 8 -endotoxins with different insect specificity. Biochen Biophys Acta, 1987, 924:509-518
    
    80. Knowles B H. Mechanism of action of Bacillus thuringiensis insecticidal proteins. Adv Insect Physiol, 1994, 24:275-308
    
    81. Krattiger A F. Insect resistance in crops: a case study of Bacillus thuringiensis (Bt) and its transfer to developing countries. ISAAA Briefs, No 2, 1997, Ithaca, NY: ISAAA
    
    82. Lee M K, Aguda R M, Cohen M B, Could F L, Dean D H. Determination of binding of Bacillus thuringiensis 5 -endotoxin receptor to rice stem borer midguts. Appl Environ Microbiol, 1995, 61:3836-3842
    
    83. Li J, Carroll J, Ellar D J. Crystal structure of insecticidal 6 -endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature, 1991, 353:815-821
    
    84. Li J, Koni P A, Ellar D J. Structure of the mosquitocidal 5 -endotoxin CytB from Bacillus thuringiensis sp.kyushuensis and implications for membrane pore formation. J Mol Biol, 1996, 257:129-152
    
    85. Lin Y J, Zhang Q. Optimizing the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep, 2005, 23:540-547
    
    86. Liu Y B, Tabashnik B E, Dennehy T J, Patin A L, Sims M A, Meyer S K, Carriere Y. Effects of Bt cotton and crylAc toxin on survival and development of pink bollworm (Lepidoptera: Gelechiidae). J Econ Entomol, 2001, 94:1237-1242
    
    87. Mallet J, Porter P. Preventing insect adaptation to insect resistance crops: are seed mixtures or refugia the best strategy? Proc R Soc Lond, 1992, 250:165-169
    
    88. Maqbool S B, Christou P. Multiple traits of agronomic importance in transgenic indica rice plants: analysis of transgene integration patterns, expression levels and stability. Mol Breed, 1999, 5:471-480
    
    89. Maqbool S B, Husnain T, Riazuddin S, Masson L, Christou P. Effective control of yellow stem borer and rice leaf folder in transgenic rice indica varieties Bas 370 and M7 using the novel endotoxin cryIIA Bacillus thuringiensis gene. Mol Breed, 1998, 6:1-7
    
    90. Maqbool S B, Riazuddin S, Loc N T, Gatehouse A M R, Gatehouse J A, Christou P. Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed, 2001, 7:85-93
    
    91. Martin P A W, Travers T S. Worldwide abundance and distribution of BT isolates. Appl Environ Microbiol, 1989, 55:2437-2442
    
    92. Masson L, Luo K, Mazza A, Brousseau R, Adang M. The Cry1A(c) receptor purified from Manduca sexta displays multiple specificities. J Biol Chem, 1995b, 270: 20309-20315
    
    93. Masson L, Mazza A, Brousseau R, Tabashnik B. Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistant larvae of Plutella xylostella.J Biol Chem, 1995a, 270:11887-11896
    
    94. McGaughey W H, Gould F, Gelernter W. Bt resistance management. Nat Biotechnol, 1998,16:144-146
    
    95. McGaughey W H, Whalon M E. Managing insect resistance to Bacillus thuringiensis toxins. Science, 1992, 258:1451-1455
    
    96. McGaughey W H. Insect resistance to the biological insecticide Bacillus thuringiensis. Science, 1985, 229:193-195
    
    97. Mendelsohn M, Kough J, Vaituzis Z, Matthews K. Are Bt crops safe? Nature Biotech, 2003, 21:1003-1009
    
    98. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco cultures. Plant Physiol, 1962,15:473-493
    
    99. Murray E E, Rocheleau T, Eberle M, Stock C, Sekar V, Adang M. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol Biol, 1991,16:1035-1050
    
    100.Nayak P, Basu D, Das S, Basu A, Ghosh D, Ramakrishnan N A, Ghosh M, Sen S K. Transgenic elite indica plants expressing cryA(c) δ -endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc Natl Acad Sci USA, 1996, 94:2111-2116
    101.Onstad D, Gould F. Modeling the dynamics of adaptation to transgenic maize by European corn borer. J Econ Entomol, 1998, 91:585-93
    102.Pray C E, Huang J K, Hu R F, Scott R. Five years of Bt cotton in China - the benefits continue. Plant J, 2002, 31:423-430
    103.Raffa K F. Genetic engineering of trees to enhance resistance to insects. Bioscience, 1989, 39:524-534
    104.Rajamohan F, Lee M K, Dean D H. Bacillus thuringiensis insecticidal proteins: molecular mode of action. Prog Nucl Acid Res Mol Biol, 1998, 60:1-27
    105.Ramachandran S, Buntin G D, All J N, Tabashnik B E, Raymer P L, Adang M J, Pulliam D A, Stewart C N. Survival, development, and oviposition of resistant diamondback moth (Lepidoptera: Plutellidae) on transgenic canola producing a Bacillus thuringiensis toxin. J Econ Entomol. 1998, 91:1239-1244
    106.Ramesh S, Nagadhara D, Pasalu I C, Kumari A P, Sarma N P, Reddy V D, Rao K V. Development of stem borer resistant transgenic parental lines involved in the production of hybrid rice. J Biotech, 2004,111:131-141
    107.Roush R T. Bt-transgenic crops: just another pretty insecticides or a chance for a new start in resistance management? Pestic Sci, 1997, 51:328-334
    108.Roush R T. Two-toxin strategies for management of insect resistant transgenic crops: Can pyramiding succeed where pesticide mixtures have not? Philos Trans R Soc London Ser B, 1998, 353:1777-1786
    109.Sayyed A H, Haward R, Herrero S, Ferre J, Wright D J. Genetic and biochemical approach for characterization of resistance to Bacillus thuringiensis toxin CrylAc in a field population of the diamondback moth, Plutella xylostella. Appl Environ Microbiol, 2000, 66:1509-1516
    110.Sayyed A H, Wright D J. Fitness costs and stability of resistance to Bacillus thuringiensis in a field population of the diamondback moth, Plutella xylostella. Ecol Entomol. 2001, 26:502-508
    111.Schnepf E, Crickmore N, Van Rie J, Lereclus D, baum J, Feitelson J, Zeigler D R, Dean D H. Bacillus thuringiensis and its pesticidal crystal protein. Microbial Mol Biol Rev, 1998,62:775-806
    112.Schnepf H E, Whiteley H R. Cloning and expression of Bacillus thuringensis crystal protein gene in Escherichia coli. Proc Nat Acad Sci USA, 1981, 78:2893-2897
    113.Schwartz J L, Garneau L, Savaria D, Masson L, Brousseau R, Rousseau E. Lepidopteran specific crystal toxins from Bacillus thuringiensis form cation- and anion-selective chanels in planar lipid bilayers. J Memb Biol, 1993,132:53-62.
    114.Schwartz J L, Juteau M, Grochulski P, Cygler M, Prefontaine G, Brousseau R, Masson L. Restriction of intramolecular movements within the Cry1Aa toxin molecules of Bacillus thuringensis through disulfide bod engineering. FEBS Lett, 1997, 410:397-402
    115.Shelton A M, Tang J D, Roush R T, Metz T D, Earle E D. Field tests on managing resistance to Bt-engineered plants. Nat Biotechnol, 2000,18:339-342
    116.Shelton A M, Zhao J Z, Roush R T. Economic, ecological, food, safety and social consequence of the deployment of Bt transgenic plants. Annu Rev Entomol, 2002, 47:845-881
    117.Slatin S L, Abrams C K, English H. Delta-endotoxins form cation-selective channels in planar lipid bilayers. Biochem Biophys Res Commun, 1990,169:765-772
    118.Tabashnik B E, Carriere Y, Dennehy T J, Morin S, Sisterson M S, Rough R T, Shelton A M, Zhao J Z. Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J Econ Entomol, 2003, 96:1031-1038
    
    119.Tabashnik B E, Finson N, Groeters F R, Moar W J, Johnson M W, Luo K, Adang M J. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc Natl Acad Sci USA, 1994b, 91:4120-4124
    
    120.Tabashnik B E;, Liu Y B, Malvar T, Heckel D G, Masson L, et al. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc Natl Acad Sci USA, 1997, 94:12780-12785
    121.Tabashnik B E. Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol, 1994a, 39:47-79
    122.Tabashnik B E. Managing resistance with multiple pesticide tactics: theory, evidence and recommendations. J Econ Entomol, 1989, 82:1263-1269
    123.Tang J D, Caprio M A, Sheppard D C, Gaydon D M. Genetics and fitness costs of cyromazine resistance in the house fly (Diptera: Muscidae). J Econ Entomol, 2002, 95:1251-1260
    124.Tang J D, Collins H L, Metz T D, Earle E D, Zhao J Z, Roush R T, Shelton A M. Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies. J Econ Entomol, 2001, 94:240-247
    125.Tang J D, Gilboa S, Roush R T, Shelton A M. Inheritance, stability, and lack of fitness costs of field-selected resistance to Bacillus thuringiesis in diamondback moth (Lepidoptera: Plutellidae) from Florida. J Econ Entomol, 1997, 90:732-741
    126.Tu J, Zhang G, Datta K, Xu C, He Y, Zhang Q, Khush G S, Datta S K. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis delta-endotoxin. Nat Biotechnol, 2000, 18:1101-1104
    127.Vachon V, Paradis M J, Marsolais M, Schwartz J L, Laprade R.Enodogenous K~+/H~+ exchange activity in the Sf9 insct cell line. Biochemistry, 1995, 34:15157-15164
    
    128.Vaeck M, Reynaerts A, Hofte H, Jansens S, Beukeleer M D, Dean C, Zabeau M, Montagu M V, Leemans J. Transgenic plants protected from insect attack. Nature, 1987, 328:33-37
    129.Van Rie J, Jansens S, Hofte H, Degheele D, Van Mellaert H. Specificity of Bacillus thuringiensis delta-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects. Eur J Biochem, 1989,186:239-247
    130.Van Rie J, McGaughey W H, Johnson D E, Barnett B D, Van Mellaert H. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science, 1990, 247:72-74
    131.von Tersch M A, Slatin S L, Kulesza C A, English L H. Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin CryIIIB2 and CryIIIB2 domain I peptide. Appl Environ Microbiol, 1994, 60:3711-3717
    132.Walters F S, Slatin S L, Kulesza C A, English L H. Ion channel activity of N-terminal fragments from CryIA(c) delta-endotoxin. Biochem Biophys Res Commun, 1993, 196:921-926
    133.Wang Z H, Shu Q Y, Ye G Y, Cui H R, Wu D X, Altosaar I, Xia Y W. Genetic analysis of resistance of Bt rice to stripe stem borer (Chilo suppressalis). Euphytica, 2002,123:379-386
    134.Williams S, Friedrich L, Dincher S, Carozzi N, Kessman H, Ward E, Ryals J. Chemical regulation of Bacillus thuringgiensis delta-endotoxin expreesion in transgenic plants. Bio/Technology, 1992,10:540-543
    135.Wu C, Fan Y, Zhang C, Oliva N, Datta S K. Transgenic fertile japonica rice plants expressing a modified cry1A(b) gene resistant to yellow stem borer. Plant Cell Rep, 1997, 17:129-132
    136.Wu G, Cui H, Ye G, Xia Y, Sardana R, Cheng X, Li Y, Altosaar I, Shu Q. Inheritance and expression of the cry1Ab gene in Bt (Bacillus thuringiensis) transgenic rice. TheorAppl Genet, 2002,104:727-734
    137.Wunn J, Kloti A, Burkhardt P K, Biswas G C G, Launis K, Iglesias V A, Potrykus I. Transgenic indica rice breeding line IR58 expressing a synthetic cryA(b) gene from Bacillus thuringiensis provides effective insect pest control. Bio/Technology, 1996, 14:171-176
    
    138. Ye G Y, Shu Q Y, Yao H W, Cui H R, Cheng X Y, Hu C, Xia Y W, Gao M W, Altosaar I. Field evaluation of resistance of transgenic rice containing a synthetic cry1Ab gene from Bacillus thuringiensis Berliner to two stem borers. J Econ Entomol, 2001, 94:271-276
    
    139.Zambryski P C, Joos H, Genetello C, Leemans J, Van M, Schell J. Ti plasmid vector for the introduction of DNA into plant cell without alteration of their normal regeneration capacity. EMBO J, 1983, 2:2143-2150
    
    140.Zhao J Z, Cao J, Collins H L, Bates S L, Roush R T, Earle E D, Shelton A M. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc Nat Acad Sci USA, 2005, 102:8426-8430
    
    141.Zhao J Z, Cao J, Li Y X, Collins H L, Roush R T, Earle E D, Shelton A M.
    Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol, 2003, 21:1493-1497

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700