小菜蛾对Bt抗性机理及湖南地区综合治理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小菜蛾Plutella xylostella (L.),属于鳞翅目菜蛾科,是世界性的重要农业害虫。由于杀虫剂的广泛使用,小菜蛾几乎对所有防治药剂均产生了抗药性,极大增加了防治难度。苏云金芽孢杆菌(Bacillus thuringiensis, Bt)是目前使用范围最广的生物杀虫剂,小菜蛾在田间亦对其产生了抗药性,严重影响了其在防治小菜蛾方面的应用价值。本文一方面通过构建两性生命表研究了小菜蛾Bt抗性种群的生物学特性,利用实时荧光定量PCR技术研究了小菜蛾可能受体基因的基因表达水平,经分子克隆得到小菜蛾Bt毒素可能受体氨肽酶N (Aminopeptidase N4, APN4)基因全长,分析和预测了其分子结构和功能位点。另一方面,以小菜蛾田间抗性监测为基础,结合其它防治措施对小菜蛾抗性进行治理,以达到湖南地区小菜蛾综合治理(Integreted Pest Management, IPM)的目的。本文主要研究内容及结论如下:
     1小菜蛾荧光定量PCR内参基因的筛选
     本文首次系统评价了小菜蛾荧光定量PCR内参基因的筛选。选用了8个候选内参基因,试验条件分为生物因子(发育阶段、组织和品系)和非生物因子(温度、光周期、药剂和机械伤害),应用内参分析软件geNorm、Normfinder、Bestkeeper和RefFinder进行各候选内参基因稳定性分析。结果表明,不同试验条件下应选择的内参基因有所不同,相比而言,EFl和RPL32在大多数试验条件下均表现出良好的稳定性。
     该研究为小菜蛾基因表达相关研究奠定了良好的基础。
     2小菜蛾抗敏品系APN4基因全长克隆及结构和功能预测分析
     经分子克隆得到小菜蛾APN4基因全长序列,结果表明其开发阅读框包括2835bp,编码944个氨基酸残基。SignalP软件预测APN4在N端有一个长为16个氨基酸左右的信号肽结构。Big-PI Predictor软件预测APN4第496位氨基酸谷氨酰胺(Gln)为潜在的C端GPI修饰位点。ScanProsit软件预测APN4有13个N端酰基化位点、9个酪氨酸蛋白激酶2磷酸化位点、4个N端糖基化位点、9个蛋白激酶C磷酸化位点和2个酪氨酸激酶磷酸化位点。比对分析小菜蛾Cry1Ac抗敏品系氨基酸序列,抗性品系相对于敏感品系有5个氨基酸的改变。
     该研究为明确小菜蛾APN4基因的结构和功能及其在小菜蛾Bt抗性中的作用奠定了一定的基础。
     3小菜蛾Bt毒素可能受体基因的基因表达水平分析
     系统研究了Bt毒素小菜蛾敏感和抗性品系中3种Bt可能受体基因(钙粘蛋白、氨肽酶和碱性磷酸酶)的基因表达水平差异分析。结果显示,钙粘蛋白基因除1龄幼虫外,其余各龄期幼虫和中肠组织中敏感品系的基因表达量均显著高于抗性品系。APN1和APN2基因在敏感品系中的表达量一般要高于抗性品系,但APN3基因除3和4龄幼虫外,其余各龄期敏幼虫感品系表达量均显著低于抗性品系,但中肠组织中敏感品系高于抗性品系,而抗敏品系APN4基因各龄期和中肠组织表达量均无显著性差异。碱性磷酸酶基因各龄期幼虫敏感品系和抗性品系均无显著差异,但中肠组织敏感品系基因表达量显著高于抗性品系。
     该研究为小菜蛾Bt受体的确定及阐明其分子抗性机制提供了一定的依据。
     4小菜蛾Bt抗敏品系生物学特性研究
     通过分别构建小菜蛾Bt抗性和敏感品系的两性生命表,结果表明,小菜蛾敏感品系的内禀增长率、种群增长率和净殖长率均要高于抗性品系,而世代周期短于抗性品系。抗性品系相对于敏感品系种群适合度代价为0.78。
     通过抗性品系对不同Bt毒素蛋白的室内活性测定,发现其对Cry1Ab和Cry1Ac有较高的抗性水平,抗性倍数分别为59.68和67.68,而对Cry1Ca和Cry1Ah保持较高的敏感性,抗性倍数分别为3.32和1.64倍。
     该研究有助于明确小菜蛾Bt抗性品系的生物学特性及小菜蛾对Bt毒素不同蛋白的药剂敏感性。
     5湖南地区小菜蛾发生规律和抗药性监测
     通过湖南长沙和怀化地区小菜蛾种群动态调查发现,湖南平原代表地长沙地区小菜蛾发生一年中有两个高峰期,一个是4月中下旬和11月上旬,而湖南丘陵山区代表地怀化小菜蛾高峰期分别为5月上旬和10月中旬。在建立了小菜蛾对9药剂敏感基线的基础上,分别监测了长沙和怀化2011和2012年春秋两季的9种药剂田间抗性水平。结果发现,Bt、氯虫苯甲酰胺和丁醚脲处于中等水平抗性,多杀菌素、定虫隆和溴虫腈达到高抗水平,而阿维菌素、高效氯氰菊酯和茚虫威达到极高抗水平。
     该研究明确了湖南不同地区的小菜蛾种群动态规律和田间抗药性水平现状,为小菜蛾的抗性治理和综合防治奠定了基础。
     6湖南地区小菜蛾综合防控体系研究
     小菜蛾在甘蓝上的防治指标的研究结果表明:苗期、莲座期、结球时期和结球中后期的防治指标分别为53.65、90.84、67.21和607.51头每百株。通过联合毒力测定表明,甲氨基阿维菌素苯甲酸盐和氟啶脲不同配比的联合毒力的共毒系数均大于100,表现出相加作用,其中甲维盐:氟啶脲=1:10时,其共毒系数最大(154.58),为最佳配比。整合各单项小菜蛾防控技术,建立了湖南地区小菜蛾综合防治体系,通过经济效益评价,结果表明,综防区投资效益比为1:17.39,显著高于化防区(1:9.06)。
     该研究为湖南地区小菜蛾综合治理提供了参考模式。
The diamondback moth, Plutella xylostella (L.), is one of the world wide agricultural pest of cruciferous vegetables, and has developed resistance to a wide array of insecticides. The environmentally friendly insecticide crystal proteins produced by Bacillus thuringiensis (Bt) are of great scientific interest because of their potency and specificity to a wide range of insect pests. The resistance mechanism of Bt-resistance strain of P. xylostella was studied by constructing the life table to compare the biological characteristics between the resistance and susceptible Bt strains, cloning the aminopeptidase N (APN4) gene of P. xylostella, and using quantitative real-time PCR to studied gene expression of potential Bt receptor of P. xylostella. On the other hand, the Integrated Pest Management (IPM) of P. xylostella in Hunan province was proposed on the basis of the occurrence rules and resistance monitoring of P. xylostella. The main contents and conclusions are as follows:1. Exploring valid reference genes in P. xylostella
     In this study, a total of eight candidate reference genes were evaluated under various experimental conditions throughout the entire qRT-PCR workflow. Based on the comprehensive analysis, a suite of internal references are recommended to accurately normalize and quantify gene expression in P. xylostella. The results showed that under the test conditions should be selected different reference gene, compared, EF1and RPL32in most experimental conditions showed a good stability. This study not only provides a standardized procedure for quantification of gene expression in the diamondback moth, but also lays a solid foundation for the genomics and functional genomics research in this emerging insect model.
     2. Cloning and sequencing of Aminopeptidase N (APN4) gene from P.xylostella susceptible and resistant to CrylAc toxin
     cDNA of aminopeptidase N (APN4) from CrylAc toxin susceptible and resistant strains of P.xylostella was cloned and sequenced. It contained a2835bp open reading frame that encoded944amino acids. The sequences had a N-terminal siganal peptide with16amino acid. GPI-Anchor sites showed that the first496amino acid glutamine (Gln) is the potential C-terminal GPI modification sites. ScanProsit showed that APN4has13N-terminal acylated sites,9tyrosine kinase2phosphorylation sites,4N-glycosylation sites,9protein kinase C phosphorylation sites and2tyrosine kinase phosphorylation sites. There was5amino acids mutation in APN4from susceptible strain of P. xylostella relative to that of resistant strain. This study provides a certain foundation for studing the system structure and function of APN4in P.xylostella.
     3. The gene expression analysis of Bt potential receptors of P. xylostella
     The gene expression of Bt potential receptors (cadherin (CAD), aminopeptidase N (APN) and alkaline phosphatase (ALP)) in P. xylostella was studied. The results showed that the cadherin gene expression of susceptible strain of P. xylostella were higher than resistant strain except for the1st larvae. The gene expression of APN1and APN2of susceptible strain were higher than resistant strain in the most developmental stage larvae. The gene expression of APN3of susceptible strain were lower than resistant strain except for the3rd and4th larvae, while expression of susceptible strain were higher than resistant strain in the midgut.There were no significant difference between the gene expression of APN4of susceptible and resistant strain. There were no significant difference between the gene expression of ALP of susceptible and resistant strain in different development stages, while the gene expression of susceptible strain were higher than resistan strain in the midgut. This study contributes to the determination of the Bt receptor of P. xylostella and its molecular mechanism of resistance.
     4. The life characteristic of resistant P. xylostella population
     Objective to compare biological characteristics and population dynamics of Bt-resistant and susceptible strain of P. xylostella in the laboratory, the two sex life table was established. The results showed that the intrinsic rate of increase (r), the net reproductive rate (R0) and the the gross reproduction rateis (GRR) of susceptible strain is higher than resistant strain, while the mean length (T) of susceptible strain is shorter then Bt-resistant strain. The fitness cost of restant strain is0.78compared to the susceptible strain.
     This study found that Bt-resistant strain has a higher resistance to CrylAb (59.68-fold) and CrylAc (67.68-fold), lower resistance to CrylCa (3.32-fold), and no complete resistance to CrylAh (1.64-fold), respectively.
     This study helps to define the biological characteristics of Bt-resistant P. xylostella and the resistance of resistant strain to different Bt toxin protein.
     5. The occurrence rules and resistance monitoring of P. xylostella in Hunan province
     The occurrence rules of P. xylostella in Changsha and Huaihua was ascertained with systemic investigation and field census. The results showed that the maximum occurrence of the adult of was diamondback moth in the late mid-April and the early November in Changsha and in the early May and the mid October in Huaihua, respectively.
     The relative susceptible toxicity baselines of P. xylostella to major insecticides in the laboratory condition were established with leaf dipping method. The Changsh and Huaihua population showed a low-level resistance to Bt, Chlorantraniliprole and Diafenthiuron, a middle-level resistance to Spinosad, Chlorfluazuron and Chlorfenapyr, and a high-level resistance to Abamectin, Cypermethrin and Indoxacarb, respectively.
     Studies to detect incripient resistant in the filed are very important to design effective strategies to avoid resistance development.
     6. The IPM of P.xylostella in Hunan province
     Based on the experiment between the yield loss and the the population density of P. xylostella, it is suggested that the economic threshold is53.65in seedling,90.84in rosette stage,67.21in early heading stage and607.51in the late period of the heading stage imported cabbage larvae on one hundred cabbages.
     The toxicities of emamectin benzoate, chlorfluazuron and their mixture on3rd instar larvae of P.xylostella were tested in laboratory. It was found that the synergism was the most significant when the proportion of emamectin benzoate and chlorfluazuron was1:10and the co-toxicity coefficient was154.58.
     Six different control systems for P. xylostella on autumn wild cabbage were established, and the population dynamics of P. xylostella, quantity of natural enemy, quality of wild cabbage and economic benefit in each control system were studied. The results showed that the effects of pest control, natural enemy protection, crop yield and crop quality in integrated control area were greater than that in other control areas, and the rate of return on investment was the best (1:17.39).
     The study evaluated the single system control techniques and integrated control system for the effective control of P. xylostella in Hunan Province which provide a model for IPM of P. xylostella in Hunan.
引文
[1]Talekar, NS, Shelton AM. Biology, ecology, and management of the diamondback moth [J]. Annu Rev Entomol,1993,38:275-301.
    [2]Furlong, MJ, Wright DJ, Dosdall LM. Diamondback moth ecology and management:problems, progress, and prospects [J]. Annu Rev Entomol,2013,58:517-541.
    [3]Zalucki, MP, Shabbir A, Silva R, et al. Estimating the economic cost of one of the world's major insect pests, Plutella xylostella (Lepidoptera:Plutellidae):just how long is a piece of string? [J]. J Econ Entomol,2012,105:1115-1129.
    [4]Tabashnik BE, Huang F, Ghimire MN, et al. Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance [J]. Nat Biotechnol,2011,29:1128-1131.
    [5]Baxter SW, Badenes-Perez FR, Morrison A, et al. Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera [J]. Genetics,2011,189:675-679.
    [6]Sanahuja G, Banakar R, Twyma RM, et al. Bacillus thuringiensis:a century of research, development and commercial applications [J]. Plant Biotechnol J,2011,9:283-300.
    [7]Tabashnik BE, Gassmann AJ, Crowder DW. Insect resistance to Bt crops:evidence versus theory [J]. Nat Biotechnol,2008,26:199-202.
    [8]Soberon M, Pardo-Lopez L, Lopez I. Engineering modified Bt toxins to counter insect resistance [J]. Science,2007,318:1640-1642.
    [9]Furlong MJ, Spafford H, Ridland PM, et al. Ecology of diamondback moth in Australian canola: landscape perspectives and the implications for management [J]. Aust J Exp Agric,2008,48: 1494-1505.
    [10]FAOSTAT. Production statistics.2012, Rome:FAO. http://faostat.fao.org/site/ 567/default.aspx#ancor
    [11]Zalucki JM, Furlong MJ. Predicting outbreaks of a major migratory pest:an analysis of diamondback moth distribution and abundance revisited [M]. Proceedings of the Sixth International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests.2011,8-14.
    [12]FurlongMJ, Ju KH, Su PW, et al. Integration of endemic natural enemies and Bacillus thuringiensis to manage insect pests of Brassica crops in North Korea [J]. Agric Ecosyst Environ, 2008,125:223-38.
    [13]Grzywacz D, Rossbach A, Rauf A, et al. Current controlmethods for diamondback moth and other Brassica insect pests and the prospects for improved management with lepidopteran-resistant Bt vegetable brassicas in Asia and Africa. Crop Prot,2010.29:68-79.
    [14]Srinivasan R, Shelton AM, Collins HL, et al. Proceedings of the Sixth International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests [M].2011, Shanhua, Taiwan:AVRDC-The World Veg. Cent.216-221.
    [15]Endersby NM, Ridland PM. Proceedings of the Fourth International Workshop on the Management of Diamondback Moth and Other Crucifer Pests [M].2004, Melbourne, Aust.:The Regional Inst.307-311.
    [16]Li ZY, Zalucki MP, Bao HL, et al. Population dynamics and'outbreaks'of diamondback moth, Plutella xylostella, in Guangdong Province, China:climate or the failure of management? [J]. J Econ Entomol,2012,105:739-752.
    [17]Furlong MJ, Shi ZH, Liu YQ, Guo SJ, Lu YB, et al. Experimental analysis of the influence of pest management practice on the efficacy of an endemic arthropod natural enemy complex of the diamondback moth [J]. J Econ Entomol,2004,97:1814-27.
    [18]Baker GJ, Kovaliski J. Detection of insecticide resistance in Plutella xylostella (L.) (Lepidoptera: Plutellidae) populations in South Australian crucifer crops [J]. Aust J Entomol,1999,38:132-134.
    [19]Eziah VY, Rose HA, Wilkes M, et al. Biochemical mechanisms of insecticide resistance in the diamondback moth (DBM), Plutella xylostella L. (Lepidoptera:Yponomeutidae), in the Sydney region, Australia [J]. Aust J Entomol,2009,48:321-27
    [20]Zhou LJ, Huang JG, Xu HH. Monitoring resistance of field populations of diamondback moth Plutella xylostella L. (Lepidoptera:Yponomeutidae) to five insecticides in South China:a ten-year case study [J]. Crop Prot,2011,30:272-278.
    [21]Carazo RE, CartinL,Monge LA, Lobo S, et al. Resistance of Plutella xylostella to deltamethrin, methamidophos and cartap in Costa Rica [J]. Manejo Integrado de Plagas,1999,53:52-57.
    [22]Joia BS, Udeaan AS, Chawla RP. Toxicity of cartap hydrochloride and other insecticides to multiresistant strains of the diamondback moth, Plutella xylostella (L.), in the Punjab [J]. Int Pest Control,1996,38:158-59.
    [23]Lal R, Kumar J. Resistance in field populations of Plutella xylostella (L.) to malathion, endosulfan and fenvalerate in Himachal Pradesh [J]. Indian J Plant Prot,2004,32:29-33.
    [24]Sannaveerappanavar VT, Virktamath CA. Resistance to insecticides in an Indian strain of diamondback moth, Plutella xylostella (L.) (Lepidoptera:Yponomeutidae) [J]. Resist Pest Manag Newsl,2006,15:32-35.
    [25]Vastrad AS, Lingappa S, Gould KB. Status of insecticide resistance in diamondback moth, Plutella xylostella Linnaeus (Plutellidae:Lepidoptera), in Karnataka [J]. Karnataka J Agric Sci, 2002,15:379-383.
    [26]Perez CJ, Alvarado P, Narvaez C, Miranda F, et al. Assessment of insecticide resistance in five insect pests attacking field and vegetable crops in Nicaragua [J]. J Econ Entomol,2000,93: 1779-1787.
    [27]Attique MNR, Khaliq A, Sayyed AH. Could resistance to insecticides in Plutella xylostella (Lep.,Plutellidae) be overcome by insecticide mixtures? [J]. JAppl Entomol,2006,130:122-127.
    [28]Sarmiento GM, Ocampo VR. Variability in response to insecticides of field populations of diamondback moth, Plutella xylostella (Linnaeus), in the Philippines [J]. Philipp Entomol,2010, 24:39-76.
    [29]Sereda B, BassonNCJ, Marais P.1997. Bioassay of insecticide resistance in Plutella xylostella (L.) in South Africa [J]. Afr Plant Prot,1997,3:67
    [30]Kim YH, Lee JH, Lee SH. Determination of organophosphate and carbamate resistance allele frequency in diamondback moth populations by quantitative sequencing and inhibition tests [J]. J Asia-Pacif Entomol,2011,14:29-33.
    [31]Zhou L, Huang J, Xu H, Zhou LJ, et al. Insecticide resistance of Plutella xylostella from fields of Pearl River Delta [J]. J South China Agric Univ,2011,32:45-48.
    [32]Kao CH, Cheng EY. Insecticide resistance in Plutella xylostella L. XI. Resistance to newly introduced insecticides in Taiwan (1990-2001) [M]. J Agric Res China,2001,50:80-89.
    [33]Endersby NM, Ridland PM, Hoffmann AA. The effects of local selection versus dispersal on insecticide resistance patterns:longitudinal evidence from diamondback moth (Plutella xylostella (Lepidoptera:Plutellidae)) in Australia evolving resistance to pyrethroids [J]. Bull Entomol Res, 2008,98:145-157.
    [34]Endersby NM, VidukaK, Baxter SW, et al. Widespread pyrethroid resistance in Australian diamondback moth, Plutella xylostella (L.), is related to multiple mutations in the para sodium channel gene. Bull [J]. Entomol Res,2011,101:393-405.
    [35]De Oliveira AC, Abreu de SiqueiraHA, De Oliveira JV, et al. Resistance of Brazilian diamondback moth populations to insecticides [J]. Sci Agric,2011,68:154-159.
    [36]Wang JJ, Han ZJ, Wang YC. Resistance level of diamondback moth from Nanjing and contact toxicity of newly introduced insecticides [J]. J Nanjing Agric Univ.2000,23:21-24.
    [37]Zhao F, Wang M. Resistance of Plutella xylostella to nine insecticides in several field populations in China [J]. Chin Bull Entomol,2006,43:640-643.
    [38]Dhumale UM, Moharil MP, Ghodki BS. Geographical variations and genetics of pyrethroid resistance in diamondback moth Plutella xylostella L [J]. Int J Integr Biol,2009,7:175-180.
    [39]Morishita M. Changes in susceptibility to various pesticides of diamondback moth (Plutella xylostella L.) in Gobo, Wakayama Prefecture [J]. Jpn J Appl Entomol Zool,1998,42:209-213.
    [40]Sayyed AH, Crickmore N. Selection of a field population of diamondback moth (Lepidoptera:Plutellidae) with acetamiprid maintains, but does not increase, cross-resistance to pyrethroids [J]. J Econ Entomol,2007,100:932-938.
    [41]Cameron PJ, Shelton AM, Walker GP, et al. Comparative insecticide resistance of New Zealand and North American populations of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) [J]. N Z J Crop Hortice Sci,1997,25:117-122.
    [42]Sayyed AH, Attique MNR, Khaliq A, et al. Inheritance of resistance and cross-resistance to deltamethrin in Plutella xylostella (Lepidoptera:Plutellidae) from Pakistan [J]. Pest Manag Sci, 2005,61:636-642.
    [43]Kwon DH, Clark JM, Lee SH. Estimation of knockdown resistance in diamondback moth using real-time PASA [J]. Pestic Biochem Physiol,2004,78:39-48.
    [44]Shelton AM, Sances FV, Hawley J, et al. Assessment of insecticide resistance after the outbreak of diamondback moth (Lepidoptera:Plutellidae) in California in 1997 [J]. J Econ Entomol,2000, 93:931-936.
    [45]Santos VC, de SiqueiraHAA, da Silva JE, et al. Insecticide resistance in populations of the diamondback moth, Plutella xylostella (L.) (Lepidoptera:Plutellidae), from the state of Pernambuco, Brazil [J]. Neotrop Entomol,2011,40:264-270.
    [46]Sayyed AH, OmarD, Wright DJ. Genetics of spinosad resistance in amulti-resistant field-selected population of Plutella xylostella[J]. Pest Manag Sci,2004,60:827-832
    [47]Sayyed AH, Wright DJ. Genetics and evidence for an esterase-associated mechanism of resistance to indoxacarb in a field population of diamondback moth (Lepidoptera:Plutellidae) [J]. Pest Manag Sci,2006,62:1045-1051.
    [48]Zhao JZ, Li YX, Collins HL, et al. Monitoring and characterization of diamondback moth (Lepidoptera:Plutellidae) resistance to spinosad [J]. J Econ Entomol,2002,95:430-436.
    [49]De Oliveira AC, Abreu de Siqueira HA, De Oliveira JV, et al. Resistance of Brazilian diamondback moth populations to insecticides [J]. Sci Agric,2011,68:154-159.
    [50]Guo S, Lin W, Zhang J, et al. Investigation on insecticide resistance of diamondback moth in main vegetable cultivation regions of Zhejiang Province [J]. Acta Agric Zhejiangensis,2002,15:19-22.
    [51]Pu X, Yang YH, Wu SW, et al. Characterisation of abamectin resistance in a field-evolved multiresistant population of Plutella xylostella [J]. Pest Manag Sci,2010,66:371-378.
    [52]Iqbal M, Verkerk RHJ, Furlong MJ, et al. Evidence for resistance to Bacillus thuringiensis (Bt) subsp. kurstaki HD-1, Bt subsp. aizawai and abamectin in field populations of Plutella xylostella from Malaysia [J]. Pestic Sci,1996,48:89-97.
    [53]MohanM, Gujar GT. Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus), to insecticides and role of detoxification enzymes [J]. Crop Prot,2003,22:495-504.
    [54]Baxter SW, Chen M, Dawson A, et al. Mis-spliced transcripts of nicotinic acetylcholine receptor alpha 6 are associated with field evolved spinosad resistance in Plutella xylostella (L.) [J]. PLoS Genet,2010,6:e1000802.
    [55]Mau RFL, Gusukuma-Minuto L. Proceedings of the Fourth International Workshop on the Management of Diamondback Moth and Other Crucifer Pests[J].2004, Melbourne, Aust.:The Regional Inst,307-311.
    [56]Zhao JZ, Collins HL, Li YX, et al. Monitoring of diamondback moth (Lepidoptera:Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate [J]. J Econ Entomol,2006,99: 176-181.
    [57]Perez CJ, Shelton AM. Resistance of Plutella xylostella (Lepidoptera:Plutellidae) to Bacillus thuringiensis Berliner in Central America [J]. J Econ Entomol,1997,90:87-93.
    [58]Gong YJ, Wang CL, Yang YH, et al. Characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella from China [J].J Invertebr Pathol,2010,104:90-96.
    [59]Wang CL, Yang YH, Wu YD. Field-evolved resistance to Bt delta-endotoxins and Bt formulation in Plutella xylostella from the southeastern coast region of China [J]. Acta Entomol Sin,2006,49: 70-73.
    [60]Mohan M, Gujar GT. Geographical variation in larval susceptibility of the diamondback moth, Plutella xylostella (Lepidoptera:Plutellidae), to Bacillus thuringiensis spore-crystal mixtures and purified crystal proteins and associated resistance development in India [J]. Bull Entomol Res, 2002,92:489-498.
    [61]Pereira SG, Sannaveerappanavar VT, Murthy MS. Geographical variation in the susceptibility of diamondback moth, Plutella xylostella L. (Lepidoptera:Yponomeutidae), to Bacillus thuringiensis products and acylurea compounds [J]. Resist Pest Manag Newsl,2006,15:26-28.
    [62]Liu YB, Tabashnik BE, Pusztai-Carey M. Field-evolved resistance to Bacillus thuringiensis toxin CryIC in diamondback moth (Lepidoptera:Plutellidae) [J].J Econ Entomol,1996,89:798-804.
    [63]Tang JD, Gilboa S, Roush RT, Shelton AM. Inheritance, stability, and lack-of-fitness costs of field-selected resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera:Plutellidae) from Florida [J]. J Econ Entomol,1997,90:732-741.
    [64]Imai K, Mori Y. Levels, inheritance and stability of resistance to Bacillus thuringiensis formulation in a field population of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), from Thailand [J]. Appl Entomol Zool,1999,34:23-29.
    [65]Sayyed AH, Raymond B, Ibiza-Palacios MS, et al. Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella [J]. Appl Environ Microbiol,2004,70:7010-7017.
    [66]Wang XG, Wu YD. High levels of resistance to chlorantraniliprole evolved in field populations of Plutella xylostella [J].J Econ Entomol,2012,105:1019-1023.
    [67]Iqbal M, Wright DJ. Evaluation of resistance, cross-resistance and synergism of abamectin and teflubenzuron in a multi-resistant field population of Plutella xylostella (Lepidoptera:Plutellidae) [J]. Bull Entomol Res,1997,87:481-486.
    [68]APRD. Arthropod Pesticide Resistance Database.2012. East Lansing:Michigan State Univ. http://www.pesticideresistance.com/index.php
    [69]Tabashnik BE, Cushing NL, Finson N, et al. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera, Plutellidae) [J]. J Econ Entomol,1990,83: 1671-1676.
    [70]Ferre HJ, Real MD, van Rie J, et al. Resistance to the Bacillus thuringiensis bioinsecticide in field population of Plutella xylostella is due to a change in a midgut membrane receptor [J]. Proc Natl Acad Sci USA,1991,88:5119-5123.
    [71]Tang JD, Shelton A, van Rie J, et al. Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth (Plutella xylostella) [J]. Appl Environ Microbiol,1996,62:564-569.
    [72]Wright DJ, Iqbal M, Granero F, et al. A change in a single midgut receptor in the diamondback moth (Plutella xylostella) is only in part responsible for the field resistance to Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai [J]. Appl Environ Microbiol, 1997,63:1814-1819.
    [73]Zhao JZ, Cao J, Li YX, et al. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution [J]. Nat Biotechnol,2003,21,1493-1497.
    [74]冯夏,陈焕瑜,帅应垣等.广东小菜蛾对苏芸金杆菌的抗性研究[J].昆虫学报,1996,39(3):238-245.
    [75]李建洪,伍建宏,喻子牛等.小菜蛾对苏云金芽胞杆菌的抗药性研究[J].华中农业大学学报,1998,17(3):214-217.
    [76]周程爱,王小平,陈章发等.长沙地区小菜蛾田间种群抗药性及增效剂的作用[J].湖南农业大学学报(自然科学版),2006,26(5):358-362.
    [77]余德亿,汤葆莎,占志雄等.福建省小菜蛾田间抗药性测定[J].福建农业科技,2000,(1):14-16.
    [78]于崇利,武淑文,杨亦桦,吴益东.东南沿海地区小菜蛾对Bt6-内毒素和Bt制剂的抗性检测[J].昆虫学报,2006,49(1):70-73.
    [79]何玉仙,杨秀娟,翁启勇.小菜蛾抗药性研究及其治理[J].江西农业大学学报,2001,23(3):320-324.
    [80]唐振华.昆虫抗药性及其治理[M].北京:中国农业出版社,1993.
    [81]Baker GJ. Crucifer vegetable insecticide resistance management strategies and issues in Australia. Proceedings of the Sixth International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests.2011, Shanhua, Taiwan:AVRDC-The World Veg Cent.241-247.
    [82]冯夏,李振宇,吴青君等.小菜蛾抗性治理及可持续防控技术研究与示范[J].应用昆虫学报[J].2011,48(2):247-253.
    [83]Baxter SW, Zhao JZ, Gahan LJ, et al. Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella [J]. Insect Mol Biol,2005,14 (3):327-334.
    [84]Tabashnik BE. Evolution of Resistance to Bacillus thuringiensis. Annu Rev Entomol [J].1994,39: 47-79.
    [85]Tabashnik BE, Malvar T, Liu YB, et al. Cross-Resistance of the diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis Toxins. Appl [J]. Environ Microbiol, 1996,62:2839-2844.
    [86]Zhao JZ, Li YX, Collins HL, et al. Different cross-resistance patterns in the diamondback moth (Lepidoptera:Plutellidae) resistant to Bacillus thuringiensis toxin CrylC [J]. J Econ Entomol, 2001,94(6):1547-1552.
    [87]Sayyed AH, Raymond B, Ibiza-Palacios MS, et al. Genetic and biochemical haracterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella [J]. Appl Environ Microbiol,2004,70 (12):7010-7017.
    [88]Sayyed AH, Gatsi R, Kouskoura T, et al. Susceptibility of a field-derived, Bacillus thuringiensis-resistant strain of diamondback moth to in vitro-activated CrylAc toxin [J]. Appl Environ Microbiol,2001,67 (9):4372-4373.
    [89]Boncheva R, Dukiandjiev S, Minkov I, et al. Activity of Bacillus thuringiensis δ-endotoxins against codling moth (Cydia pomonella L.) larvae[J]. J Invertebr Pathol,2006,92(2):96-99.
    [90]喻子牛.苏云金杆菌[M].北京:北京科学出版社,1990,271-273。
    [91]Padilla C, Pardo-Lopez L, Riva D L, et al. Role of tryptophan residues in toxicity of CrylAb toxin from Bacillus thuringiensis [J]. Appl Environ Microb,2006,72(1):901-907.
    [92]Seale JW. The role of a conserved histidine-tyrosine interhelical interaction in the ion channel domain of delta-endotoxins from Bacillus thuringiensis [J]. Proteins,2006,63(2):385-390.
    [93]Jurat-Fuentes JL, Adang MJ. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae [J]. J Invertebr Pathol,2006,92 (3):166-171.
    [94]Sayyed AH, Haward R, Herrero S, et al. Genetic and biochemical approach for characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in a field population of the diamondback moth, Plutella xylostella [J]. Appl Environ Microbiol,2000,66 (4):1509-1516.
    [95]Sayyed AH, Wright DJ. Cross resistance and inheritance of resistance to Bacillus thuringiensis toxin Cry1Ac in diamondback moth(Plutella xylostella L.) from lowland Malaysia [J]. Pest Manage Sci,2001,57:413-421.
    [96]Sayyed AH, Schuler TH, Wright DJ. Inheritance of resistance to Bt canola in a field-derived population of Plutella xylostella [J]. Pest Manag Sci,2003,59 (11):1197-1202.
    [97]Liu YB, Tabashnik BE, Meyer SK, et al. Cross-resistance and stability of resistance to Bacillus thuringiensis toxin Cry1C in diamondback moth [J]. Appl Environ Microbiol,2001,67 (7): 3216-3219.
    [98]Knight P J, Knowles B H, Ellar D J. The receptor for Bacillus thuringiensis Cry1A(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N [J]. Mol Microbiol,1994,11(3):429-436.
    [99]Itoh M, Kanamori Y, Takao M, et al. Cloning of soluble alkaline phosphatase cDNA and molecular basis of the polymorphic nature in alkaline phosphatase isozymes of Bombyx mori midgut [J]. Insect Biochem Mol Biol,1999,29 (2):121-129.
    [100]Gahanl J, Gould F, Heckel D G Identification of a gene associated with Bt resistance in Heliothis virescens [J]. Science,2001,293(5531):857-860.
    [101]McNall R J, Adang M J. Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis [J]. Insect Biochem Mol Biol,2003,33(10): 999-1010.
    [102]Griffits J S, Haslam S M, Yang T L, et al. Glycolipids as receptors for Bacillus thuringiensis crystal toxin [J]. Science,2005,307(5711):922-925.
    [103]Gahan L J, Pauchet Y, Vogel H, et al. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin [J]. PLoS Genetics,2010,6(12):1-11.
    [104]Loseva O, Ibrahim M, Candas M, et al. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle:implications for insect resistance to Bacillus thuringiensis toxins [J]. Insect Biochem Mol Biol,2002,32 (5):567-577.
    [105]Herrero S, Gechev T, Bakker PL, et al. Bacillus thuringiensis CrylCa-resistant Spodoptera exigua lacks expression of one of four aminopeptidase N genes [J]. BMC Genomics.2005,6(96): 1-10.
    [106]Pigott C R, Ellar D J. Role of receptors in Bacillus thuringiensis crystal Toxin toxin Activityactivity [J]. Microbiol Mol Biol Rev.2007,71(2):255-281.
    [107]Ortego F, Novillo C, Castanera P. Characterization and distribution of digestive proteases of the stalk corn borer,Sesamia nonagrioides Lf. (Lepidoptera:Noctuidae) [J]. Arch Insect Biochem Physiol,1996,32(1):163-180.
    [108]Bravo A, Gomez I, Conde J, et al. Oligomerization triggers binding of a Bacillus thuringiensis CrylAb pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains [J]. Bba-biomembranes,2004,1667(1):38-46.
    [109]Knight P J, Knowles B H, Ellar D J. Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin [J]. J Biol Chem,1995,270(17): 17765-17770.
    [110]Rajagopal R, Sivakumar S, Agrawal N, et al. Silencing of midgut Aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor [J]. J Biol Chem,2002,277(17):46849-46851.
    [111]Banks D J, Jurat-Fuentes J L, Dean D H, et al. Bacillus thuringiensis Cry1Ac and Cry1Fa δ-endotoxin binding to a novel 110 kDa aminopeptidase in Heliothis virescens is not N-acetylgalactosamine mediated [J]. Insect Biochem Mol Biol,2001,31(9):909-918.
    [112]Tiewsiri K, Wang P. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper [J]. PNAS,2011,108(34):14037-14042.
    [113]Gill M, Ellart D. Transgenic Drosophil areveals a functional in vivo receptor for the Bacillus thuringiensis toxinCry1Ac [J]. Insect Mol Biol,2002,11(6):619-625.
    [114]Vadlamudi R K., Ji T H, Bulla L A. A specific binding protein from Mandaca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. Bediner [J]. J Biol Chem,1993,268(17): 12334-12340.
    [115]王桂荣,吴孔明,梁革梅,等.棉铃虫中肠钙粘蛋白基因的克隆、表达及Cry1A结合区定位 [J].中国科学C辑:生命科学,2004,34(6):537-546.
    [116]Xu XJ, Yu LY, Wu YD. Disruption of a cadherin gene associated with resistance to Cryl Ac-endotoxin of Bacillus thuringiensis in Helicoverpa armigera [J]. Appl Environ Microbio, 2005,71 (2):948-954.
    [117]Morin S, Biggs RW, Sisterson MS, et al. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm [J]. Proc Natl Acad Sci USA,2003,100 (9):5004-5009.
    [118]Hua G, Jurat-Fuentes JL, Adang MJ. Bt-R1a extracellular cadherin repeat 12 mediates Bacillus thuringiensis Cry1Ab binding and cytotoxicity [J].J Biol Chem,2004,279 (27):28051-28056.
    [119]Jenkins JL, Dean DH. Binding specificity of Bacillus thuringiensis CrylAa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors [J]. BMC Biochem,2001,2 (1):12.
    [120]Jurat-Fuentes JL, Adang MJ. Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae [J]. Eur J Biochem,2004,271 (15): 3127-3135.
    [121]Jurat-Fuentes JL, Adang MJ. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae [J]. J Invertebr Pathol,2006,92 (3):166-171.
    [122]Dennis R D, Wiegandt H, Haustein D, et al. Thin layer chromatography overlay technique in the analysis of the binding of the solubilized protoxin of Bacillus thuringiensis var. kurstaki to an insect glycosphingolipid of known structure [J]. Biomed Chromatogr,1986,1 (1):31-37.
    [123]Marroquin LD, Elyassnia D, Griffitts JS, et al. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics [J].2000,155 (4):1693-1699.
    [124]Griffitts JS, Whitacre JL, Stevens DE, et al. Bt toxin resistance from loss of a putative carbohydrate- modifying enzyme [J]. Science,2001,293:860-864.
    [125]Griffitts JS, Haslam SM, Yang T, et al. Glycolipids as receptors for Bacillus thuringiensis crystal toxin [J]. Science,2005,307:922-925.
    [126]Bustin S, Benes V, Nolan T, et al. Quantitative real-time RT-PCR--a perspective [J]. J Mol Endocrinol,2005,34:597-601.
    [127]VanGuilder H, Vrana K, Freeman W. Twenty-five years of quantitative PCR for gene expression analysis [J]. Biotechniques,2008,44:619-626.
    [128]Bustin S, Benes V, Garson J, et al. The MIQE guidelines:Minimum information for publication of quantitative real-time PCR experiments [J]. Clin Chem,2009; 55:611-622
    [129]Radonic A, Thulke S, Mackay I, et al. Guideline to reference gene selection for quantitative real-time PCR [J]. Biochem Biophys Res Commun.2004; 313:856-862.
    [130]Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes [J]. Genome Biol,2002,3: RESEARCH0034.
    [131]Andersen C, Ledet-Jensen J,(?)rntoft T. Normalization of real-time quantitative RT-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J]. Cancer Res.2004,64:5245-5250.
    [132]Pfaffl M, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity:BestKeeper-Excel-based tool using pair-wise correlations [J]. Biotechnol Lett,2004,26:509-515.
    [133]Bustin S, Benes V, Nolan T, et al. Quantitative real-time RT-PCR--a perspective [J]. J Mol Endocrinol,2005,34:597-601.
    [134]Derveaux S, Vandesompele J, Hellemans J. How to do successful gene expression analysis using real-time PCR. Methods [J].2010,50:227-230.
    [135]Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes [J]. Genome Biol,2002, 3:RESEARCH0034.
    [136]Andersen C, Ledet-Jensen J,(?)rntoft T. Normalization of real-time quantitative RT-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J]. Cancer Res,2004,64:5245-5250.
    [137]Pfaffl M, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity:BestKeeper--Excel-based tool using pair-wise correlations [J]. Biotechnol Lett,2004,26:509-515.
    [138]Xie F, Sun G, Stiller J, et al. Genome-wide functional analysis of the cotton transcriptome by creating an integrated EST database [J]. PLoS ONE,2011,6:e26980.
    [139]VanGuilder H, Vrana K, Freeman W. Twenty-five years of quantitative PCR for gene expression analysis [J]. Biotechniques,2008,44:619-626.
    [140]Ponton F, Chapuis M, Pernice M, et al. Evaluation of potential reference genes for reverse transcription-qRT-PCR studies of physiological responses in Drosophila melanogaster [J]. J Insect Physiol,2011,57:840-850.
    [141]Chapuis M, Tohidi-Estahani D, Dodgson T, et al. Assessment and validation of a suite of reverse transcription-quantitative PCR reference genes for analyses of density-dependent behavioural plasticity in the Australian plague locust [J]. BMC Genomics,2011,12:7.
    [142]Radonic A, Thulke S, Mackay I, et al. Guideline to reference gene selection for quantitative real-time PCR [J]. Biochem Biophys Res Commun,2004,313:856-862.
    [143]李俊,卫恒习,李燕,等.猪囊胚microRNA定量PCR分析中适宜内参基因的选择.中国群学;生命科学,2012,42(3):203-208.
    [144]吴家红,程金芝,孙宇,等.白纹伊蚊基因表达定量PCR内参基因的选择.中国人兽共患病学报,2011,27(5):432-435.
    [145]Reed B J, Chandler D S, Sandeman R M. Aminopeptidases as potential targets for the control of the Australian sheep blowfly, Lucilia cuprina [J]. Int J Parasitol,1999,29(6):839-850.
    [146]Likitvivatanavong S, Chen J, Bravo A, et al. Cadherin, Alkaline Phosphatase, and Aminopeptidase N as Receptors of Cry11Ba Toxin from Bacillus thuringiensis subsp. jegathesan in Aedes aegypti [J]. Appl Environ Microb,2011,77(1):24-31.
    [147]Tiewsiri K, Wang P. Differential alteration of two aminopeptidases Nassociated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper [J]. PNAS,2011,108(34):14037-14042.
    [148]Luo K, Tabashnik B, Adang M J. Binding of Bacillus thuringiensis Cryl Ac Toxin to Aminopeptidase in Susceptible and Resistant Diamondback Moths (Plutella xylostella) [J]. Appl Environ Microb,1997,63(3):1024-1027.
    [149]Nakanishi K, Yaoi k, Nagino Y, et al. Aminopeptidase N isoforms from the midgut of Bombyx mori and Plutella xylostella their classiccation and the factors that determine their binding specifity to Bacillus thuringiensis Cry1A toxin [J]. Febs Lett,2002,519:215-220.
    [150]常晓丽,吴青君,于少丽,等.小菜蛾中肠氨肽酶N3基因片断克隆技巧及其表达量[J].应用昆虫学报,2011,48(2):280-284.
    [151]Luo K E, Banks D, Adang M J. Toxicity,binding,and permeability analyses of four Bacillus thuringiensis Cry1d-Endotoxins using brush border membrane vesicles of spodoptera exigua and spodoptera frugiperda [J]. Appl Environ Microbio,1999,65(2):457-464.
    [152]Emanuelsson O, Brunak S, Heijne G, et al. Locating proteins in the cell using TargetP, SignalP, and related tools [J]. Nat Protoc,2007,2:953-971.
    [153]Eisenhaber B, Bork P, Yuan Y, et al. Automated annotation of GPI anchor sites:case study C.elegans [J].TIBS,2000,25(7):340-341.
    [154]Herrero S, Gechev T, Bakker P L, et al. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four aminopeptidase N genes[J]. BMC Genomics,2005,6(96): 1-10.
    [155]Pigott C R, Ellar D J. Role of receptors in Bacillus thuringiensis crystal Toxin toxin activity [J]. Microbiol Mol Biol Rev,2007,71 (2):255-281.
    [156]Pfaffl M. A new mathematical model for relative quantification in real-time RT-PCR [J]. Nucleic Acids Res,2001,29:e45.
    [157]Zhang Z, Xie W, et al. Exploring valid reference genes for quantitative Real-time PCR analysis in Plutella xylostella (Lepidoptera:Plutellidae) [J]. Int J Biol Sci,2013,9(8):792-802.
    [158]Takeichi M. Morphogenetic roles of classic cadherins [J].Curr opin Cell Biol,1995, 7(5):619-627.
    [159]Soberon M, Pardo-Lopez L, Lopez I, et al. Engineering modified Bt toxins to counter insect resistance [J]. Science,2007,318 (5856):1640-1642.
    [160]Gahan L, Gould F, Heckel D. Identification of a gene associated with Bt resistance in Heliothis virescens [J]. Science,2007,293 (5531):857-860.
    [161]Baxter SW, Zhao JZ, Gahan JL, et al. Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella [J].Insect Mol Biol,2005,14 (3):327-334.
    [162]Baxter SW, Zhao JZ, Shelton AM, et al. Genetic mapping of Bt-toxin binding proteins in a Cryl A-toxin resistant strain of diamondback moth Plutella xylostella [J]. Insect Biochem Mol Biol, 2008,38(2):125-35.
    [163]Taylor A. Aminopeptidases:structure and function [J]. FASEB J,1993,7:290-298.
    [164]Tiewsiri K, Wang P. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper [J]. PNAS,2011,108(34):14037-14042.
    [165]Kim E, Wyckoff H. Structure of alkaline phosphatases [J]. Clinica Chimica Acta,1990,186 (2): 175-187.
    [166]McNall R, Adang M. Identification of novel Bacillus thuringiensis Cryl Ac binding proteins in Manduca sexta midgut through proteomic analysis [J]. Insect Biochem Mol Biol,2003,33(10): 999-1010.
    [167]Ning C, Wu K, Liu C, et al. Characterization of a CrylAc toxin-binding alkaline phosphatase in the midgut from Helicoverpa armigera (Hubner) larvae [J]. J Insect Physiol,2010,56:666-672.
    [168]Bravo A, Gill S, Soberona M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control [J]. Toxicon.2007,49 (4):423-435.
    [169]Chi H, Liu H. Two new methods for the study of insect population ecology [J]. Bull Inst Zool Academia Sinica,1985,24:225-240.
    [170]孟香清,芮吕辉,赵建周,等.抗三氟氯氰菊酯棉铃虫相对适合度研究[J].植物保护,1998,24(4):356-360.
    [171]Cheng EY. Prolems of control of insecticide-resistant Plutella xylostella[J]. Pesticide Science, 1988,23:177-188
    [172]余德忆,古志熊,汤葆莎.小菜蛾对Bt的抗性及其治理[J].昆虫天敌,1999,21(1):21-27.
    [173]Chadwick PR,Slatter R, Bowron MJ. Cross-resistance to pyrethroids and other insecticides in Aeds aegypti [J]. Pestic Sci,1984,15(2):112-120.
    [174]尹长清.小菜蛾性诱剂在测报上的应用[J].植物保护,1986,02:
    [175]Tabashnik BE, Cushing NL, Jobnson MW. Diamondbackmoth resistance to insecticides in Hawaii:intra-island variation and cross-resistance [J]. J Econ Entomol,1987,80:1091-1099.
    [176]袁哲明,陈永年,马骏等.秋甘蓝不同生育期害虫群落特点及防治对策[J].长江蔬菜,1998,(10):22.
    [177]虞秩俊,吕劳富,许方程等.秋甘蓝鳞翅目害虫不同防治体系的研究[J].植物保护,2002,28(4):23-26.
    [178]赵胜荣,袁永达,於文俊等.小菜蛾危害引起的秋花菜产量损失及其经济闽值研究[J].上海农业学报,2005,21(2):45-48.
    [179]Headley J C. Defining the economic threshold [A]. Luckmann W H. Pest control strategies for the future [M]. Washington D C:NAS,1972:100-108.
    [180]祝树德,陆自强,陈丽芳等.甘蓝菜食叶害虫为害当量系统及复合防治指标[J].江苏农学院学报,1994,15(3):23-28.
    [181]Stewart J G,Sears M K. Economic threshold for three species of lepidopterous larvae attacking cauliflower grown in southern Ontario [J]. Econ Entomol,1998,81(6):1726-1731.
    [182]吕欣,陆永跃,曾玲,等.杨桃园桔小实蝇的经济闽值[J].植物保护学报,2007,34(5):471-474.
    [183]范保银,王小奇,刘薇薇,等.桃小食虫经济阈值的研究[J].植物保护,2011,37(4):91-94.
    [184]周敬,杨继余,张晓翔,等-防治小菜蛾混配剂的的筛选与联合毒力的测定[J].湖北农业科学,2006,(6):54-56.
    [185]黄小清,成燕清,等.几种药剂及其混用对蔬菜小菜蛾的防治效果试验[J].湖南农业科学,2009,(5):89-72.
    [186]钟平生,梁广文,曾玲.生态控制配套措施对小菜蛾种群的控制研究[J].江西农业大学学报,2005,27(3):417-421.
    [187]康总江,魏书军,路虹,等.不同诱捕器对小菜蛾诱集效果比较[J].北方园艺,2010,(19):173-174.
    [188]董忠信,陈阳,张晓辉,等.频振式杀虫灯防治甘蓝田小菜蛾应用效果研究[J].内蒙古农业科技,2005,(5):35.
    [189]邹文杰,谭家壮,冯希锦,等.阿维菌素和锐劲特混剂防治小菜蛾药效试验[J].广东农业科学,2009,(3):117-118.
    [190]梁卿,徐树兰,李辉,等.1.8%苦参碱·阿维菌素乳汕防治甘蓝小菜蛾药效试验[J].广东农业科学,2009,(2):58-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700