皮肤靶向表达hCTLA-4Ig转基因巴马香猪种群建立及其异种移植研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、背景
     CTLA-4Ig(human cytotoxic T-lymphocyte-associated antigen4-immunoglobulin)是CTLA-4分子的细胞外功能区与人免疫球蛋白IgG1恒定区相结合的融合蛋白。它是功能明确、经典的免疫抑制分子,可与B7结合,阻断CD28/B7正性共刺激信号通路,诱导T细胞免疫无反应。许多研究都证实了其可以延长移植物存活时间。本实验室前期与西南医院烧伤研究所吴军教授课题组合作,利用hCTLA-4Ig基因重组腺病毒体外感染非转基因猪皮肤,成功研制了离体基因修饰活性皮肤[1],也有效延长了活性猪皮肤在人体创面的存活时间。
     然而,全身性表达CTLA-4Ig的转基因动物难以成活。研究报道敲除CTLA-4基因的小鼠及全身高表达pCTLA-4Ig的转基因猪都在出生后不久死亡,提示CTLA-4Ig对转基因动物自身免疫功能有一定的影响,若调控性、限制性的表达CTLA-4Ig可能会降低该蛋白对转基因动物全身免疫功能的影响,提高制备转基因动物的成功率。
     大面积烧伤病人由于自体及异体皮肤不足以满足移植需要,猪皮肤作为临时替代和覆盖物已在临床上应用。皮肤是非血管化器官,其移植后的排斥反应主要以细胞排斥为主。根据本实验室前期的实验,以hCTLA-4Ig腺病毒体外修饰的基因转染猪皮能够显著延长其猪皮在烧伤病人创面存活时间,但体外病毒转染方法为单次转染单次应用,涉及病毒制备及转染工艺,成本高、工艺复杂、效率低、稳定性差、质量控制难度高。因此,构建皮肤靶向表达hCTLA-4Ig并可稳定遗传的转基因猪群体或品系作为皮肤供体,可望形成稳定、高效、经济的异种移植皮肤来源。
     巴马香猪是我国小型猪群体中唯一具有白色被毛的品系,且体表白毛面积大、繁殖力强、抗病力强、性格温驯,生物学特性明确,是适合的医学实验动物。利用标准化的巴马香猪构建转基因猪种群,可望提高转基因猪品系或群体的标准化、提高供体猪皮肤一致性,从而提高模型研究科学性、产品稳定性。
     研制皮肤靶向表达hCTLA-4Ig转基因巴马香猪是本实验研究最终目的。但由于构建转基因猪周期长、成本高、风险大,而小鼠繁殖力强、世代间隔短、研究时间短、经济成本低,因此在构建转基因猪以前构建转基因小鼠有利于提高研究的可控性。同时,构建小鼠、猪的皮肤靶向表达hCTLA-4Ig转基因动物模型,形成从小动物到大动物的模型体系,更有助于深入、系统研究hCTLA-4Ig及其在异种移植中的作用及机理。
     二、目的
     (一)建立小鼠、猪的皮肤靶向表达hCTLA-4Ig转基因动物模型,为系统研究hCTLA-4Ig分子对异种皮肤移植排斥反应的调控功能,提供从小动物(小鼠)到大动物(猪)的模型体系。
     (二)建立皮肤靶向表达hCTLA-4Ig转基因巴马香猪群体,为研制高效、稳定、经济的异种移植皮肤产品形成基础。
     三、方法
     (一)皮肤靶向表达hCTLA-4Ig转基因小鼠制备、种群建立及其功能验证
     通过慢病毒载体的方法构建皮肤靶向表达hCTLA-4Ig转基因小鼠,并建立封闭繁育群体;用PCR方法进行阳性小鼠的筛选和鉴定;用RT-PCR、real time PCR、ELISA、WB和免疫组化的方法研究转基因蛋白在小鼠体内的表达和分布;用单向MLC的方法,研究该转基因蛋白在体外的生物活性;用小鼠→大鼠异种皮肤移植实验模型,观察移植皮肤的存活状况、时间,研究该转基因蛋白在体内的生物学活性。
     (二)皮肤靶向表达hCTLA-4Ig转基因巴马香猪的构建
     以体细胞核移植方法构建皮肤靶向表达hCTLA-4Ig转基因巴马香猪;以PCR方法进行转基因阳性猪筛选和鉴定;以WB方法初步分析转基因猪体内该蛋白的表达和分布。
     (三)皮肤靶向表达hCTLA-4Ig转基因巴马香猪种群建立及其异种移植研究
     通过体细胞核移植的方法构建皮肤靶向表达hCTLA-4Ig转基因巴马香猪,并形成封闭繁育群体;用PCR方法进行阳性转基因猪的筛选和鉴定;以ELISA和WB的方法研究转基因蛋白在猪体内的表达和分布;以单向MLC的方法,研究该转基因蛋白在体外的生物活性;以猪→大鼠异种皮肤移植实验模型,观察移植皮肤的存活状况、时间,研究该转基因蛋白在体内的生物学活性;以病理切片HE染色来观察皮肤移植后的组织学变化。
     四、结果
     (一)建立了皮肤靶向表达hCTLA-4Ig的转基因小鼠种群,并证实了该转基因蛋白在小鼠皮肤组织的特异性表达及其生物学活性。
     根据PCR结果证实本实验获得8只hCTLA-4Ig转基因首建小鼠,转基因首建鼠的得率(转基因首建小鼠数/注射转染的胚胎数)是6.3%;并且通过这8只转基因首建小鼠的横交繁殖、PCR筛选,建立了皮肤靶向表达hCTLA-4Ig转基因小鼠种群;RT-PCR和Western blot分析表明,hCTLA-4Ig蛋白实现了在转基因小鼠皮肤中的特异性表达,且表达水平较高;免疫组化分析也表明,hCTLA-4Ig在皮肤中的特异性表达,且该转基因蛋白的表达对皮肤组织的正常发育和组织形态没有明显影响;ELISA分析表明,hCTLA-4Ig蛋白因其呈可溶性表达,在转基因小鼠血清中也有明显的分布,其浓度达11.87μg/ml;在单向MLC实验中,小鼠血清中转基因表达的hCTLA-4Ig蛋白明显抑制了人淋巴细胞混合培养系统中反应细胞的增殖,其程度与相同终浓度的纯化重组蛋白hCTLA-4Ig相当;在小鼠→大鼠皮肤移植实验中,hCTLA-4Ig转基因小鼠的皮肤比相同品系野生型小鼠皮肤在受体的存活时间明显延长。
     (二)获得了皮肤靶向表达hCTLA-4Ig的转基因巴马香猪种群,并证实了该转基因蛋白在巴马香猪皮肤组织的特异性表达及其生物学活性。
     成功获得了皮肤靶向表达hCTLA-4Ig的转基因克隆巴马香猪,首建猪得率是0.75%;通过转基因首建巴马香猪与野生型巴马香猪繁殖获得的F1代进行横交繁殖,经PCR筛选,建立了皮肤靶向表达hCTLA-4Ig的转基因巴马香猪种群;对F1代转基因猪进行PCR鉴定,在出生的59头F1代猪中有32头阳性(54.2%);ELISA分析表明,hCTLA-4Ig蛋白因其呈可溶性表达,在转基因巴马猪血清中也有明显的分布,随机选取的5头F1代转基因巴马香猪血清中hCTLA-4Ig蛋白的浓度在5.61~9.56μg/ml之间;Western blot分析表明,hCTLA-4Ig蛋白在转基因猪的皮肤、角膜都有表达,但其表达水平稍低于内参基因GAPDH,而野生型巴马香猪的皮肤没有明显的表达条带;在单向MLC实验中,猪血清中转基因表达的hCTLA-4Ig蛋白明显的抑制了人淋巴细胞混合培养系统中反应细胞的增殖,其程度与相同终浓度的纯化重组蛋白hCTLA-4Ig相当;在猪→大鼠皮肤移植实验中,hCTLA-4Ig转基因巴马香猪皮肤比野生型猪皮肤异种移植到大鼠背部后存活时间延长;组织石蜡切片HE染色结果发现,宿主对移植物的反应程度具有差异,对转基因猪皮肤的炎症反应明显低于对野生型猪皮肤。
     五、结论
     (一)成功建立了皮肤靶向表达hCTLA-4Ig的转基因小鼠和转基因巴马香猪种群,通过体内外实验证实了转基因小鼠和转基因巴马香猪体内表达的转基因蛋白hCTLA-4Ig的生物学活性,为深入、系统研究hCTLA-4Ig及其在异种移植中的作用及机理,形成了从小动物到大动物的模型体系。
     (二)建立了皮肤靶向表达hCTLA-4Ig转基因巴马香猪种群,其种群可望成为临床异种移植供体皮肤来源,为研制高效、稳定、经济的异种移植皮肤产品形成基础。
1. Backgroud
     The fusion protein CTLA-4Ig(Cytotoxic T-lymphocyte-associated antigen4-immunoglobulin),which combined the extracellular domain of CTLA-4with the Fc portion of IgG1, can bindwith B7, directly blocking CD28-B7co-stimulation pathway, inducing T cell anergy. Manystudies confirm that the protein can prolong the survival time of grafts. Our previous study, invitro, adenovirus-mediated CTLA-4Ig gene transfer prolongs pig skin xenotransplantsurvival.
     However, directly expressing CTLA-4Ig in all over transgenic animal body, will make ithard to get the alive transgenic animal. CTLA-4gene knockout mice and transgenic pigsexpressing porcine CTLA-4Ig are died soon after born, suggesting that CTLA-4Ig may affectthe immune system of the transgenic animal. Therefore, modulately and restrictly expressingCTLA-4Ig may decrease the influence, increase the efficiency of preparation of transgenicanimals.
     Xenogeneic skin is frequently used to cover large wounds as a substitute for human skin,so it has litte danger to use in clinic. Moreover, Skin as a non-vascular organ,thetransplantation rejection is mainly depending on cell-mediated rejection. Allthrough ourprevious study prolongs pig skin xenotransplant survival by adenovirus-mediated CTLA-4Iggene transfer, the procedure of the gene transfer is complicated, low efficiency, high cost andrelated to preparing virus. Therefore, establish a population of skin specifically expressionhuman CTLA-4Ig transgenic pig as donor supply for clinlic, will be a low cost, highefficiency, easy way to solve the problem.
     Bama miniature pig is the only strain who has white skin in all miniature pig lines ofchina., and it has large area of white skin, high fecundity, strong resistance to illness, docileand clear biological characteristics, so it is most suitable for medical experiment. Usingstandardized bama miniature pig to establish transgenic pig populatin will promote the standardization and consistency of doner skin, guarantee the preciseness of model scientificresearch and the stability of the product.
     Our ultimate goal of this study is establishing a population of skin specificallyexpressing human CTLA-4Ig transgenic pig, but it will take long time because of the longreproductive cycle of pig, and will take high cost and risk. On contrary, mouse has highfecundity, short generation, and takes fewer time and money. So its nessesary to use mouse asa small animal model to do our research at first, then transfer to pig, in the end obtain skinspecifically expression human CTLA-4Ig transgenic mouse and pig, form a model systemcombined with small animal and big animal, which could contribute to futher study ofhCTLA-4Ig function and mechanism in xenotransplantation.
     2. Objective
     A.To establish skin specifically expression human CTLA-4Ig transgenic mouse and pigmodel, form a model system combined with small animal and big animal, which couldcontribute to futher study of hCTLA-4Ig function and mechanism in xenotransplantation.
     B. To establish a population of skin specifically expression human CTLA-4Ig transgenicbama miniature pig, as a candidate alternative donor skin supply.
     3. Method
     A. The foundation of skin specifically expression hCTLA-4Ig transgenic mousepopulation and its function research.
     Preparation of skin specifically expression hCTLA-4Ig transgenic mice by lentivirusvector, we will establish a population; filtration and identification of the transgenic mice byPCR; investigating the expression and distribution of transgenic protein by RT-PCR, real timePCR, ELISA, WB and immunohistochemistry; confirming the function of transgenic proteinin vitro by one-way MLC; testifying the function of transgenic protein in vivo by mouse-ratskin xenotransplantation.
     B. The foundation of skin specifically expression hCTLA-4Ig transgenic bama miniaturepig.
     Preparation of skin specifically expression hCTLA-4Ig transgenic pig by somatic cellnuclear transfer(SCNT); filtration and identification of the transgenic pigs by PCR; primarilyinvestigating the expression and distribution of transgenic protein by WB.
     C. The foundation of skin specifically expression hCTLA-4Ig transgenic bama miniaturepig population and its function in xenotransplantation.
     Generating a population of skin specifically expression hCTLA-4Ig transgenic bamaminiature pig; filtration and identification of the transgenic pigs by PCR; investigating theexpression and distribution of transgenic protein by ELISA and WB; confirming the functionof transgenic protein in vitro by one-way MLC; testifying the function of transgenic protein invivo by pig-rat skin xenotransplantation; examining the histological change of skin graft afterxenotransplantation by paraffin section HE staining.
     4. Results
     A. Skin specifically expression hCTLA-4Ig transgenic mice population have beenobtained, and the distribution and bioactivation of transgenic protein has been confirmed.
     PCR results show that8founder mice were obtained, and transgenic founder mice perinjected and transferred eggs was6.3%; cross breeding the8founder mice and sift by PCR,we obtained a skin specifically expression hCTLA-4Ig transgenic mice population; RT-PCRand WB shows the transgenic hCTLA-4Ig exhibited strictly skin-specific expression; IHshows that, too, and the transgenic hCTLA-4Ig do not interfere the development and patternof skin tissue; ELISA shows that hCTLA-4Ig is excreted, and it can be detected in serum,andits concentration comes to11.87μg/ml; one-way MLC confirms the transgenic protein caninhibit the proliferation of lymphocytes in vitro; mouse-rat skin xenotransplantation testify thebioactivity of transgenic protein in vivo, which prolongs the survival of skin grafts.
     B. Skin specifically expression hCTLA-4Ig transgenic bama miniature pig populationhave been estabilished, and the distribution and bioactivation of transgenic protein has beenconfirmed.
     Skin specifically expression hCTLA-4Ig transgenic bama miniature pig have beenobtained by SCNT, and transgenic founder pigs per injected and transferred eggs was0.75%;making the founder pigs copulate with wild-type pigs, and cross breeding the F1generation,sift by PCR, we obtained a skin specifically expression hCTLA-4Ig transgenic bamaminiature pig population;32pigs are positively transgened in59of F1generation by PCR;ELISA shows that hCTLA-4Ig is excreted, so that it can be detected in serum, and theconcentration of5randon F1generations range from5.61μg/ml to9.56μg/ml; WB showsthat transgenic protein hCTLA-4Ig is strictly keratin-targeted tissue(skin, cornea) specific expression; one-way MLC confirms the transgenic protein can inhibit the proliferation oflymphocytes in vitro; pig-rat skin xenotransplantation testify the bioactivity of transgenicprotein in vivo, which prolongs the survival of skin grafts; paraffin section HE staining ofskin grafts10days after xenotransplantation shows that hCTLA-4Ig inhibits the proliferationof lymphocytes and decrease the inflammation in grafts.
     5. Conclutions
     A. Skin specifically expression hCTLA-4Ig transgenic mouse and bama miniature pigpopulation are generated, forming a model system combined with small animal and biganimal, which could contribute to futher study of hCTLA-4Ig function and mechanism inxenotransplantation.
     B. The bioactivation of transgenic hCTLA-4Ig protein has been confirmed in vivo and invitro, which indicate that skin specifically expression hCTLA-4Ig transgenic mouse and bamaminiature pig population not only can provide animal model for further study of hCTLA-4Igfunction and mechanism,but also can provide donor skin for clinic and animal model forimmune tolerance research in the future.
引文
1. Luo, G., et al., CTLA4Ig introduced by adenovirus vector locally to prolong the survivalof xenogeneic skin grafts on rat burn wounds. J Trauma,2005.59(5): p.1209-15.
    2. Lenschow, D.J., et al., Long-term survival of xenogeneic pancreatic islet grafts induced byCTLA4lg. Science,1992.257(5071): p.789-92.
    3. Levisetti, M.G., et al., Immunosuppressive effects of human CTLA4Ig in a non-humanprimate model of allogeneic pancreatic islet transplantation. J Immunol,1997.159(11): p.5187-91.
    4. Seveno, C., et al., Induction of regulatory cells and control of cellular but not vascularrejection by costimulation blockade in hamster-to-rat heart xenotransplantation.Xenotransplantation,2007.14(1): p.25-33.
    5. Turka, L.A., et al., T-cell activation by the CD28ligand B7is required for cardiacallograft rejection in vivo. Proc Natl Acad Sci U S A,1992.89(22): p.11102-5.
    6. Tomasoni, S., et al., CTLA4Ig gene transfer prolongs survival and induces donor-specifictolerance in a rat renal allograft. J Am Soc Nephrol,2000.11(4): p.747-52.
    7. Eagar, T.N., et al., The role of CTLA-4in induction and maintenance of peripheral T celltolerance. Eur J Immunol,2002.32(4): p.972-81.
    8. Chambers, C.A., et al., The lymphoproliferative defect in CTLA-4-deficient mice isameliorated by an inhibitory NK cell receptor. Blood,2002.99(12): p.4509-16.
    9. Phelps, C.J., et al., Production and characterization of transgenic pigs expressing porcineCTLA4-Ig. Xenotransplantation,2009.16(6): p.477-85.
    10. Byrne, G.W., et al., Increased immunosuppression, not anticoagulation, extends cardiacxenograft survival. Transplantation,2006.82(12): p.1787-91.
    11. Martin, C., et al., Transgenic expression of CTLA4-Ig by fetal pig neurons forxenotransplantation. Transgenic Res,2005.14(4): p.373-84.
    12. Kuwaki, K., et al., Localized myocardial infarction following pig-to-baboon hearttransplantation. Xenotransplantation,2005.12(6): p.489-91.
    13. Kuwaki, K., et al., Heart transplantation in baboons using alpha1,3-galactosyltransferasegene-knockout pigs as donors: initial experience. Nat Med,2005.11(1): p.29-31.
    14. Kuwaki, K., et al., Troponin T levels in baboons with pig heterotopic heart transplants. JHeart Lung Transplant,2005.24(1): p.92-4.
    15. Ekser, B., et al., Dual kidney transplantation after liver transplantation: a good option torescue a patient from dialysis. Clin Transplant,2009.23(1): p.124-8.
    16. Hara, H., et al., Liver xenografts for the treatment of acute liver failure: clinical andexperimental experience and remaining immunologic barriers. Liver Transpl,2008.14(4):p.425-34.
    17. Mayor, S., Australian team to transplant pig islet cells into patients with unstable diabetes.BMJ,2009.339: p. b3089.
    18. Ramanujam, C.L. and T. Zgonis, Surgical soft tissue closure of severe diabetic footinfections: a combination of biologics, negative pressure wound therapy, and skingrafting. Clin Podiatr Med Surg,2012.29(1): p.143-6.
    19. Orgill, D.P. and N. Piccolo, Escharotomy and decompressive therapies in burns. J BurnCare Res,2009.30(5): p.759-68.
    20. Orgill, D.P., Excision and skin grafting of thermal burns. N Engl J Med,2009.360(9): p.893-901.
    21. Lari, A.R. and R.K. Gang, Expansion technique for skin grafts (Meek technique) in thetreatment of severely burned patients. Burns,2001.27(1): p.61-6.
    22. Vandeput, J.J. and J.C. Tanner, Microskin grafts using skin-graft meshers. Plast ReconstrSurg,1995.96(7): p.1743-4.
    23. Weiner, S.J. and S. Andes, Predictors of payment behavior among the medicallyuninsured: a prospective cohort study of patients seeking ambulatory services. J HealthCare Poor Underserved,2010.21(4): p.1395-407.
    24. Huang, Z.G., et al.,[Study of xenotransplantation of fetal pig skin precursor tissue].Zhonghua Shao Shang Za Zhi,2008.24(6): p.437-40.
    25. Sprangers, B., et al., Allogeneic bone marrow transplantation and donor lymphocyteinfusion in a mouse model of irradiation-induced myelodysplastic/myeloproliferationsyndrome (MD/MPS): evidence for a graft-versus-MD/MPS effect. Leukemia,2009.23(2):p.340-9.
    26. Travis, J., The xeno-solution: perils and promise of transplanting animal organs intopeople. Sci News,1995.148(19): p.298-301.
    27. Cooper, D.K., et al., Effects of cyclosporine and antibody adsorption on pig cardiacxenograft survival in the baboon. J Heart Transplant,1988.7(3): p.238-46.
    28. Good, A.H., et al., Identification of carbohydrate structures that bind human antiporcineantibodies: implications for discordant xenografting in humans. Transplant Proc,1992.24(2): p.559-62.
    29. Cooper, D.K., et al., Identification of alpha-galactosyl and other carbohydrate epitopesthat are bound by human anti-pig antibodies: relevance to discordant xenografting in man.Transpl Immunol,1993.1(3): p.198-205.
    30. Dai, Y., et al., Targeted disruption of the alpha1,3-galactosyltransferase gene in clonedpigs. Nat Biotechnol,2002.20(3): p.251-5.
    31. Lai, L., et al., Production of alpha-1,3-galactosyltransferase knockout pigs by nucleartransfer cloning. Science,2002.295(5557): p.1089-92.
    32. Cooper, D.K., E. Koren, and R. Oriol, Genetically engineered pigs. Lancet,1993.342(8872): p.682-3.
    33. Phelps, C.J., et al., Production of alpha1,3-galactosyltransferase-deficient pigs. Science,2003.299(5605): p.411-4.
    34. Yamada, K., et al., Marked prolongation of porcine renal xenograft survival in baboonsthrough the use of alpha1,3-galactosyltransferase gene-knockout donors and thecotransplantation of vascularized thymic tissue. Nat Med,2005.11(1): p.32-4.
    35. Cozzi, E. and D.J. White, The generation of transgenic pigs as potential organ donors forhumans. Nat Med,1995.1(9): p.964-6.
    36. Diamond, L.E., et al., A human CD46transgenic pig model system for the study ofdiscordant xenotransplantation. Transplantation,2001.71(1): p.132-42.
    37. Cowan, P.J., et al., Renal xenografts from triple-transgenic pigs are not hyperacutelyrejected but cause coagulopathy in non-immunosuppressed baboons. Transplantation,2000.69(12): p.2504-15.
    38. Morgan, B.P., C.W. Berg, and C.L. Harris,''Homologous restriction'' in complement lysis:roles of membrane complement regulators. Xenotransplantation,2005.12(4): p.258-65.
    39. Miyagawa, S., et al., Complement regulation in the GalT KO era. Xenotransplantation,2010.17(1): p.11-25.
    40. Chen, D., et al., Human thrombin and FXa mediate porcine endothelial cell activation;modulation by expression of TFPI-CD4and hirudin-CD4fusion proteins.Xenotransplantation,2001.8(4): p.258-65.
    41. Simeonovic, C.J., R. Ceredig, and J.D. Wilson, Effect of GK1.5monoclonal antibodydosage on survival of pig proislet xenografts in CD4+T cell-depleted mice.Transplantation,1990.49(5): p.849-56.
    42. Zhan, Y., et al., Delayed rejection of fetal pig pancreas in CD4cell deficient mice wascorrelated with residual helper activity. Xenotransplantation,2000.7(4): p.267-74.
    43. Pierson, R.N.,3rd, et al., Xenogeneic skin graft rejection is especially dependent on CD4+T cells. J Exp Med,1989.170(3): p.991-6.
    44.陈俊颖,胡.,魏泓,人与巴马香猪皮肤的比较生物学研究.中国比较医学杂志,2006.l6(5): p.3.
    45. Liu, Y., et al., Light microscopic, electron microscopic, and immunohistochemicalcomparison of Bama minipig (Sus scrofa domestica) and human skin. Comp Med,2010.60(2): p.142-8.
    46.商海涛,牛.,魏泓,黄中波,甘世祥,王爱德,曾养志,三品系小型猪35个微卫星基因座的遗传学研究.遗传,2001.23(1): p.4.
    47.吴丰春,魏.,甘世祥,王爱德,曾养志,应用RAPD技术对中国3品系实验用小型猪进行亲缘关系的分析.畜牧畜医学报,2001.32(6): p.5.
    48.吴丰春,魏.,甘世祥,王爱德,巴马香猪与贵州小型香猪遗传多样性的RAPD分析.实验生物学报,2001.34(2): p.5.
    49.刘中禄,魏.,曾养志,王爱德,甘世祥,猪线粒体DNA D-loop PCR-RFLP分析.上海实验动物科学,2000.20(1): p.4.
    50. Lui, V.C., et al., Mammary gland-specific secretion of biologically activeimmunosuppressive agent cytotoxic-T-lymphocyte antigen4human immunoglobulinfusion protein (CTLA4Ig) in milk by transgenesis. J Immunol Methods,2003.277(1-2): p.171-83.
    51. Ronchese, F., et al., Mice transgenic for a soluble form of murine CTLA-4show enhancedexpansion of antigen-specific CD4+T cells and defective antibody production in vivo. JExp Med,1994.179(3): p.809-17.
    52.李彦,序列分析技术的软件实现及其在共刺激分子药物设计中的应用.第三军医大学博士学位论文,2001.
    53. Russell, S.a., Molecular Cloning (third edition). Cold Spring Habour Press,2001.
    54. Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR.Nucleic Acids Res,2001.29(9): p. e45.
    55. Hellemans, J., et al., qBase relative quantification framework and software formanagement and automated analysis of real-time quantitative PCR data. Genome Biol,2007.8(2): p. R19.
    56. Wang, X., et al., Transgenic studies with a keratin promoter-driven growth hormonetransgene: prospects for gene therapy. Proc Natl Acad Sci U S A,1997.94(1): p.219-26.
    57.毛春明,杨.,陈萱,吕娅音,周江,黄翠芬,角质细胞特异性表达Cre重组酶转基因小鼠的建立.遗传学报,2003.30(5): p.7.
    58. Paladini, R.D. and P.A. Coulombe, Directed expression of keratin16to the progenitorbasal cells of transgenic mouse skin delays skin maturation. J Cell Biol,1998.142(4): p.1035-51.
    59. Kim, S.H., et al., Human keratin14driven HPV16E6/E7transgenic mice exhibithyperkeratinosis. Life Sci,2004.75(25): p.3035-42.
    60. Vasioukhin, V., et al., The magical touch: genome targeting in epidermal stem cellsinduced by tamoxifen application to mouse skin. Proc Natl Acad Sci U S A,1999.96(15):p.8551-6.
    61. Hofmann, A., et al., Efficient transgenesis in farm animals by lentiviral vectors. EMBORep,2003.4(11): p.1054-60.
    62. Kim, S.J., et al., High-level expression of human lactoferrin in milk of transgenic miceusing genomic lactoferrin sequence. J Biochem,1999.126(2): p.320-5.
    63. Clark, A.J., et al., Enhancing the efficiency of transgene expression. Philos Trans R SocLond B Biol Sci,1993.339(1288): p.225-32.
    64. Wright, G., et al., High level expression of active human alpha-1-antitrypsin in the milk oftransgenic sheep. Biotechnology (N Y),1991.9(9): p.830-4.
    65. Lai, L. and R.S. Prather, Production of cloned pigs by using somatic cells as donors.Cloning Stem Cells,2003.5(4): p.233-41.
    66. Onishi, A., et al., Pig cloning by microinjection of fetal fibroblast nuclei. Science,2000.289(5482): p.1188-90.
    67. Polejaeva, I.A., et al., Cloned pigs produced by nuclear transfer from adult somatic cells.Nature,2000.407(6800): p.86-90.
    68. Betthauser, J., et al., Production of cloned pigs from in vitro systems. Nat Biotechnol,2000.18(10): p.1055-9.
    69. Park, K.W., et al., Production of nuclear transfer-derived swine that express the enhancedgreen fluorescent protein. Anim Biotechnol,2001.12(2): p.173-81.
    70. De Sousa, P.A., et al., Somatic cell nuclear transfer in the pig: control of pronuclearformation and integration with improved methods for activation and maintenance ofpregnancy. Biol Reprod,2002.66(3): p.642-50.
    71. Yin, X.J., et al., Production of cloned pigs from adult somatic cells by chemically assistedremoval of maternal chromosomes. Biol Reprod,2002.67(2): p.442-6.
    72. Lee, J.W., et al., Production of cloned pigs by whole-cell intracytoplasmic microinjection.Biol Reprod,2003.69(3): p.995-1001.
    73. Kolber-Simonds, D., et al., Production of alpha-1,3-galactosyltransferase null pigs bymeans of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. ProcNatl Acad Sci U S A,2004.101(19): p.7335-40.
    74. Rood, P.P., et al., Pig-to-nonhuman primate islet xenotransplantation: a review of currentproblems. Cell Transplant,2006.15(2): p.89-104.
    75. Cabezuelo, J.B., et al., Assessment of renal function during the postoperative periodfollowing liver xenotransplantation from transgenic pig to baboon. Transplant Proc,2002.34(1): p.321-2.
    76. Candinas, D., et al., T cell independence of macrophage and natural killer cell infiltration,cytokine production, and endothelial activation during delayed xenograft rejection.Transplantation,1996.62(12): p.1920-7.
    77. McKenzie, I.F., et al., Pig islet xenografts are susceptible to "anti-pig" but not Galalpha(1,3)Gal antibody plus complement in Gal o/o mice. J Immunol,1998.161(10): p.5116-9.
    78. Rijkelijkhuizen, J.K., et al., T-cell-specific immunosuppression results in more than53days survival of porcine islets of langerhans in the monkey. Transplantation,2003.76(9):p.1359-68.
    79. Goslings, W.R., et al., Corneal transplantation in antibody-deficient hosts. InvestOphthalmol Vis Sci,1999.40(1): p.250-3.
    80. Andres, A., et al., Macrophage depletion prolongs discordant but not concordant isletxenograft survival. Transplantation,2005.79(5): p.543-9.
    81. Tanaka, K., K. Sonoda, and J.W. Streilein, Acute rejection of orthotopic cornealxenografts in mice depends on CD4(+) T cells and self-antigen-presenting cells. InvestOphthalmol Vis Sci,2001.42(12): p.2878-84.
    82. Larkin, D.F., et al., Experimental orthotopic corneal xenotransplantation in the rat.Mechanisms of graft rejection. Transplantation,1995.60(5): p.491-7.
    1. Laurencin CT, El-Amin SF. Xenotransplantation in orthopaedic surgery. J Am AcadOrthop Surg2008;16:4–8.
    2. Cooper DKC. How important is the anti-Gal antibody response following theimplantation of a porcine bioprosthesis? J Heart Valve Dis2009;18:671–72.
    3. Lila N, McGregor CG, Carpentier S, et al. Gal knockout pig pericardium: new source ofmaterial for heart valve bioprostheses. J Heart Lung Transplant2010;29:538–43.
    4. Daly KA, Stewart-Akers AM, Hara H, et al. Effect of the αGal epitope on the response tosmall intestinal submucosa extracellular matrix in a nonhuman primate model. Tissue EngPart A2009;15:3877–88.
    5. Cooper DKC. Clinical xenotransplantation—how close are we? Lancet2003;362:557–59.
    6. Fodor WL, Williams BL, Matis LA, et al. Expression of a functional human complementinhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organrejection. Proc Natl Acad Sci USA1994;91:11153–57.
    7. Cozzi E, White DJG. The generation of transgenic pigs as potential organ donors forhumans. Nat Med1995;1:964–69.
    8. Costa C, Zhao L, Burton WV, et al. Expression of the human alpha1,2–fucosyltransferasein transgenic pigs modifi es the cell surface carbohydrate phenotype and confersresistance to human serum-mediated cytolysis. FASEB J1999;13:1762–73.
    9. Diamond LE, Quinn CM, Martin MJ, et al. A human CD46transgenic pig model systemfor the study of discordant xenotransplantation. Transplantation2001;71:132–42.
    10. Phelps CJ, Koike C, Vaught TD, et al. Production of α1,3-galactosyltransferase-deficientpigs. Science2003;299:411–14.
    11. Yazaki S, Iwamoto M, Onishi A, et al. Successful cross-breeding of cloned pigsexpressing endo-beta-galactosidase C and human decay accelerating factor.Xenotransplantation2009;16:511–21.
    12. Chen D, Weber M, McVey JH, et al. Complete inhibition of acute humoral rejection usingregulated expression of membrane-tethered anticoagulants on xenograft endothelium. AmJ Transplant2004;4:1958–63.
    13. Klose R, Kemter E, Bedke T, et al. Expression of biologically active human TRAIL intransgenic pigs. Transplantation2005;80:222–30.
    14. Cantu E, Balsara KR, Li B, et al. Prolonged function of macrophage, von Willibrandfactor-defi cient porcine pulmonary xenografts. Am J Transplant2007:7:66–75.
    15. Dieckhoff B, Petersen B, Kues WA, Kurth R, Niemann H, Denner J. Knockdown ofporcine endogenous retrovirus (PERV) expression by PERV-specifi c shRNA intransgenic pigs. Xenotransplantation2008;15:36–45.
    16. Phelps C, Ball S, Vaught T, et al. Production and characterization of transgenic pigsexpressing porcine CTLA-4Ig. Xenotransplantation2009;16:477–85.
    17. Peterson B, Ramackers W, Tiede A, et al. Pigs transgenic for human thrombomodμlinhave elevated production of activated protein C. Xenotransplantation2009;16:486–95.
    18. Weiss EH, Lilienfeld BG, Müller S, et al. HLA-E/human beta2-microglobulin transgenicpigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity.Transplantation2009;87:35–43.
    19. Oropeza M, Petersen B, Carnwath JW, et al. Transgenic expression of the human A20gene in cloned pigs provides protection against apoptotic and infl ammatory stimuli.Xenotransplantation2009;16:522–34.
    20. Hara H, Koike N, Long C, et al. In vitro investigation of the human immune response tocorneal cells from genetically-modifi ed pigs. Am J Transplant2010;10:298(abstr).
    21. Seol JG, Kim SH, Jin D, et al. Production of transgenic cloned miniature pigs withmembrane-bound human Fas ligand (FasL) by somatic cell nuclear transfer. NaturePrecedings,2010. hdl:10101/npre.2010.4539.1
    22. Miyagawa S, Murakami H, Takahagi Y, et al. Remodeling of the major pig xenoantigenby N-acetylglucosaminyltransferase III in transgenic pig. J Biol Chem2001;276:39310–19.
    23. Peterson B, Lucas-Harn A, Lemme E, et al. Generation and characterization of pigstransgenic for human hemeoxygenase-1(hHO-1). Xenotransplantation2010;17:102–03.
    24. Pierson RN III, Dorling A, Ayares D, et al. Current status of xenotransplantation andprospects for clinical application. Xenotransplantation2009;16:263–80.
    25. Phelps C, Vaught T, Ball S, et al. Multi-transgenic pigs designed for xenoislet transplants.Xenotransplantation2009;16:374(abstr IXA-O-7.3).
    26. Sgroi A, Buhler LH, Morel P, et al. International human xenotransplantation inventory.Transplantation2010;90:597–603.
    27. Cooper DKC, Lanza RP. Xeno: the promise of transplanting animal organs into humans.New York, NY: Oxford University Press,2000.
    28. Cooper DKC, Human PA, Lexer G, et al. Effects of cyclosporine and antibody adsorptionon pig cardiac xenograft survival in the baboon. J Heart Transplant1988;7:238–46.
    29. Platt JL. Hyperacute xenograft rejection. In: Cooper DKC, Kemp E, Platt JL, White DJG,eds. Xenotransplantation. Heidelberg: Springer,1997:8–16.
    30. Good AH, Cooper DK, Malcolm AJ, et al. Identification of carbohydrate structures thatbind human antiporcine antibodies: implications for discordant xenografting in man.Transplant Proc1992;24:559–62.
    31. Cooper DKC, Good AH, Koren E, et al. Identification of α-galactosyl and othercarbohydrate epitopes that are bound by human anti-pig antibodies: relevance todiscordant xenografting in man. Transpl Immunol1993;1:198–205.
    32. Dai Y, Vaught TD, Boone J, et al. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol2002;20:251–55.
    33. Lai L, Kolber-Simonds D, Park KW, et al. Production of alpha-1,3-galactosyltransferaseknockout pigs by nuclear transfer cloning. Science2002;295:1089–92.
    34. Cooper DKC, Koren E, Oriol R. Genetically engineered pigs. Lancet1993;342:682–83.
    35. Kuwaki K, Tseng YL, Dor FJ, et al. Heart transplantation in baboons usingα1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med2005:11:29–31.
    36. Yamada K, Yazawa K, Shimizu A, et al. Marked prolongation of porcine renal xenograftsurvival in baboons through the use of α1,3-galactosyltransferase gene-knockout donorsand the cotransplantation of vascularized thymic tissue. Nat Med2005;11:32–34.
    37. Cowan PJ, Aminian A, Barlow H, et al. Renal xenografts from triple-transgenic pigs arenot hyperacutely rejected but cause coagulopathy in non-immunosuppressed baboons.Transplantation2000;69:2504–15.
    38. Morgan BP, Berg CW, Harris CL.“Homologous restriction” in complement lysis: rolesof membrane complement regulators. Xenotransplantation2005;12:258–65.
    39. Miyagawa S, Yamamoto A, Matsunami K, et al. Complement regulation in the GalT KOera. Xenotransplantation2010;17:11–25.
    40. Azimzadeh AM, Kelishadi S, Ezzelarab M, et al. Early graft failure of GTKO pig organsin baboons is reduced by HCRP expression. Am J Transplant2010;10(suppl4):186(abstr499).
    41. Sun Y, Ma X, Zhou D, Vacek I, Sun AM. Normalization of diabetes in spontaneouslydiabetic cynomologus monkeys by xenografts of microencapsulated porcine islets withoutimmunosuppression. J Clin Invest1996;98:1417–22.
    42. Badin RA, Padoan A, Vadori M, et al. Long-term clinical recovery in parkinsonianmonkey recipients of CTLA-4Ig transgenic porcine neural precursors. Transplantation2010;90(suppl2):47(abstr LB-3288).
    43. van der Windt DJ, Bottino R, Casu A, et al. Long-term controlled normoglycemia indiabetic non-human primates after transplantation with hCD46transgenic porcine islets.Am J Transplant2009;9:2716–26.
    44. Nagata H, Nishitai R, Shirota C, et al. Prolonged survival of porcine hepatocytes incynomolgus monkeys. Gastroenterology2007;132:321–29.
    45. Mohiuddin MM, Corcoran PC, Singh AK, et al. Over six month survival of cardiacxenograft is achievable but heterotopic placement of the graft may limit consistentprolonged survival. Transplantation.2010;90(suppl):325(abstr TTS-1383).
    46. Baldan N, Rigotti P, Calabrese F, et al. Ureteral stenosis in HDAF pig-to-primate renalxenotransplantation: a phenomenon related to immunological events? Am J Transplant2004;4:475–81.
    47. McGregor CG, Byrne GW, Vlasin M, et al. Early cardiac function and gene expressionafter orthotopic cardiac xenotransplantation. Xenotransplantation2009;16:356(abstrIXA-O-2.4).
    48. Ramirez P, Chavez R, Majado M, et al. Life-supporting human complement regulatordecay accelerating factor transgenic pig liver xenograft maintains the metabolic functionand coagulation in the nonhuman primate for up to8days. Transplantation2000;70:989–98.
    49. Houser SL, Kuwaki K, Knosalla C, et al. Thrombotic microangiopathy and graftarteriopathy in pig hearts following transplantation into baboons. Xenotransplantation2004;11:416–25.
    50. Ierino FL, Kozlowski T, Siegel JB, et al. Disseminated intravascular coagulation inassociation with the delayed rejection of pig-to-baboon renal xenografts. Transplantation1998;66:1439–50.
    51. Bühler L, Basker M, Alwayn IP, et al. Coagulation and thrombotic disorders associatedwith pig organ and hematopoietic cell transplantation in nonhuman primates.Transplantation2000;70:1323–31.
    52. Cozzi E, Simioni P, Boldrin M, et al. Alterations in the coagulation profi le in renalpig-to-monkey xenotransplantation. Am J Transplant2004;4:335–45.
    53. Lin CC, Ezzelarab M, Shapiro R, et al. Tissue factor expression on recipient platelets isassociated with consumptive coagulopathy in pig-to-primate kidney xenotransplantation.Am J Transplant2010;10:1556–68.
    54. Knosalla C, Yazawa K, Behdad A, et al. Renal and cardiac endothelial heterogeneityimpact acute vascular rejection in pig-to-baboon xenotransplantation. Am J Transplant2009;9:1006–16.
    55. Lee KF, Salvaris EJ, Roussel JC, et al. Recombinant pig TFPI efficiently regulates humantissue factor pathways. Xenotransplantation2008;15:191–97.
    56. Roussel JC, Moran CJ, Salvaris EJ, et al. Pig thrombomodulin binds human thrombin butis a poor cofactor for activation of human protein C and TAFI. Am J Transplant2008;8:1101–12.
    57. Schulte am Esch J2nd, Rogiers X, Robson SC. Molecular incompatibilities in hemostasisbetween swine and men—impact on xenografting. Ann Transplant2001;6:12–16.
    58. Schulte am Esch J2nd, Cruz MA, Siegel JB, et al. Activation of human platelets by themembrane-expressed A1domain of von Willebrand factor. Blood1997;90:4425–37.
    59. Robson SC, Cooper DKC, d’Apice AJF. Disordered regulation of coagulation and plateletactivation in xenotransplantation. Xenotransplantation2000;7:166–76.
    60. Bach FH, Robson SC, Ferran C, et al. Endothelial cell activation and thromboregulationduring xenograft rejection. Immunol Rev1994;141:5–30.
    61. Gollackner B, Goh SK, Qawi I, et al. Acute vascular rejection of xenografts: roles ofnatural and elicited xenoreactive antibodies in activation of vascular endothelial cells andinduction of procoagulant activity. Transplantation2004;77:1735–41.
    62. Lin CC, Chen D, McVey JH, et al. Expression of tissue factor and initiation of clotting byhuman platelets and monocytes after incubation with porcine endothelial cells.Transplantation2008;86:702–09.
    63. Ezzelarab M, Garcia B, Azimzadeh A, et al. The innate immune response and activationof coagulation in α1,3-galactosyltransferase gene-knockout xenograft recipients.Transplantation2009;87:805–12.
    64. Ezzelarab M, Ezzelarab C, Lin CC, et al. Thrombin activation in α1,3-galactosyltransferase gene-knockout (GTKO) xenograft recipients and its relevance tothe primate immune xenoresponse. Xenotransplantation2009;16:370(abstr IXA-O-6.1).
    65. Chu AJ. Role of tissue factor in thrombosis: coagulation-inflammation-thrombosis circuit.Front Biosci2006;11:256–71.
    66. Ekser B, Long C, Echeverri GJ, et al. Impact of thrombocytopenia on survival of baboonswith genetically-modified pig liver transplants: clinical relevance. Am J Transplant2010;10:273–85.
    67. Ekser B, Gridelli B, Veroux M, Cooper DKC. Clinical pig liver xenotransplantation—how far do we have to go? Xenotransplantation2011;18:158–67.
    68. Burlak C, Paris LL, Chihara RK, et al. The fate of human platelets perfused through thepig liver: implications for xenotransplantation. Xenotransplantation2010;17:350–61.
    69. Ekser B, Echeverri GJ, Hassett AC, et al. Evidence of hepatic function aftergenetically-engineered pig liver transplantation in baboons. Transplantation2010;90:483–93.
    70. Ekser B, Gridelli B, Tector AJ, et al. Pig liver xenotransplantation as a bridge toallotransplantation in acute liver failure: which patients might benefit? Transplantation2009;88:1041–49.
    71. Nguyen BN, Azimzadeh AM, Zhang T, et al. Life-supporting function of geneticallymodifi ed swine lungs in baboons. J Thorac Cardiovasc Surg2007;133:1354–63.
    72. Bauer A, Postrach J, Thormann M, et al. First experience with heterotopic thoracicpig-to-baboon cardiac xenotransplantation. Xenotransplantation2010;17:243–49.
    73. Cooper DKC, Teuteberg J. Pig heart xenotransplantation as a bridge to allotransplantation.J Heart Lung Transplant2010;29:838–40.
    74. Soin B, Smith KG, Zaidi A, et al. Physiological aspects of pig-to-primate renalxenotransplantation. Kidney Int2001;60:1592–97.
    75. Hering BJ, Cooper DKC, Cozzi E, et al. The International XenotransplantationAssociation consensus statement on conditions for undertaking clinical trials of porcineislet products in type1diabetes—executive summary. Xenotransplantation2009;16:196–202.
    76. van der Windt DJ, Bottino R, Casu A, et al. Rapid loss of intraportally-transplanted islets:an overview of pathophysiology and preventive strategies. Xenotransplantation2007;14:288–97.
    77. Goto M, Tjernberg J, Dufrane D, et al. Dissecting the instant blood-mediated inflammatory reaction in islet xenotransplantation. Xenotransplantation2008;15:225–34.
    78. van der Windt DJ, Marigliano M, He J, et al. Early islet damage after direct exposure ofpig islets to blood—has humoral immunity been underestimated? Cell Transplant (inpress).
    79. Moberg L, Johansson H, Lukinius A, et al. Production of tissue factor by pancreatic isletcells as a trigger of detrimental thrombotic reactions in clinical islet transplantation.Lancet2002;360:2039–45.
    80. van der Windt DJ, Echeverri G, Cooper DKC. The choice of anatomical site for islettransplantation. Cell Transplant2008;17:1005–14.
    81. Echeverri GJ, McGrath K, Bottino R, et al. Endoscopic gastric submucosaltransplantation of islets (ENDO-STI): technique and initial results in diabetic pigs. Am JTransplant2009;9:2485–96.
    82. Dufrane D, Goebbels RM, Gianello P. Alginate macroencapsulation of pig islets allowscorrection of streptozotocin-induced diabetes in primates up to6months withoutimmunosuppression. Transplantation2010;90:1054–62.
    83. Korsgren O, Lundgren T, Felldin M, et al. Optimising islet engraftment is critical forsuccessful clinical islet transplantation. Diabetologia2008;51:227–32.
    84. Elliott RB, Escobar L, Tan PL, et al. Live encapsulated porcine islets from a type1diabetic patient9·5yr after xenotransplantation. Xenotransplantation2007;14:157–61.
    85. Berman DM, O’Neil JJ, Coffey LC, et al. Long-term survival of nonhuman primate isletsimplanted in an omental pouch on a biodegradable scaffold. Am J Transplant2009;9:91–104.
    86. Kim HI, Yu JE, Park CG, Kim SJ. Comparison of four pancreatic islet implantation sites.J Korean Med Sci2010;25:203–10.
    87. McKenzie IF, Koulmanda M, Mandel TE, et al. Pig islet xenografts are susceptible to“anti-pig” but not Galα(1,3)Gal antibody plus complement in Gal o/o mice. J Immunol1998;161:5116–19.
    88. Hering BJ, Wijkstrom M, Graham ML, et al. Prolonged diabetes reversal after intraportalxenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates.Nat Med2006;12:301–03.
    89. Cardona K, Korbutt GS, Milas Z, et al. Long-term survival of neonatal porcine islets innonhuman primates by targeting costimulation pathways. Nat Med2006;12:304–06.
    90. Rayat GR, Rajotte RV, Korbutt GS. Potential application of neonatal porcine islets astreatment for type1diabetes: a review. Ann N Y Acad Sci1999;18:175–88.
    91. Lévêque X, Cozzi E, Naveilhan P, Neveu I. Intracerebral xenotransplantation: recent findings and perspectives for local immunosuppression. Curr Opin Organ Transplant2011;16:190–94.
    92. Bonavita AG, Quaresma K, Cotta-de-Almeida V, et al. Hepatocyte xenotransplantationfor treating liver disease. Xenotransplantation2010;17:181–87.
    93. Hara H, Cooper DKC. Xenotransplantation—the future of corneal transplantation?Cornea2011;30:371–78.
    94. Hara H, Cooper DKC. The immunology of corneal xenotransplantation: a review of theliterature. Xenotransplantation2010;17:338–49.
    95. Kim MK, Wee WR, Park C, Kim SJ. Xenocorneal transplantation. Curr Opin OrganTransplant2011;16:231–36.
    96. Hara H, Koike N, Long C, et al. Initial in vitro investigation of the human immuneresponse to corneal cells from genetically-engineered pigs. Invest Ophthalmol Vis Sci2011;52:5278–86.
    97. Cooper DKC, Hara H, Yazer M. Genetically-engineered pigs as a source for clinical redblood cell transfusion. Clin Lab Med2010;30:365–80.
    98. Cowan PJ, Roussel JC, d’Apice AJF. The vascular and coagulation issues inxenotransplantation. Curr Opin Organ Transplant2009;14:161–67.
    99. Schmelzle M, Schulte Esch J2nd, Robson SC. Coagulation, platelet activation andthrombosis in xenotransplantation. Curr Opin Organ Transplant2010;15:212–18.
    100. Reutershan J, Vollmer I, Stark S, et al. Adenosine and inflammation: CD39and CD73are critical mediators in LPS-induced PMN trafficking into the lungs. FASEB J2009;23:473–82.
    101. Crikis S, Lu B, Murray-Segal LM, et al. Transgenic overexpression of CD39protectsagainst renal ischemia-reperfusion and transplant vascular injury. Am J Transplant2010;10:2586–95.
    102. Cowan PJ, Robson SC, d’Apice AJF. Controlling coagulation dysregulation inxenotransplantation. Curr Opin Organ Transplant2011;16:214–21.
    103. Byrne GW, Davies WR, Oi K, et al. Increased immunosuppression, not anticoagulation,extends cardiac xenograft survival. Transplantation2006;82:1787–91.
    104. Londrigan SL, Sutherland RM, Brady JL, et al. In situ protection against islet allograftrejection by CTLA4Ig transduction. Transplantation2010;90:951–57.
    105. Ide K, Wang H, Tahara H, et al. Role for CD47-SIRPalpha signaling in xenograftrejection by macrophages. Proc Natl Acad Sci USA2007;14:5062–66.
    106. Miwa Y, Kobayashi T, Nagasaka T, et al. Are N-glycolylneuraminic acid(Hanganutziu-Deicher) antigens important in pig-to-human xenotransplantation?Xenotransplantation2004;11:247–53.
    107. Tahara H, Ide K, Basnet NB, et al. Immunological property of antibodies againstN-glycolylneuraminic acid epitopes in cytidine monophospho-N-acetylneuraminic acidhydroxylase-defi cient mice. J Immunol2010;184:3269–75.
    108. Ezzelarab M, Ayares D, Cooper DKC. The potential of genetically-modifi ed pigmesenchymal stromal cells in xenotransplantation. Xenotransplantation2010;17:3–5.
    109. Lin YJ, Hara H, Tai HC, et al. Suppressive efficacy and proliferative capacity of humanregulatory T cells in allogeneic and xenogeneic responses. Transplantation2008;86:1452–62.
    110. Ezzelarab M, Welchons D, Torres C, et al. Atorvastatin down-regulates the primatecellular response to porcine aortic endothelial cells in vitro. Transplantation2008;86:733–37.
    111. Li Y, Li T, Bu H, Cheng J, Chen Y, Yang Z. Xenoantigenicity of Chinese Neijiangpig-related to xenotransplantation. Transplant Proc2000;32:875–76.
    112. Xu XC, Goodman J, Sasaki H, Lowell J, Mohanakumar T. Activation of natural killercells and macrophages by porcine endothelial cells augments specifi c T-cellxenoresponse. Am J Transplant2002;2:314–22.
    113. Saethre M, Schneider M, Lambris J, et al. Cytokine secretion depends on Galα(1,3)Galexpression in a pig-to-human whole blood model. J Immunol2008;180:6346–53.
    114. Martin C, Plat M, Nerriére-Daguin V, et al. Transgenic expression of CTLA-4Ig by fetalpig neurons for xenotransplantation. Transgenic Res2005;14:373–84.
    115. Hara H, Crossley T, Witt W, et al. Dominant-negative CIITA transgenic pigs—effect onthe human anti-pig T cell immune response and immune status. Am J Transplant2010;10(suppl4):187(abstr503).
    116. Kawai T, Cosimi AB, Spitzer TR, et al. HLA-mismatched renal transplantation withoutmaintenance immunosuppression. N Engl J Med2008;24:358–61.
    117. Losascio SA, Morokata T, Chittenden M, et al. Mixed chimerism, lymphocyte recovery,and evidence for early donor-specific unresponsiveness in patients receiving combinedkidney and bone marrow transplantation to induce tolerance. Transplantation2010;90:1607–15.
    118. Tseng Y-L, Sachs DH, Cooper DKC. Porcine hematopoietic progenitor celltransplantation in nonhuman primates: a review of progress. Transplantation2005;79:1–9.
    119. Muller YD, Golshayan D, Ehirchiou D, et al. T regulatory cells in xenotransplantation.Xenotransplantation2009;16:121–28.
    120. Ibrahim Z, Busch J, Awwad M, et al. Selected physiologic compatibilities andincompatibilities between human and porcine organ systems. Xenotransplantation2006;13:488–99.
    121. McGregor C. Xenogeneic orthotopic heart transplantation: where are we now?Xenotransplantation2010;17:114.
    122. Cantu E, Parker W, Platt JL, Davis RD. Pulmonary xenotransplantation: rapidlyprogressing into the unknown. Am J Transplant2004;4(suppl6):25–35.
    123. Casu A, Bottino R, Balamurugan AN, et al. Metabolic aspects of pig-to-monkey(Macaca fascicularis) islet transplantation: implications for translation into clinicalpractice. Diabetologia2008;51:120–29.
    124. Schuurman HJ. Regulatory aspects of pig-to-human islet transplantation.Xenotransplantation2008;15:116–20.
    125. Onions D, Cooper DKC, Alexander TJL, et al. An assessment of the risk ofxenozoonotic disease in pig-to-human xenotransplantation. Xenotransplantation2000;7:143–55.
    126. Takeuchi Y, Fishman J. Long life with or without PERV. Xenotransplantation2010;17:429–30.
    127. Ramsoondar J, Vaught T, Ball S, et al. Production of transgenic pigs that express porcineendogenous retrovirus small interfering RNAs. Xenotransplantation2009;16:164–80.
    128. Watanabe M, Umeyama K, Matsunari H, et al. Knockout of exogenous EGFP gene inporcine somatic cells using zinc-finger nucleases. Biochem Biophys Res Commun2010;402:14–18.
    129. Sykes M, d’Apice A, Sandrin M; IXA Ethics Committee. Position paper of the EthicsCommittee of the International Xenotransplantation Association. Transplantation2004;78:1101–07.
    130. WHO. First WHO global consultation on regulatory requirements forxenotransplantation clinical trials, Changsha, China,19-21November2008: theChangsha Communiqué. Xenotransplantation2009;16:58–60.
    131. Lahpor JR. State of the art: implantable ventricular assist devices. Curr Opin OrganTransplant2009;14:554–59.
    132. Pless G. Bioartifi cial liver support systems. Methods Mol Biol2010;640:511–23.
    133. Casu A, Trucco M, Pietropaolo M. A look to the future: prediction, prevention, and cureincluding islet transplantation and stem cell therapy. Pediatr Clin North Am2005;52:1779–804.
    134. Rustad KC, Sorkin M, Levi B, Longaker MT, Gurtner GC. Strategies for organ leveltissue engineering. Organogenesis2010;6:151–57.
    1. June CH, Ledbetter JA, Linsley PS, Thompson CB. Role of the CD28receptor in T-cellactivation. Immunol Today1990;11(6):211–216.
    2. Ledbetter JA, Imboden JB, Schieven GL, Grosmaire LS, Rabinovitch PS, Lindsten T,ThompsonCB, June CH. CD28ligation in T-cell activation: Evidence for two signaltransduction pathways. Blood1990;75(7):1531–1539.
    3. Schwartz RH, Mueller DL, Jenkins MK, Quill H. T-cell clonal anergy. Cold Spring HarbSymp Quant Biol1989;54(pt2):605–610.
    4. Thompson CB, Lindsten T, Ledbetter JA, Kunkel SL, Young HA, Emerson SG, LeidenJM, June CH. CD28activation pathway regulates the production of multipleT-cell-derived lymphokines/cytokines. Proc Natl Acad Sci USA1989;86(4):1333–1337.
    5. Green JM, Noel PJ, Sperling AI, Walunas TL, Gray GS, Bluestone JA, Thompson CB.Absence of B7-dependent responses in CD28-deficient mice. Immunity1994;1(6):501–508.
    6. Damle NK, Linsley PS, Ledbetter JA. Direct helper T-cell-induced B-cell differentiationinvolves interaction between T-cell antigen CD28and B-cell activation antigen B7. Eur JImmunol1991;21(5):1277–1282.
    7. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA. CTLA-4is asecond receptor for the B-cell activation antigen B7. J Exp Med1991;174(3):561–569.
    8. Tan P, Anasetti C, Hansen JA, Melrose J, Brunvand M, Bradshaw J, Ledbetter JA,Linsley PS. Induction of alloantigen-specific hyporesponsiveness in human Tlymphocytes by blocking interaction of CD28with its natural ligand B7/BB1. J Exp Med1993;177(1):165–173.
    9. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss ofCTLA-4leads to massive lymphoproliferation and fatal multiorgan tissue destruction,revealing a critical negative regulatory role of CTLA-4. Immunity1995;3(5):541–547.
    10. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, ThompsonCB, Griesser H, Mak TW. Lymphoproliferative disorders with early lethality in micedeficient in Ctla-4. Science1995;270(5238):985–988.
    11. TeftWA, KirchhofMG,Madrenas J. A molecular perspective of CTLA-4function. AnnuRev Immunol2006;24(1):65–97.
    12. Butte MJ, Pena-Cruz V, Kim MJ, Freeman GJ, Sharpe AH. Interaction of human PD-L1and B7-1. Mol Immunol2008;45(13):3567–3572.
    13. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA.B7/CD28costimulation is essential for the homeostasis of the CD4t CD25timmunoregulatory T cells that control autoimmune diabetes. Immunity2000;12(4):431–440.
    14. Lenschow DJ, Zeng Y, Thistlethwaite JR, Montag A, Brady W, Gibson MG, Linsley PS,Bluestone JA. Long-term survival of xenogeneic pancreatic islet grafts induced byCTLA4lg. Science1992;257(5071):789–792.
    15. Turka LA, Linsley PS, Lin H, BradyW, Leiden JM, Wei RQ, Gibson ML, Zheng XG,Myrdal S, Gordon D, Bailey T, Bolling SF, Thompson CB. T-cell activation by the CD28ligand B7is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci USA1992;89(22):11102–11105.
    16. Knoerzer DB, Karr RW, Schwartz BD, Mengle-Gaw LJ. Collagen-induced arthritis in theBB rat. Prevention of disease by treatment with CTLA-4-Ig. J Clin Invest1995;96(2):987–993.
    17. Webb LM, Walmsley MJ, Feldmann M. Prevention and amelioration of collagen-inducedarthritis by blockade of the CD28co-stimulatory pathway: Requirement for both B7-1andB7-2. Eur J Immunol1996;26(10):2320–2328.
    18. Finck BK, Linsley PS, Wofsy D. Treatment of murine lupus with CTLA4Ig. Science1994;265(5176):1225–1227.
    19. RackeMK, Scott DE, Quigley L, Gray GS, Abe R, June CH, Perrin PJ. Distinct roles forB7-1(CD-80) and B7-2(CD-86) in the initiation of experimental allergicencephalomyelitis. J Clin Invest1995;96(5):2195–2203.
    20. Arima T, Rehman A, Hickey WF, Flye MW. Inhibition by CTLA4Ig of experimentalallergic encephalomyelitis. J Immunol1996;156(12):4916–4924.
    21. Lenschow DJ, Ho SC, Sattar H, Rhee L, Gray G, Nabavi N, Herold KC, Bluestone JA.Differential effects of anti-B7-1and anti-B7-2monoclonal antibody treatment on thedevelopment of diabetes in the nonobese diabetic mouse. J Exp Med1995;181(3):1145–1155.
    22. Perrin PJ, June CH, Maldonado JH, Ratts RB, Racke MK. Blockade of CD28during invitro activation of encephalitogenic T cells or after disease onset ameliorates experimentalautoimmune encephalomyelitis. J Immunol1999;163(3):1704–1710.
    23. Larsen CP, Pearson TC, Adams AB, Tso P, Shirasugi N, Strobertm E, Anderson D,Cowan S, Price K, Naemura J, Emswiler J, Greene J, Turk LA, Bajorath J, Townsend R,Hagerty D, Linsley PS, Peach RJ. Rational development of LEA29Y (belatacept), ahigh-affinity variant of CTLA-4Ig with potent immunosuppressive properties. Am JTranspl2005;5(3):443–453.
    24. Davis PM, Abraham R, Xu L, Nadler SG, Suchard SJ. Abatacept binds to the Fc receptorCD64but does not mediate complement-dependent cytotoxicity or antibody-dependentcellular cytotoxicity. J Rheumatol2007;34(11):2204–2210.
    25. Kremer JM, Dougados M, Emery P, Durez P, Sibilia J, Shergy W, Steinfeld S, Tindall E,Becker JC, Li T, Nuamah IF, Aranda R, Moreland LW. Treatment of rheumatoid arthritiswith the selective costimulation modulator abatacept: Twelve-month results of a phase iib,double-blind, randomized, placebo-controlled trial. Arthritis Rheum2005;52(8):2263–2271.
    26. Genovese MC, Becker JC, Schiff M, Luggen M, Sherrer Y, Kremer J, Birbara C, Box J,Natarajan K, Nuamah I, Li T, Aranda R, Hagerty DT, Dougados M. Abatacept forrheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med2005;353(11):1114–1123.
    27. Genant HK, Peterfy CG, Westhovens R, Becker JC, Aranda R, Vratsanos G, Teng J,Kremer JM. Abatacept inhibits progression of structural damage in rheumatoid arthritis:Results from the long-term extension of the AIM trial. Ann Rheum Dis2008;67(8):1084–1089.
    28. Buch MH, Boyle DL, Rosengren S, Saleem B, Reece RJ, Rhodes LA, Radjenovic A,English A, Tang H, Vratsanos G, O’Connor P, Firestein GS, Emery P. Mode of action ofabatacept in rheumatoid arthritis patients having failed tumour necrosis factor blockade: Ahistological, gene expression and dynamic magnetic resonance imaging pilot study. AnnRheum Dis2009;68(7):1220–1227.
    29. Weisman MH, Durez P, Hallegua D, Aranda R, Becker JC, Nuamah I, VratsanosG, ZhouY,Moreland LW. Reduction of inflammatory biomarker response by abatacept intreatment of rheumatoid arthritis. J Rheumatol2006;33(11):2162–2166.
    30. Ruperto N, Lovell DJ, Quartier P, Paz E, Rubio-Perez N, Silva CA, Abud-Mendoza C,Burgos-Vargas R, Gerloni V, Melo-Gomes JA, Saad-Magalhaes C, Sztajnbok F,Goldenstein-Schainberg C, Scheinberg M, Penades IC, Fischbach M, Orozco J, HashkesPJ, Hom C, Jung L, Lepore L, Oliveira S, Wallace CA, Sigal LH, Block AJ, Covucci A,Martini A, Giannini EH. Abatacept in children with juvenile idiopathic arthritis: Arandomised, double-blind, placebo-controlled withdrawal trial. Lancet2008;372(9636):383–391.
    31. Abrams JR, Lebwohl MG, Guzzo CA, Jegasothy BV, Goldfarb MT, Goffe BS, Menter A,Lowe NJ, Krueger G, BrownMJ,Weiner RS, BirkhoferMJ,Warner GL, Berry KK, LinsleyPS, Krueger JG, Ochs HD, Kelley SL, Kang S. CTLA4Ig-mediated blockade of T-cellcostimulation in patients with psoriasis vulgaris. J Clin Invest1999;103(9):1243–1252.
    32. Mease P, Genovese MC, Ritchlin C, Wollenhaupt J, Tak PP, Kivitz A, Gladstein G,Bahary O, Kelly S, Teng J, Becker J-C, Gladman D. Abatacept in psoriatic arthritis:Results of a phase II study. Presented at the ACR/ARHP Annual Scientific Meeting2009;Abstract1260.
    33. Merrill JTB-V, Westhovens R, Chalmers A, D’Cruz D, Wallace D, Bae S, Sigal L, BeckerJ, Kelly S, Raghupathi K, Peng Y, Kinaszczuk M, Nash P. The efficacy and safety ofabatacept in SLE: Results of a12-month exploratory study. Presented at the AmericanCollege of Rheumatology Annual Scientific Meeting2008; Abstract L15.
    34. Linsley PS, Nadler SG. The clinical utility of inhibiting CD28-mediated costimulation.Immunol Rev2009;229(1):307–321.
    35. Viglietta V, Bourcier K, Buckle GJ, Healy B, Weiner HL, HaflerDA, EgorovaS,GuttmannCR, Rusche JR, Khoury SJ. CTLA4Ig treatment in patients with multiplesclerosis: An open-label, phase1clinical trial. Neurology2008;71(12):917–924.
    36. SandbornWJ,Colombel J-F,HanauerS,TarganS,SchreiberS, Bressler B, Raghupathi K,Aranda R, Luo AY. A randomized placebo-controlled trial of abataceptformoderately-to-severely active ulcerative colitis. Presented at the American College ofGastroenterology Annual Scientific Meeting and Postgraduate Course2009; Abstract47.
    37. Smitten AL, Qi K, Franklin J, Askling J, Lacaille D. Hospitalized infections in theabatacept RA clinical development program: An epidemiological assessment with.10,000person-years of exposure. Arthritis Rheum2008;58(S786), Abstract1674.
    38. Smitten AL, Simon TA, Hochberg MC, Suissa S. A meta-analysis of the incidence ofmalignancy in adult patients with rheumatoid arthritis. Arthritis Res Ther2008;10(2):R45.
    39. Smitten A, Simon T, Becker JC. Autoimmune adverse events in the abatacept RA clinicaldevelopment program: A safety analysis with.10,000person-years of exposure. ArthritisRheum2008;58(S786), Abstract1673.
    40. Grimbacher B, Hutloff A, Schlesier M, Glocker E, Warnatz K, Drager R, Eibel H, FischerB, Schaffer AA, Mages HW, Kroczek RA, Peter HH. Homozygous loss of ICOS isassociated with adult-onset common variable immunodeficiency. Nat Immunol2003;4(3):261–268.
    41. Bauquet AT, Jin H, Paterson AM, Mitsdoerffer M, Ho IC, Sharpe AH, Kuchroo VK. Thecostimulatory molecule ICOS regulates the expression of c-Maf and IL-21in thedevelopment of follicular T helper cells and TH-17cells. Nat Immunol2009;10(2):167–175.
    42. Nurieva RI, Treuting P, Duong J, Flavell RA, Dong C. Inducible costimulator is essentialfor collagen-induced arthritis. J Clin Invest2003;111(5):701–706.
    43. Dong C, Juedes AE, Temann UA, Shresta S, Allison JP, Ruddle NH, Flavell RA. ICOSco-stimulatory receptor is essential for T-cell activation and function. Nature2001;409(6816):97–101.
    44. Rottman JB, Smith T, Tonra JR, Ganley K, BloomT, Silva R, Pierce B, Gutierrez-RamosJC, Ozkaynak E, Coyle AJ. The costimulatory molecule ICOS plays an important role inthe immunopathogenesis of EAE. Nat Immunol2001;2(7):605–611.
    45. Mesturini R, Nicola S, Chiocchetti A, Bernardone IS, Castelli L, Bensi T, Ferretti M,Comi C, Dong C, Rojo JM, Yagi J, Dianzani U. ICOS cooperates with CD28, IL-2, andIFN-gamma and modulates activation of human na ve CD4t T cells. Eur J Immunol2006;36(10):2601–2612.
    46. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, AhmedR. Restoring function in exhausted CD8T cells during chronic viral infection. Nature2006;439(7077):682–687.
    47. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-likeautoimmune diseases by disruption of the PD-1gene encoding an ITIM motif-carryingimmunoreceptor. Immunity1999;11(2):141–151.
    48. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S,Mizoguchi A, Hiai H, Minato N, Honjo T. Autoimmune dilated cardiomyopathy in PD-1receptor-deficient mice. Science2001;291(5502):319–322.
    49. Brahmer JR, Topalian S, Wollner I, Powderly JD, Picus J, Drake CG, Covino J, KormanA, Pardoll D, Lowy I. Safety and activity of MDX-1106(ONO-4538), an anti-PD-1monoclonal antibody, in patients with selected refractory or relapsed malignancies. J ClinOncol2008;26(May20suppl; abstr3006).
    50. Han P, Goularte OD, Rufner K, Wilkinson B, Kaye J. An inhibitory Ig superfamilyprotein expressed by lymphocytes and APCs is also an early marker of thymocyte positiveselection. J Immunol2004;172(10):5931–5939.
    51. Hurchla MA, Sedy JR, Gavrieli M, Drake CG, Murphy TL, Murphy KM. B and Tlymphocyte attenuator exhibits structural and expression polymorphisms and is highlyInduced in anergic CD4t T cells. J Immunol2005;174(6):3377–3385.
    52. Tao R, Wang L, Murphy KM, Fraser CC, Hancock WW. Regulatory T-cell expression ofherpesvirus entry mediator suppresses the function of B and T lymphocyteattenuator-positive effectorT cells. J Immunol2008;180(10):6649–6655.
    53. Cai G, Anumanthan A, Brown JA, Greenfield EA, Zhu B, Freeman GJ. CD160inhibitsactivation of human CD4t T cells through interaction with herpesvirus entry mediator.Nat Immunol2008;9(2):176–185.
    54. Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, SubramaniamS, BlattmanJN, BarberDL, AhmedR. Molecular signature of CD8t T-cell exhaustion during chronicviral infection. Immunity2007;27(4):670–684.
    55. Abecassis S, Giustiniani J,Meyer N, Schiavon V, Ortonne N, Campillo JA, Bagot M,Bensussan A. Identification of a novel CD160t CD4t T-lymphocyte subset in the skin: Apossible role for CD160in skin inflammation. J Invest Dermatol2007;127(5):1161–1166.
    56. Oya Y, Watanabe N, Owada T, Oki M, Hirose K, Suto A, Kagami S, Nakajima H,Kishimoto T, Iwamoto I, Murphy TL, Murphy KM, Saito Y. Development of autoimmunehepatitis-like disease and production of auto-antibodies to nuclear antigens in micelacking B and T lymphocyte attenuator. Arthritis Rheum2008;58(8):2498–2510.
    57. Tao R,Wang L,Han R,Wang T, Ye Q,Honjo T,Murphy TL, Murphy KM, Hancock WW.Differential effects of B and T lymphocyte attenuator and programmed death-1onacceptance of partially versus fully MHC-mismatched cardiac allografts. J Immunol2005;175(9):5774–5782.
    58. TruongW, Plester JC, HancockWW,Merani S,Murphy TL, Murphy KM, Kaye J,Anderson CC, Shapiro AM. Combined coinhibitory and costimulatory modulation withanti-BTLA and CTLA4Ig facilitates tolerance in murine islet allografts. Am J Transpl2007;7(12):2663–2674.
    59. Steinberg MW, Turovskaya O, Shaikh RB, Kim G, McCole DF, Pfeffer K, Murphy KM,Ware CF, Kronenberg M. A crucial role for HVEM and BTLA in preventing intestinalinflammation. J Exp Med2008;205(6):1463–1476.
    60. Hurchla MA, Sedy JR, Murphy KM. Unexpected role of B and T lymphocyte attenuatorin sustaining cell survival during chronic allostimulation. J Immunol2007;178(10):6073–6082.
    61. Truong W, Hancock WW, Plester JC, Merani S, Rayner DC, Thangavelu G, Murphy KM,Anderson CC, Shapiro AM. BTLA targeting modulates lymphocyte phenotype, function,and numbers and attenuates disease in nonobese diabetic mice. J Leukoc Biol2009;86(1):41–51.
    62. Nurieva RI, Liu X, Dong C. Yin-Yang of costimulation: Crucial controls of immunetolerance and function. Immunol Rev2009;229(1):88–100.
    63. Lougaris V, Badolato R, Ferrari S, Plebani A. Hyper immunoglobulin M syndrome due toCD40deficiency: Clinical, molecular, and immunological features. Immunol Rev2005;203:48–66.
    64. Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, BedellMA, Edelhoff S, Disteche CM, Simoneaux DK, Fanslow WC, Belmont J, Spriggs MK.CD40ligand gene defects responsible for X-linked hyper-IgM syndrome. Science1993;259(5097):990–993.
    65. Aruffo A, FarringtonM, Hollenbaugh D, Li X,Milatovich A, Nonoyama S, Bajorath J,Grosmaire LS, Stenkamp R, Neubauer M, Roberts RL, Noelle RJ, Ledbetter JA, FranckeU, Ochs HD. The CD40ligand, gp39, is defective in activated T cells from patients withX-linked hyper-IgM syndrome. Cell1993;72(2):291–300.
    66. Conley ME. An evolving view of hyper-IgM syndrome. J Pediatr1997;131(1Pt1):8–9.
    67. DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de Saint Basile G. CD40ligandmutations in x-linked immunodeficiency with hyper-IgM. Nature1993;361(6412):541–543.
    68. Durandy A, Hivroz C, Mazerolles F, Schiff C, Bernard F, Jouanguy E, Revy P, DiSantoJP, Gauchat JF, Bonnefoy JY, Casanova JL, Fischer A. Abnormal CD40-mediatedactivation pathway in B lymphocytes from patients with hyper-IgM syndrome and normalCD40ligand expression. J Immunol1997;158(6):2576–2584.
    69. Korthauer U, Graf D, Mages HW, Briere F, Padayachee M, Malcolm S, Ugazio AG,Notarangelo LD, Levinsky RJ, Kroczek RA. Defective expression of T-cell CD40ligandcauses X-linked immunodeficiency with hyper-IgM. Nature1993;361(6412):539–541.
    70. Grewal IS, Xu J, Flavell RA. Impairment of antigen-specific T-cell priming in micelacking CD40ligand. Nature1995;378(6557):617–620.
    71. Kawabe T, Naka T, Yoshida K, Tanaka T, Fujiwara H, Suematsu S, Yoshida N,Kishimoto T, Kikutani H. The immune responses in CD40-deficient mice: Impairedimmunoglobulin class switching and germinal center formation. Immunity1994;1(3):167–178.
    72. Xu J, Foy TM, Laman JD, Elliott EA, Dunn JJ, Waldschmidt TJ, Elsemore J, Noelle RJ,Flavell RA. Mice deficient for the CD40ligand. Immunity1994;1(5):423–431.
    73. Orozco G, Eyre S, Hinks A, Ke X, Wilson AG, Bax DE, Morgan AW, Emery P, Steer S,Hocking L, Reid DM, Wordsworth P, Harrison P, Thomson W, Barton A, Worthington J.Association of CD40with rheumatoid arthritis confirmed in a large UK case-control study.Ann Rheum Dis2009; doi:10.1136/ard.2009.109579.
    74. RaychaudhuriS,RemmersEF,LeeAT,HackettR, Guiducci C, Burtt NP, Gianniny L,Korman BD, Padyukov L, Kurreeman FA, Chang M, Catanese JJ, Ding B, Wong S, vander Helm-van Mil AH, Neale BM, Coblyn J, Cui J, Tak PP, Wolbink GJ, Crusius JB, vander Horst-Bruinsma IE, Criswell LA, Amos CI, Seldin MF, Kastner DL, Ardlie KG,Alfredsson L, Costenbader KH, Altshuler D, Huizinga TW, Shadick NA, Weinblatt ME,de Vries N, Worthington J, Seielstad M, Toes RE, Karlson EW, Begovich AB, KlareskogL, Gregersen PK, Daly MJ, Plenge RM. Common variants at CD40and other loci conferrisk of rheumatoid arthritis. Nat Genet2008;40(10):1216–1223.
    75. Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ. CD40/CD154interactions at the interfaceof tolerance and immunity. Annu Rev Immunol2004;22:307–328.
    76. Iezzi G, Sonderegger I, Ampenberger F, Schmitz N, Marsland BJ, Kopf M. CD40-CD40Lcross-talk integrates strong antigenic signals and microbial stimuli to induce developmentof IL-17-producing CD4t T cells. Proc Natl Acad Sci USA2009;106(3):876–881.
    77. Jasny E, Eisenblatter M, Matz-Rensing K, Tenner-Racz K, Tenbusch M, Schrod A,Stahl-Hennig C, Moos V, Schneider T, Racz P, Uberla K, Kaup FJ, Ignatius R.IL-12-impaired and IL-12-secreting dendritic cells produce IL-23upon CD154restimulation. J Immunol2008;180(10):6629–6639.
    78. Boumpas DT, Furie R, Manzi S, Illei GG, Wallace DJ, Balow JE, Vaishnaw A. A shortcourse of BG9588(anti-CD40ligand antibody) improves serologic activity and decreaseshematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum2003;48(3):719–727.
    79. Grammer AC, Slota R, Fischer R, Gur H, Girschick H, Yarboro C, Illei GG, Lipsky PE.Abnormal germinal center reactions in systemic lupus erythematosus demonstrated byblockade of CD154-CD40interactions. J Clin Invest2003;112(10):1506–1520.
    80. Pree I, Wekerle T. New approaches to prevent transplant rejection: Co-stimulationblockers anti-CD40L and CTLA4Ig. Drug Discov Today Therapeut Strat2006;3(1):41–47.
    81. Langer F, Ingersoll SB, Amirkhosravi A, Meyer T, Siddiqui FA, Ahmad S, Walker JM,Amaya M, Desai H, Francis JL. The role of CD40in CD40L-and antibody-mediatedplatelet activation. Thromb Haemost2005;93(6):1137–1146.
    82. Mirabet M, Barrabes JA, Quiroga A, Garcia-Dorado D. Platelet pro-aggregatory effects ofCD40L monoclonal antibody. Mol Immunol2008;45(4):937–944.
    83. Patel VL, Schwartz J, Bussel JB. The effect of anti-CD40ligand in immunethrombocytopenic purpura. Br J Haematol2008;141(4):545–548.
    84. Kasran A, Boon L, Wortel CH, Hogezand RA, Schreiber S, Goldin E, Boer M, Geboes K,Rutgeerts P, Ceuppens JL. Safety and tolerability of antagonist anti-human CD40Mabch5D12in patients with moderate to severe Crohn’s disease. Aliment Pharmacol Ther2005;22(2):111–122.
    85. Andreakos E, Rauchhaus U, Stavropoulos A, Endert G, WendischV, BenahmedAS,GiaglisS,Karras J,LeeS,GausH, Bennett CF, Williams RO, Sideras P, Panzner S.Amphoteric liposomes enable systemic antigen-presenting cell-directed delivery of CD40antisense and are therapeutically effective in experimental arthritis. Arthritis Rheum2009;60(4):994–1005.
    86. GaoD,Wagner AH, Fankhaenel S, Stojanovic T, Schweyer S, Panzner S, Hecker M. CD40antisense oligonucleotide inhibition of trinitrobenzene sulphonic acid induced rat colitis.Gut2005;54(1):70–77.
    87. Kean LS, Gangappa S, Pearson TC, Larsen CP. Transplant tolerance in non-humanprimates: Progress, current challenges and unmet needs. Am J Transpl2006;6(5Pt1):884–893.
    88. CroftM, So T,DuanW, Soroosh P. The significance ofOX40and OX40L to T-cell biologyand immune disease. Immunol Rev2009;229(1):173–191.
    89. Manku H, Graham DS, Vyse TJ. Association of the co-stimulator OX40L with systemiclupus erythematosus. J Mol Med2009;87(3):229–234.
    90. TamadaK, ShimozakiK,Chapoval AI, Zhai Y, Su J,Chen SF, Hsieh SL, Nagata S, Ni J,Chen L. LIGHT, a TNF-like molecule, costimulates T-cell proliferation and is requiredfor dendritic cell-mediated allogeneic T-cell response. J Immunol2000;164(8):4105–4110.
    91. Duhen T, Pasero C, Mallet F, Barbarat B, Olive D, Costello RT. LIGHT costimulatesCD40triggering and induces immunoglobulin secretion; a novel key partner inT-cell-dependent B-cell terminal differentiation. Eur J Immunol2004;34(12):3534–3541.
    92. Wan X, Zhang J, Luo H, Shi G, Kapnik E, Kim S, Kanakaraj P, Wu J. A TNF familymember LIGHT transduces costimulatory signals into human T cells. J Immunol2002;169(12):6813–6821.
    93. An MM, Fan KX, Zhang JD, Li HJ, Song SC, Liu BG, Gao PH, Zhou Q, Jiang YY.Lymphtoxin beta receptor-Ig ameliorates TNBS-induced colitis via blockingLIGHT/HVEM signaling. Pharmacol Res2005;52(3):234–244.
    94. Brown GR, Lee EL, El-Hayek J, Kintner K, Luck C. IL-12-independent LIGHT signalingenhances MHC class II disparate CD4t T-cell alloproliferation, IFN-gamma responses,and intestinal graft-versus-host disease. J Immunol2005;174(8):4688–4695.
    95. Fava RA, Notidis E, Hunt J, Szanya V, Ratcliffe N, Ngam-Ek A, De Fougerolles AR,Sprague A, Browning JL. A role for the lymphotoxin/LIGHT axis in the pathogenesis ofmurine collagen-induced arthritis. J Immunol2003;171(1):115–126.
    96. Gommerman JL, Giza K, Perper S, Sizing I, Ngam-Ek A, Nickerson-Nutter C, BrowningJL. A role for surface lymphotoxin in experimental autoimmune encephalomyelitisindependent of LIGHT. J Clin Invest2003;112(5):755–767.
    97. Pierer M, Schulz A, Rossol M, Kendzia E, Kyburz D, Haentzschel H, Baerwald C,Wagner U. Herpesvirus entry mediator-Ig treatment during immunization aggravatesrheumatoid arthritis in the collagen-induced arthritis model. J Immunol2009;182(5):3139–3145.
    98. Wang J, Anders RA, Wang Y, Turner JR, Abraham C, Pfeffer K, Fu YX. The critical roleof LIGHT in promoting intestinal inflammation and Crohn’s disease. J Immunol2005;174(12):8173–8182.
    99. Fan K, Wang H, Wei H, Zhou Q, Kou G, Hou S, Qian W, Dai J, Li B, Zhang Y, Zhu T,Guo Y. Blockade of LIGHT/HVEM and B7/CD28signaling facilitates long-term isletgraft survival with development of allospecific tolerance. Transplantation2007;84(6):746–754.
    100. Scheu S, Alferink J, Potzel T, Barchet W, Kalinke U, Pfeffer K. Targeted disruption ofLIGHT causes defects in costimulatory T-cell activation and reveals cooperation withlymphotoxin beta in mesenteric lymph node genesis. J Exp Med2002;195(12):1613–1624.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700