过表达Vmp1通过调控ZO-1抑制肝细胞癌侵袭转移
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝细胞癌(Hepatocellular Carcinoma, HCC)是世界上最常见、高发的恶性肿瘤之一,因其高发病率、高复发转移率及高死亡率,已成为一种威胁人民生命健康的最常见的恶性肿瘤。显然,深入研究HCC复发转移的分子机制并积极探索有效的抗复发转移的治疗措施,对于进一步改善HCC患者长期存活率具有重要意义。
     液泡膜蛋白1(Vacuole membrane protein 1,Vmp1)是新近发现的一类跨膜蛋白,在进化中高度保守,提示其可能参与蛋白间的相互作用和跨物种的重要生命活动。近年来的研究发现Vmp1为蛋白分泌、细胞器官形成及多细胞发育过程所必需,在诸多肿瘤相关的细胞学过程(包括细胞膜运输、生长增殖、自噬等)中发挥着关键的作用,提示Vmp1可能在肿瘤发生、发展中发挥了重要作用。更重要的是,Vmp1是细胞-细胞间连接及紧密连接形成的重要成分,其在调控细胞粘附能力方面的强大功能,提示Vmp1可能参与HCC侵袭转移过程,但其作用机制目前尚不清楚。因此,本课题在研究Vmp1在临床肝癌病例及肝癌细胞系中表达情况的基础上,进一步通过质粒构建转染技术上调Vmp1的表达,并综合利用一系列体外、体内方法研究Vmp1调控HCC侵袭转移的分子机制,同时探讨上调Vmp1表达对HCC侵袭转移的影响。我们获得了如下研究结果:
     1、我们采用半定量RT-PCR、荧光实时定量PCR和Western blot等方法检测了Vmp1 mRNA和蛋白在38例新鲜HCC组织及相应癌旁肝组织(PCLT)、5例门静脉癌栓(PVTT)中的表达水平,结果发现Vmp1 mRNA和蛋白在HCC组织中均明显低表达,在PVTT中的表达水平最低。免疫组化法检测124例HCC组织中Vmp1的表达,结果显示Vmp1主要分布于细胞浆内及胞膜,HCC组织中Vmp1蛋白阳性表达率(81/124,65.3%)明显低于PCLT组织(108/124,87.1%),且其表达水平与HCC的肿瘤结节数目、有无静脉浸润及有无包膜形成等临床病理特征密切相关。同时,结节性肝癌(NHCC)中的Vmp1蛋白表达水平明显低于孤立性大肝癌(SLHCC)和小肝癌(SHCC),而在SLHCC和SHCC间其表达无明显差异。Vmp1低表达组HCC患者的无瘤生存时间及总体生存时间均明显短于Vmp1高表达组的患者,多元Cox回归模型显示Vmp1低表达是HCC预后的独立危险因素,提示Vmp1的低表达与HCC的侵袭转移密切相关,并可能因此而导致了HCC患者的不良预后。
     2、RT-PCR及Western blot方法检测Vmp1 mRNA和蛋白在HepG2、MHCC97-L和HCCLM3这三种侵袭转移潜能依次升高的肝癌细胞系中的表达水平,并以常氏肝细胞系CCL13作为对照。结果显示Vmp1 mRNA和蛋白在HCCLM3和MHCC97-L细胞系中的表达明显低于HepG2和CCL13细胞系,且其表达水平在HepG2、MHCC97-L、HCCLM3细胞中依次降低,提示Vmp1的低表达与肝癌细胞的侵袭转移潜能密切相关。
     3、我们构建了重组质粒pCMVtag2C-VMP1,使用FuGENE 6转染并经G418筛选,获得了稳定转染细胞系HCCLM3VMP1+和空质粒对照组HCCLM3vector细胞。RT-PCR和Western blot结果发现HCCLM3VMP1+细胞中Vmp1的基因和蛋白的表达被明显上调。MTT法结果显示HCCLM3VMP1+较HCCLM3vector细胞的增殖能力明显下降;划痕实验显示HCCLM3VMP1+较HCCLM3vector细胞迁移能力明显下降,Transwell侵袭实验显示HCCLM3VMP1+细胞较HCCLM3vector细胞的侵袭能力明显下降;粘附实验结果显示与HCCLM3vector细胞相比,HCCLM3VMP1+细胞的同质性粘附能力明显增强而异质性粘附能力明显减弱。这些结果提示在体外实验中上调Vmp1的表达可显著影响肝癌细胞的粘附能力而抑制其增殖、迁移、侵袭。
     4、为在体内观察上调Vmp1对肝癌侵袭转移的影响,我们建立了HCCLM3转移性人肝癌细胞裸鼠模型。免疫组化结果显示,HCCLM3VMP1+组种植瘤组织中Vmp1的表达水平明显高于HCCLM3vector组;测量皮下种植瘤的大小,结果显示HCCLM3VMP1+组裸鼠原位种植瘤的平均体积明显小于HCCLM3vector组;裸鼠肺组织连续切片计数肺转移的数目,结果显示体内上调Vmp1能够抑制HCCLM3细胞的肺转移能力。我们的结果提示,上调Vmp1后在体内肝癌细胞的成瘤能力和侵袭转移能力受到明显抑制。
     5、已有研究显示Vmp1为细胞间连接和紧密连接形成的必要成分,在相邻细胞间的斑样结构与ZO-1共同定位。我们因而推测,Vmp1是否通过对ZO-1的调节来实现其对细胞粘附能力的影响。因此,我们用免疫共沉淀法证明HCCLM3VMP1+细胞中Vmp1与ZO-1存在直接的相互作用,但Western blot显示HCCLM3VMP1+和HCCLM3vector这两种细胞中ZO-1蛋白的表达水平并无明显差异。于是我们进一步研究Vmp1对ZO-1酪氨酸磷酸化的调控,免疫沉淀及Western blot的结果显示,HCCLMSP1+细胞中ZO-1蛋白的酪氨酸磷酸化水平明显低于HCCLM3vector。这些结果提示,上调Vmp1的表达可以降低ZO-1蛋白的酪氨酸磷酸化水平,从而上调ZO-1的功能以抑制肝癌的转移。
     基于上述研究结果我们可以得出以下结论:Vmp1在肝癌组织中低表达,其表达水平与肿瘤结节数目、包膜形成及静脉侵犯等临床病理特征密切相关,并显著影响肝癌患者的预后。研究证明,体内外上调Vmp1的表达可显著抑制肝癌的侵袭转移。Vmp1通过调节ZO-1的酪氨酸磷酸化调控肝癌细胞的粘附能力,从而在肝癌侵袭转移中发挥重要作用。本研究提示,Vmp1可作为一个新的肝癌预后标志物和潜在的侵袭转移干预靶点。
Hepatocellular carcinoma (HCC)is one of the most common malignancies in the world.Because of the high incidence, high recurrence and high mortality, HCC has already become the important risk for the people's health in China and all over the world. Thus,exploring further inhibition of invasion and metastasis is of great importance in the HCC therapies.
     Vacuole membrane protein 1 (Vmp1)is a recently identified conserved putative membrane protein, whose function is now beginning to be elucidated. Recent studies have demonstrated that Vmp1 is required for protein secretion, organelle organization, as well as organelle biogenesis and multicellular development. Vmp1 is recently identified to be importantly involved in cancer-relevant processes, including membrane traffic, proliferation, growth and autophagy. These results suggest a critical role of Vmp1 in tumor relevant cellular processes.More importantly and interestingly, recent reports showed that Vmp1 is an essential component of initial cell-cell contacts and tight junction formation, which playing a critical role in cell-cell adhesion. However, the function of this protein and its mode of action in tumor progression are still unknown. Therefore, we carried out the present study to determine the expression of Vmp1 in human HCC tissues as well as cell lines and attempted to elucidate the function of Vmp1 in the metastasis of HCC by characterizing its role in cell adherence via using both in vitro and in vivo models.
     1.Semi-quantitative PCR, real-time quantitative PCR and Western blot were employed to detect Vmpl mRNA and protein in 38 cases of HCC fresh tissues,paracarcinomatous liver tissues (PCLTs), and 5 portal vein tumor thromboses (PVTTs). Our results showed that both mRNA and protein levels of Vmpl were significantly decreased in HCC tissues than those in the corresponding PCLTs and NL tissues, even lower in PVTT compared to HCC.Immunohistochemical staining showed a cytoplasmic and membranic distribution of Vmpl,and the positive expression rate of Vmpl was significantly lower in HCC (81 of 124, 65.3%)than that in PCLT(108 of 124,87.1%). The Vmp1 expression levels were found significantly lower in HCCs with multiple nodules, without capsule formation and with vein invasion. Furthermore, the expression level of Vmpl protein was significantly down-regulated in nodular HCC (NHCC)when compared with solitary large HCC (SLHCC) and small HCC(SHCC).Moreover, HCC patients of the low Vmp1 expression group had both poorer disease free survival and poorer overall survival than those of the high Vmp1 expression group.By multivariable Cox regression analysis,low Vmp1 expression was found to be an independent prognostic factor for overall survival.
     2.We further confirm the Vmp1 expression in three HCC cell lines: HepG2, MHCC97-L and HCCLM3,with a liver cell line CCL13 as a control.The results of RT-PCR and Western blot showed a significantly lower expression of the Vmp1 mRNA and protein in HCCLM3 and MHCC97-L cells than those in HepG2 and CCL13 cells.Among the three HCC cell lines analyzed, HCCLM3 cells have the lowest Vmp1 expression, followed by MHCC97-L and HepG2.Of note is that the reduced expression of Vmp1 were in agreement with the metastatic potential of these HCC cell lines, suggesting a potential role for Vmp1 in HCC metastasis.
     3.To further define the correlation of Vmp1 expression and HCC metastasis,we employed plasmid transfection approach to up-regulate the expression of Vmp1 in HCCLM3 cells.We successfully constructed recombinant plasmid pCMVtag2C-VMP1.After FuGENE 6 transfection and three-week selection in media supplied with G418,HCCLM3 cell lines, stably transfected with the VMP1-expressing vector or control vector, were obtained and named as HCCLM3VMP1+ and HCCLM3vector respectively. The expression of Vmp1 mRNA and protein were markedly increased in HCCLM3VMP1+ compared with HCCLM3vector, which showed a satisfactory transfection efficiency. By MTT method, an obvious decrease of proliferation was observed in HCCLM3VMP1+ cells compared with HCCLM3vector cell.The wound-healing assay showed that the closure of HCCLM3VMP1+was significantly slower than that of HCCLM3vector. The results of Transwell invasion assay showed the number of HCCLM3VMP1+ cells that passed through matrigel was only 34% as compared with HCCLM3vector cells.Considering the close relation of Vmp1 with cellular adhesion, the adhesion test confirmed HCCLM3VMP1+ cells had significantly higher homogeneity adhesion and lower heterogeneity adhesion ability than HCCLM3vector cells.Together, these results support a critical role for Vmp1 in the adherence and metastasis of HCCLM3 cell.
     4.We further examined the in vivo relevance of the potential role for Vmp1 in HCC tumorigenesis and metastasis by using a nude mice implantation model.Primary subcutaneous tumor of HCCLM3 was measured every five days and mice were sacrificed 35 days after implantation. We found that the average size of primary tumors in HCCLM3VMP1+ group was dramatically smaller than that of HCCLM3vector group,which suggested that up-regulation of Vmp1 in vivo could inhibit growth of HCC.The expression of Vmp1 in HCCLM3 tumor was determined to ensure the difference of Vmp1 expression in vivo.The results showed that the expression of Vmp1 was significantly increased in HCCLM3VMP1+ tumor than that in HCCLM3vector tumor. The pulmonary metastasis was observed in the lung tissue sections of only two mice in HCCLM3VMP1+ group (two of seven,28.6%),significantly less than the ratio of pulmonary metastasis in HCCLM3vector group(six of seven,85.7%).Together, these data support an important role for Vmp1 in HCC metastasis.
     5.Since Vmp1 is essential for cell-cell contacts and tight junction formation, where it colocalizes with ZO-1 in spots between neighboring cells, we further explore Vmp1's regulating effect on ZO-1.Firstly, co-immunoprecipitations confirmed the direct interaction of Vmp1 and ZO-1 proteins in HCC cells.Next, the corresponding ZO-1 protein expression of HCCLM3VMP1+ and HCCLM3vector cells were detected, but revealed no significant change at total protein level.Further immunoprecipitation and Western blotting of HCCLM3 MP1+ and HCCLM3vector cells showed ZO-1 was highly tyrosine-phosphorylated in HCCLM3vector, but was dephosphorylated in HCCLM3VMP1+,confirming the hypothesis that up-regulation of Vmp1 decreases the tyrosine phosphorylation of ZO-1,which leads to up-regulation of the function of ZO-1,and these phenomena contribute to inhibition of HCC metastasis.
     In conclusion, our study has shown for the first time that down-regulation of Vmp1 significantly correlates with poor prognosis of HCC.Furthermore, we have demonstrated Vmpl inhibits metastasis of HCC by affecting cell adherence through reduction of ZO-1 tyrosine phosphorylation. Collectively, our data suggests Vmp1 as a novel prognostic marker and a potential therapeutic target for metastasis of HCC.
引文
1.Roberts LR. Sorafenib in liver cancer-just the beginning. N Engl J Med. 2008;359:420-422.
    2.Parkin DM, Bray F, Ferlay J, et al.Global cancer statistics.2002;CA Cancer J Clin.2005;55:74-108.
    3. 张思维,李连弟,鲁凤珠,等.中国1990-1992年原发性肝癌死亡调查分析.中华肿瘤杂志.1999;21:245-249.
    4.Young AL, Malik HZ, Abu-Hilal M, et al. Large hepatocellular carcinoma:time to stop preoperative biopsy. J Am Coll Surg.2007;205:453-462.
    5.吴孟超.肝癌外科综合治疗的现状和前景.中华肝胆外科杂志.2006;12:1-4.
    6.Makuuchi M, Imamura H, Sugawara Y, et al.Progress in surgical treatment of hepatocellular carcinoma. Oncology.2002;62:74-81.
    7.Yang LY, Fang F, Ou DP, et al.Solitary large hepatocellular carcinoma:a specific subtype of hepatocellular carcinoma with good outcome after hepatic resection. Ann Surg.2009;249:118-123.
    8.Fan ST, Lo CM, Liu CL, et al.Hepatectomy for hepatocellular carcinoma:toward zero hospital deaths. Ann Surg.1999;229:322-330.
    9. El-Serag HB, Rudolph KL.Hepatocellular carcinoma:epidemiology and molecular carcinogenesis. Gastroenterology.2007;132:2557-2576.
    10.Marrero JA. Hepatocellular carcinoma. Curr Opin Gastroenterol. 2006;22:248-253.
    11.Poon RT, Fan ST, Wong J, et al.Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg. 2000;232:10-24.
    12.Fan ST, Lo CM, Liu CL, et al.Hepatectomy for hepatocellular carcinoma:toward zero hospital deaths. Ann Surg.1999;229:322-330.
    13.Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology.2005; 42:1208-1236.
    14.Pang RW,Joh JW, Johnson PJ, et al.Biology of hepatocellular carcinoma. Ann Surg Oncol.2008;15:962-971.
    15.Flores ER, Sengupta S, Miller JB,et al.Tumor predisposition in mice mutant for p63 and p73:evidence for broader tumor suppressor functions for the p53 family. Cancer Cell.2005;7:363-373.
    16.Martin TA, Jiang WG. Tight junctions and their role in cancer metastasis. Histol Histopathol.2001;16:1183-1195.
    17. Benoliel AM, Pirro N, Marin V, et al.Correlation between invasiveness of colorectal tumor cells and adhesive potential under flow. Anticancer Res. 2003;23:4891-4896.
    18.Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature.1998;392:190-3.
    19.Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions.Nat Rev Mol Cell Biol.2001;2:285-93.
    20.Dusetti NJ, Jiang Y, Vaccaro MI, et al.Cloning and expression of the rat vacuole membrane protein 1(VMP1),a new gene activated in pancreas with acute pancreatitis, which promotes vacuole formation. Biochem Biophys Res Commun. 2002;290:641-9.
    21.Starkuviene V, Liebel U, Simpson JC, et al. High-content screening microscopy identifies novel proteins with a putative role in secretory membrane traffic. Genome Res.2004;14:1948-1956.
    22.Bard F, Casano L, Mallabiabarrena A, et al.Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 2006;439:604-607.
    23.Hirokawa T, Boon-Chieng S,Mitaku S.SOSUI:classification and secondary structure prediction system for membrane proteins. Bioinformatics. 1998;14:378-379.
    24.Mehrle A, Rosenfelder H, Schupp I, et al.The LIFEdb database in 2006.Nucleic Acids Res.2006;34:415-418.
    25.Bannasch D, Mehrle A, Glatting KH, et al. LIFEdb:a database for functional genomics experiments integrating information from external sources, and serving as a sample tracking system. Nucleic Acids Res.2004;32:505-8.
    26.Arlt D, Huber W, Liebel U, et al.Functional profiling:from microarrays via cell-based assays to novel tumor relevant modulators of the cell cycle.Cancer Res.2005;65:7733-7742.
    27.Calvo-Garrido J, Carilla-Latorre S, Lazaro-Dieguez F, et al. Vacuole membrane protein 1 is an endoplasmic reticulum protein required for organelle biogenesis, protein secretion, and development. Mol Biol Cell.2008;19:3442-53.
    28.Calvo-Garrido J, Carilla-Latorre S,Escalante R. Vacuole membrane protein 1, autophagy and much more.Autophagy.2008;4:835-7.
    29.Ropolo A, Grasso D, Pardo R, et al.The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. J Biol Chem. 2007;282:37124-33.
    30. Vaccaro MI, Ropolo A, Grasso D,et al. A novel mammalian trans-membrane protein reveals an alternative initiation pathway for autophagy. Autophagy. 2008;4:388-90.
    31.Sacchetti ML, Grasso D, Lo Re AE, et al. Autophagy mediated by VMP1 expression is a survival mechanism in caerulein-treated AR42J pancreas cells. Gastroenterology 2008;134:429-429.
    32.Pardo RP, Lo Re AE, Grasso D, et al.The pancreatitis-induced membrane protein VMP1 that triggers autophagy interacts with S100A10.Gastroenterology 2008;134:287-288.
    33.Boer JM, Huber WK, Sultmann H, et al.Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31500-element cDNA array. Genome Res.2001;11:1861-1870.
    34.Higgins JP, Shinghal R, Gill H, et al.Gene expression patterns in renal cell carcinoma assessed by complementary DNA microarray. Am J Pathol. 2003;162:925-932.
    35.Sauermann M, Sahin O, Sultmann H, et al. Reduced expression of vacuole membrane protein 1 affects the invasion capacity of tumor cells.Oncogene. 2008;27:1320-6.
    36.Arlt D, Sauermann M, Sahin 0, et al.The role of the transmembrane protein Vmp1 in the formation of cell-cell contacts. Eur J Cell Biol 2008;87:43-43.
    37.Arlt D, Sauermann M, Sahin 0, et al.The invasion-suppressive function of the novel primordial junction protein Vmpl.Eur J Cell Biol 2007;86:39-39.
    38.Edmondson HA, Steiner PE.Primary carcinoma of the liver:a study of 100 cases among 48,900 necropsies. Cancer.1954;7:462-504.
    39.Shimizu M, Saitoh Y, Itoh H. Immunohistochemical staining of Ha-ras oncogene product in normal, benign, and malignant human pancreatic tissues.Hum Pathol 1990;21:607-612.
    40.Wang W, Wu F, Fang F, et al.Inhibition of invasion and metastasis of hepatocellular carcinoma cells via targeting RhoC in vitro and in vivo.Clin Cancer Res.2008;14:6804-12.
    41.Ou DP, Tao YM, Tang FQ, et al. The hepatitis B virus X protein promotes hepatocellular carcinoma metastasis by upregulation of matrix metalloproteinases. Int J Cancer.2007;120:1208-1214.
    42.Ou DP, Tao YM, Chang ZG, et al.Hepatocellular carcinoma cells containing hepatitis B virus X protein have enhanced invasive potential conditionally. Dig Liver Dis.2006;38:262-267.
    43.Diaz R, Silva J, Garcia JM, et al.Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer. 2008;47:794-802.
    44.Li WC, Ye SL, Sun RX, et al. Inhibition of growth and metastasis of human hepatocellular carcinoma by antisense oligonucleotide targeting signal transducer and activator of transcription 3.Clin Cancer Res.2006;12:7140-7148.
    45.Aravalli RN, Steer CJ, Cressman EN.Molecular mechanisms of hepatocellular carcinoma. Hepatology.2008;48:2047-63.
    46.Ferlay J, Bray F, Pisani P, et al. Globocan 2000.Cancer incidence, mortality and prevalence worldwide.IARC Cancer Base No.5,Lyon:2001.CD-ROM
    47.Ou DP, Yang LY, Huang GW,et al.Clinical analysis of the risk factors for recurrenceof HCC and its relationship with HBV.World J Gastroenterol.2005;11: 2061-2066.
    48.Yang LY, Tao YM, Ou DP, et al.Increased expression of Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2 correlated with poor prognosis of hepatocellular carcinoma. Clin Cancer Res.2006; 12:5673-5679.
    49.Yang LY, Wang W, Peng JX, et al. Differentially expressed genes between solitary large hepatocellular carcinoma and nodular hepatocellular carcinoma. World J Gastroenterol.2004;10:3569-3573.
    50.Christofori G New signals from the invasive front. Nature.2006;441:444-50.
    51.Michl P, Barth C, Buchholz M, et al.Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer. Cancer Res.2003;63:6265-71.
    52.Elbashir SM, Harborth J, Lendeckel W, et al.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature.2001;411: 494-498.
    53.Rana TM. Illuminating the silence:understanding the structure and function ofsmall RNAs.Nat Rev Mol Cell Biol.2007;8:23-36.
    54.杨连粤,常志刚.孤立性大肝癌的特征及治疗策略.中国医刊.2004;39:14-17.
    55.杨连粤,刘合利,黄耿文,等.孤立性大肝癌分子病理特征的初步研究.中华实验外科杂志.2004;21:94-96.
    56.Chang ZG, Yang LY,Wang W, et al.Determination of high mobility group A1 (HMGA1)expression in hepatocellular carcinoma:a potential prognostic marker. Dig Dis Sci.2005;50:1764-1770.
    57.Wang W, Yang LY, Yang ZL, et al.Elevated expression of autocrine motility factor receptor correlates with overexpression of RhoC and indicates poor prognosis in hepatocellular carcinoma. Dig Dis Sci.2007;52(3):770-775.
    58.Gandemer V, Rio AG,de Tayrac M, et al.Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia. BMC Genomics.2007;23:385.
    59.Saito Y, Friedman JM, Chihara Y, et al. Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun.2008 Dec 29.[Epub ahead of print]
    60. Patra SK, Patra A, Rizzi F, et al.Demethylation of(Cytosine-5-C-methyl)DNA and regulation of transcription in the epigenetic pathways of cancer development. Cancer Metastasis Rev.2008;27:315-334.
    61.Fidler IJ. Cancer metastasis. Br Med Bull.1991;47:157-157.
    62.Li Y, Tian B, Yang J, et al.Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics. J Cancer Res Clin Oncol.2004;130:460-468.
    63.Tian J, Tang ZY, Ye SL, et al. New human hepatocellular carcinoma (HCC)cell line with highly metastatic potential(MHCC97)and its expressions of the factors associated with metastasis.Br J Cancer.1999;81:814-821.
    64.Li Y, Tang ZY, Ye SL, et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97.World J Gastroenterol.2001;7:630-636.
    65.Li Y,Tang Y,Ye L,et al.Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarray. J Cancer Res Clin Oncol. 2003;129:43-51.
    66.Parsons JT. Focal adhesion kinase:the first ten years.J Cell Sci.2003;116:1409-1416.
    67.Shin K, Fogg VC, Margolis B.Tight junctions and cell polarity. Annu Rev Cell Dev Biol 2006;22:207-35.
    68.Jamora C, Fuchs E. Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol 2002;4:101-8.
    69.Bodemann BO,White MA. Ral GTPases and cancer:linchpin support of the tumorigenic platform. Nat Rev Cancer 2008;8:133-40.
    70.Martin TA, Watkins G, Mansel RE, Jiang WG.Loss of tight junction plaque molecules in breast cancer tissues is associated with a poor prognosis in patients with breast cancer. Eur J Cancer 2004;40:2717-25.
    71.Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB,Gardner TW. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1.A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 1999;274:23463-7.
    72.Chen Y, Lu Q, Schneeberger EE, Goodenough DA. Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin-Darby canine kidney cells. Mol Biol Cell 2000;11:849-62.
    73.Hunter T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine:its role in cell growth and disease.Philos Trans R Soc Lond B Biol Sci. 1998;353:583-60.
    74. Yan JX, Packer NH, Gooley AA, et al. Protein phosphorylation:technologies for the identification of phosphoamino acids. J Chromatogr A.1998;808:23-41.
    75.Kaihara T, Kawamata H, Imura J, et al.Redifferentiation and ZO-1 reexpression in liver-metastasized colorectal cancer:Possible association with epidermal growth factor receptor-induced tyrosine phosphorylation of ZO-1.Cancer Sci 2003;94:166-72.
    1.Flores ER, Sengupta S,Miller JB, et al. Tumor predisposition in mice mutant for p63 and p73:evidence for broader tumor suppressor functions for the p53 family. Cancer Cell.2005;7:363-373.
    2.Martin TA, Jiang WG. Tight junctions and their role in cancer metastasis. Histol Histopathol.2001;16:1183-1195.
    3.Benoliel AM, Pirro N, Marin V, et al.Correlation between invasiveness of colorectal tumor cells and adhesive potential under flow. Anticancer Res. 2003;23:4891-4896.
    4.Perl AK, Wilgenbus P, Dahl U, et al.A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature.1998;392:190-3.
    5.Tsukita S,Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol.2001;2:285-93.
    6.Sauermann M, Sahin O, Sultmann H, et al. Reduced expression of vacuole membrane protein 1 affects the invasion capacity of tumor cells. Oncogene. 2008;27:1320-6.
    7. Bard F, Casano L, Mallabiabarrena A, et al. Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 2006;439:604-607.
    8.Dusetti NJ, Jiang Y, Vaccaro MI, et al. Cloning and expression of the rat vacuole membrane protein 1(VMP1),a new gene activated in pancreas with acute pancreatitis, which promotes vacuole formation. Biochem Biophys Res Commun. 2002;290:641-9.
    9.Starkuviene V, Liebel U, Simpson JC, et al.High-content screening microscopy identifies novel proteins with a putative role in secretory membrane traffic. Genome Res.2004;14:1948-1956.
    10.Hirokawa T, Boon-Chieng S, Mitaku S.SOSUI:classification and secondary structure prediction system for membrane proteins.Bioinformatics.1998;14: 378-379.
    11.Mehrle A, Rosenfelder H, Schupp I,et al.The LIFEdb database in 2006. Nucleic Acids Res 2006;34:415-418.
    12.Bannasch D,Mehrle A, Glatting KH, et al.LIFEdb:a database for functional genomics experiments integrating information from external sources, and serving as a sample tracking system. Nucleic Acids Res.2004;32:505-8.
    13.Jiang PH, Motoo Y, Vaccaro MI,et al.Expression of vacuole membrane protein 1 (VMP1)in spontaneous chronic pancreatitis in the WBN/Kob rat. Pancreas. 2004;29:225-30.
    14. Arlt D, Huber W, Liebel U, et al. Functional profiling:from microarrays via cell-based assays to novel tumor relevant modulators of the cell cycle. Cancer Res.2005;65:7733-7742.
    15.Arlt D, Sauermann M, Sahin O, et al. The role of the transmembrane protein Vmpl in the formation of cell-cell contacts.Eur J Cell Biol 2008;87:43-43.
    16.Arlt D, Sauermann M, Sahin O, et al. The invasion-suppressive function of the novel primordial junction protein Vmpl.Eur J Cell Biol 2007;86:39-39.
    17. Calvo-Garrido J, Carilla-Latorre S,Lazaro-Dieguez F, et al. Vacuole membrane protein 1 is an endoplasmic reticulum protein required for organelle biogenesis, protein secretion, and development. Mol Biol Cell.2008;19:3442-53.
    18.Calvo-Garrido J, Carilla-Latorre S, Escalante R. Vacuole membrane protein 1, autophagy and much more. Autophagy.2008;4:835-7.
    19.Ropolo A, Grasso D, Pardo R, et al.The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. J Biol Chem. 2007;282:37124-33.
    20.Vaccaro MI,Ropolo A, Grasso D, et al.A novel mammalian trans-membrane protein reveals an alternative initiation pathway for autophagy. Autophagy. 2008;4:388-90.
    21.Sacchetti ML, Grasso D, Lo Re AE, et al.Autophagy mediated by VMP1 expression is a survival mechanism in caerulein-treated AR42J pancreas cells. Gastroenterology 2008;134:429-429.
    22.Pardo RP, Lo Re AE, Grasso D, et al.The pancreatitis-induced membrane protein VMP1 that triggers autophagy interacts with S100A10. Gastroenterology 2008;134:287-288.
    23.Hara T, Nakamura K, Matsui M, et al.Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice.Nature.2006;441:885-889.
    24. Ropolo A, Grasso D, Pardo R, et al. The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. J Biol Chem. 2007;282:37124-33.
    25.Calvo-Garrido J, Carilla-Latorre S, Lazaro-Dieguez F, et al. Vacuole membrane protein-1 is an endoplasmic reticulum protein required for organelle biogenesis, protein secretion, and development. Mol Biol Cell.2008;19:3442-53.
    26.Fidler IJ. Cancer metastasis.Br Med Bull.1991;47:157-157.
    27. Flores ER, Sengupta S, Miller JB,et al.Tumor predisposition in mice mutant for p63 and p73:evidence for broader tumor suppressor functions for the p53 family. Cancer Cell.2005;7:363-373.
    28.Liu YN,Lee W W, Wang C Y, et al.Regulatory mechanisms controlling human E-cadherin gene expression. Oncogene.2005;24:8277-90.
    29.Jaw hari A, Jordan P, Mentele E, et al.Abnormal immunoreactivity of the E-cadherin-catenin complex in gastric carcinoma:relationship with patient's survival.Gastroenterology.1997;112:46-54.
    30.Birchmeiers W, KellEer G, Hofler H.Cadherin expression in carcinomas:role of the formation of cell junction and prevention of invasiveness. BBA. 1994;11:1321-1334.
    31.Fuku dome MY, Yangihara K, et al.Characterization of mutant E-cadherin proteinencoded by a mutant gene frequently seen in diffuse type human gastric carcinoma. Int J Cancer.2000;88:579-58.
    32.Anastasiadis PZ, Reynolds AB.The p120 catenin family:complex roles in adhesion, signaling and cancer. J Cell Sci.2000;113:Pt8.
    33.Zheng ZH, Sun XJ, Zhou HT, et al.Analysis of metastasis suppressing function of E-cadherin in gastric cancer cells by RNAi. World J Gastroenterol. 2005;11:2000-2003.
    34.Huiping C, Krist jansdottir S, Jonasson JG, et al. Alterations of E-cadherin and beta-cateninin gastric cancer. BMC cancer.2001;1:16224.
    35.Guilford P, Hopkins J, Harraway J, et al.E-cadherin germline mutations in familial gastric cancer. Nature.1998;392:402-405.
    36.Gayther SA, Gorringe KL,Ramus SJ, et al.Identification of germ-line E-cadherin mutations in gastric cancer famllies of European origin. Cancer Res. 1998;58:4086-4089.
    37.H C Kim, J M D wheeler, J C Kim, et al.The E-cadherin gene (CDH1)variants T340A and L599V in gastric and colorectal cancer patients in Korea. Gut. 2000;47:262-267.
    38.Miyaki M, Iijima T, Kimura J, et al.Frequent mutation of β-catenin and APC genes in primary colorectal tumors from patients with hereditary nonpolyposis colorectal cancer. Cancer Res.1999;59:4506-4509.
    39.Woo DK, Kim, Lee H S,et al.Altered expression and mutation of beta-catenin gene in gastric carcinomas and cell lines.Int J Cancer Predict Oncol. 2001;95:108-11.
    40.Clements WM, Wang J, Sarnaik A, et al.beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res. 2002;62:3503-3506.
    41.Gen Tamura, et al.E-cadherin gene promoter hypermethylation in primary human gastric carcinomas. Journal of the National Cancer Institute.2000;92:56.
    42.Grazianol F, et al.Combined analysis of E-cadherin gene(CDH1)promoter hypermethylation and E-cadherin protein expression in patients with gastric cancer:implications for treatment with demethylating drugs.Annals of Oncology. 2004;15:489-492.
    43.Beavon IRG, Kiridoshi H, Terasaki H, et al.The E-cadherin-catenin complex in tumour metastasis structure function and regulation. Eur J Cancer. 2000;36:1607-1620.
    44.Fukata M, Kuroda S,Nakagawa M, et al. Cdc42 and Racl regulate the interaction of IQGAP1 with β-catenin. J Biol Chem.1999;274:26044-26050.
    45.Schuhmacher et al. Rapid Detection of Mutated E-Cadherin in Peritoneal Lavage Specimens From Patients With Diffuse-Type Gastric Carcinoma. Diagnostic molecular pathology.1999;2:66.
    46.Yang J M, O'neill P, Jin W, et al. Extracellular matrix metalloproteinase inducer [CD147] confers resistance of breast cancer cells to Anoikis through inhibition of bim. J Bio Chem.2006;281:9719-20.
    47. Stallmach A, Wittig B M, Kremp K, et al. Downregulation of CD44v in colorectal carcinomas is associated with hypermethylation of the CD44 promoter region. Exp Mol Pathol.2003;74:262-6.
    48.Park C C, Zhang H, Pallavicm M, et al.Betal integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res.2006;66:1526-35.
    49. Laubli H,Stevenson J L,VsrkiA,et al.L-selectin facilitation of metastasis involves temporal induction of Fut72dependent ligands at sites of tumor cell arrest. Cancer Res.2006;66:1536-42.
    50.高进,章静波.癌的侵袭与转移基础与临床[M].北京:科学出版社,2003.123.
    51.Furuse M, Fujita K, Hiiragi T, et al.Claudin-1 and-2:novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol.1998;141:1539-1550.
    52.Furuse M, Sasaki H, Tsukita S.Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol.1999;147:891-903.
    53.Cera MR, Del Prete A, Vecchi A. Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice.J Clin Invest.2004;114:729-738.
    54.Zhong Y,Saiton T, Minase T.Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein distinct from ZO-1,cingulin and ZO-2.J Cell Biol. 1993;120:477-483.
    55.Hamazaki Y, Itoh M, Sasaki H, et al.Multi-PDZ domain protein 1 (MUPP1)is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule.J Biol Chem.2002;277:455-461.
    56.Soler AP, Miller RD,Laughlin KV,et al.Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis. 1999;20:1425-1431.
    57.Tokes AM, Kulka J, Paku S,et al.Claudin-1,-3 and-4 proteins and mRNA expression in benign and malignant breast lesions:a research study. Breast Cancer Res.2005;7:R296-R305.
    58.de Oliveira SS,de Oliveira IM, De Souza W, et al. Claudins upregulation in human colorectal cancer. FEBS Lett.2005;579:6179-6185.
    59. Gupta AK, Melton LJ, Petersen GM, et al. Changing trends in the incidence, stage, survival, and screen-detection of colorectal cancer:a population-based study.Clin Gastroenterol Hepatol.2005;3:150-158.
    60.Furuse M, Hata M, Furuse K, et al. CLD-based tight junctions are crucial for the mammalian epidermal barrier:a lesson from Claudin-1 deficient mice. Cell Biol. 2002;156:1099-1111.
    61.Morita K, FuruseM, Fujimoto K, et al.Claudin multigene family en-coding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA.1999;96:511-516.
    62.Swisshelm K, Macek R, KubbiesM. Role of Claudins in tumorigenesis. ADV Drug Deliv Rev.2005;57:919-928.
    63.Karen N, MurataM, KikuchiK, et al.Tight junctions and human diseases.Med ElectronMicrosc.2003;36:147-156.
    64.Morita K,Sasaki H,Furuse M,et al. Endothelial laudin Claudin-5/TMVCF constitutes tight junction strands in endothelial cells. Cell Biol.1999;147: 185-194.
    65.Long H, Crean CD, LeeWH, et al. Expression of clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium. Cancer Res.2001;61:7878-7881.
    66.Rangel LB,Agarwal R, Souza T, et al.Tight junction proteins claudin-3 and claudin-4 are frequently overexp ressed in ovarian cancer but not in ovarian cystadenomas.Clin Cancer Res.2003;9:2567-2575.
    67. Kominsky SL,ValiM, Korz D, et al. Clostridium perfringens enterotox in elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3 and 4.Am J Pathol.2004;164:1627-1633.
    68.Montgomery E, Mamelak AJ, Gibson M, et al.Overexp ression of claudin proteins in esophageal adenocarcinoma and its precursor lesions. Appl Immunohistochem Mol Morphol.2006;14:24-30.
    69. Nichols.LS, Ashfaq R, Iacobuzio-Donahue CA. Claudin-4 protein expression in primary and metastatic pancreatic cancer:support for use as a therapeutic target. Am J Clin Pathol.2004;121:226-230.
    70.Resnick MB, GavilanezM, Newton E, et al.Claudin expression in gastric adenocarcinomas:a tissue microarray study with prognostic correlation. Hum Pathol.2005;36:886-892.
    71.de Oliveiraa SS, de Oliveira IM, Souza WD. Claudins upregulation in human colorectal cancer. FEBS Lett.2005;579:6179-6185.
    72.Stevenson B R, Siliciano J D, Mooseker M S,et al. Identification of ZO-1:a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol.1986;103:755.
    73.Howarth A G, HughesM R, Stevenson B R. Detection of the tight junction-associated protein ZO-1 in astrocytes and other nonepithelial cell types. Am J Physiol.1992;262:461.
    74.Kaihara T, Kusaka T, Nishi M, et al.Redifferentiation and decreased expression of adhesion molecules, E-cadherin and ZO-1 in colorectal cancer are closely related to liver metastasis. J Exp Clin Cancer Res.2003;22:117.
    75.Kaihara T, Kawamata H, Imura J, et al. Redifferentiation and ZO-1 reexpression in liver-metastasized colorectal cancer:Possible association with epidermal growth factor receptor-induced tyrosine phosphorylation of ZO-1.Cancer Sci 2003;94:166-72.
    76.Fanning A S,Jameson B J, Jesaitis L A, et al.The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem.1998;273:29745.
    77. Fanning A S, Ma T Y, Anderson J M. Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1.FASEB J. 2002;16:1835.
    78.Umeda K, Ikenouchi J, Katahira-Tayama S, et al. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell. 2006;126:741.
    79.Morris A P, Tawil A, Berkova Z, et al. Junctional adhesion molecules(JAMs) are differentially expressed in fibroblasts and co-localize with ZO-1 to adherens-like junctions.Cell Commun Adhes.2006;13:233.
    80. Chen V C,Li X,Perreault H,et al.Interaction of zonula occludens-1(ZO-1) with alpha-actinin-4:application of functional proteomics for identification of PDZ domain-associated proteins. J Proteome Res.2006;5;2123.
    81.Citi S, Sabanay H, Jakes R, et al. Cingulin, a new peripheral component of tight junctions. Nature.1988;333:272.
    82.Zhong Y, Saitoh T, Minase T, et al.Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein distinct from ZO-1,cingulin and ZO-2.J Cell Biol.1993;120:477.
    83.Fanning A S,Mitic L L, Anderson J M. Transmembrane proteins in the tight junction barrier. J Am Soc Nephrol.1999;10:1337.
    84.Wittchen E S, Haskins J, Stevenson B R. Protein interactions at the tight junction. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3.J Biol Chem.1999;274:35179.
    85.Ebnet K, Schulz C U, Meyer Zu Brickwedde M K, et al. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1.J Biol Chem.2000;275:27979.
    86. Boer JM, Huber WK, Sultmann H, et al.Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31500-element cDNA array. Genome Res.2001;11:1861-1870.
    87.Higgins JP, Shinghal R, Gill H, et al. Gene expression patterns in renal cell carcinoma assessed by complementary DNA microarray. Am J Pathol. 2003;162:925-932.
    88.Shin K, Fogg VC, Margolis B.Tight junctions and cell polarity. Annu Rev Cell Dev Biol.2006;22:207-35.
    89.Jamora C, Fuchs E.Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol.2002;4:101-8.
    90.Bodemann BO, White MA. Ral GTPases and cancer:linchpin support of the tumorigenic platform. Nat Rev Cancer.2008;8:133-40.
    91.Martin TA, Watkins G, Mansel RE, et al.Loss of tight junction plaque molecules in breast cancer tissues is associated with a poor prognosis in patients with breast cancer. Eur J Cancer.2004;40:2717-25.
    92.Antonetti DA, Barber AJ, Hollinger LA, et al.Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1.A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem.1999;274:23463-7.
    93.Chen Y, Lu Q, Schneeberger EE, Goodenough DA. Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin-Darby canine kidney cells. Mol Biol Cell.2000;11:849-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700