玉米单向异交不亲和基因Ga1的遗传分析及精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米(Zea mays L.)是雌雄同株异花授粉作物,通常情况下自交和异交都可以正常结实。玉米配子体遗传因子(gametophyte factor)所介导单向异交不亲和基因广泛存在于爆裂玉米中,当普通的马齿和硬粒玉米作为父本为其授粉时不能结实,而反交却可以正常结实。本研究以携带单向异交不亲和性最彻底的基因Ga1-s的爆裂玉米种质SDGa25为材料,进行理论及应用研究,得到如下结果:
     1.本实验利用148份国内外玉米自交系材料作为父本对单向异交不亲和种质SDGa25(Ga1-s/Ga1-s)人工授粉两年的实验结果证明,其中有3份自交系材料对SDGa25异交亲和,其中ZD12F为国外玉米种质,JKN2000F为糯玉米种质,仅HN178为普通玉米种质,其他的145份自交系对SDGa25异交结实率为0,表现为完全异交不亲和。
     2.携带Ga1-s的自交系SDGa25与携带Ga1-m的自交系HN178分别与普通玉米自交系组建BC1F1个体表现型经卡方检验符合1:1分离比例,携带Ga1-m的自交系JKN2000F与普通玉米自交系组建F2个体表现型经卡方检验符合3:1分离比例,证明Ga1-s与Ga1-m均为显性单基因。携带Ga1-m的自交系HN178与JKN2000F组配的F2个体表现型经卡方检验符合15:1分离比例,证明两组自交系HN178与JKN2000F所携带的Ga1-m为非等位基因。
     3.本研究分别通过分子标记辅助筛选交换单株、构建单一表型群体以及Ga1-m辅助Ga1-s定位等方法,将单向异交不亲和基因Ga1定位在玉米的第四号染色体短臂上端粒侧标记dCAPS1和着丝粒侧标记ID7之间。标记dCAPS1位于BAC208523,标记ID7位于BAC204382,参照数据库maizesequence中B73RefGen_v2sequence物理距离为100Kb,比原有定位区段减少了2.1Mb,新开发与Ga1紧密连锁的分子标记13个,可以用于后续BAC文库筛选和分子标记辅助选择育种。
     4.本实验构建了SDGa25基因组BAC文库,挑取约300000个单克隆,重组克隆平均插入片段长度为70Kb,空载率小于1%,重组文库稳定性良好,覆盖率约为玉米基因组的10倍。通过对构建的超级池、亚池以及单克隆的逐级筛选,得到覆盖100Kb全部定位区段的2个重组单克隆并送样测序。
     5.根据重组单克隆部分测序序列信息以及数据库maizesequence中B73RefGen_v2sequence的序列信息进行比较基因组学分析预测到3个基因,其中有已知功能的基因2个,分别为GRMZM2G027021和GRMZM2G039983,各含有14个和6个外显子。GRMZM2G027021具有GTP酶结合结构域,序列分析表明:Ga1-s、Ga1-m与ga1相比,第3个外显子完全缺失,可能最终导致Ga1-s、Ga1-m花粉具有使Ga1-s/Ga1-s母本正常结实的功能。GRMZM2G039983为Xklp2的靶蛋白,与拟南芥中的WDL1基因同源,可能与ga1花粉管在Ga1-s花丝内的伸长过程中受阻相关;序列分析表明,该段区域内Ga1-s、Ga1-m、ga1三个基因均有明显的区别:与ga1相比,Ga1-s、Ga1-m在3’非编码区段相同位点有序列插入;与Ga1-m、ga1相比,Ga1-s在第1外显子与第2外显子之间有序列插入,包含一个CACTA转座子元件。
     6.本研究通过回交转育的方法将Ga1-s基因导入糯玉米品种JKN2000的父母本,将Ga1-s基因介导的生殖隔离引入制种生产防止不同类型玉米之间的花粉污染。以JKN2000的父母本作为轮回母本,在回交过程中利用筛选到的紧密连锁分子标记辅助选择获得Ga1-s单株。对6代回交的目的单株回交,利用分子标记筛选Ga1-s/Ga1-s父母本单株组配杂交种。Ga1-s/Ga1-s父母本自交系异交结实率均为0,Ga1-s/Ga1-s杂交种异交结实率为0,而普通杂交种的异交结实率为46%。
Maize (Zea mays L.) is both a self and cross compatible species. However, many popcornstrains carry unilateral cross incompatibility genes and cannot be fertilized by pollen of dentand flint maize strains although the reciprocal crosses are successful. These genes are namedgametophyte factors (Ga) because the cross incompatibility are governed by the genotypes ofindividual pollen grains rather than the parental sporophytes. A Chinese popcorn strainSDGa25carrying the strongest allele of Ga1(Ga1-s) was chosen as material for genetic studyand fine mapping. The main results were as follows:
     1. One hundred and forty-eight dent and flint maize inbred lines were crossed as male withSDGa25by hand pollination in two years. Only3lines, ZD12F, a foreign line, JKN2000F, awaxy line, and HN178, a dent strain, showed cross compatible to SDGa25. The rest of themshowed complete cross incompatible to SDGa25.
     2. Ga1-s and Ga1-m were dominant genes. Ga1-m alleles from different strains were notallelic.
     3. The Ga1locus was fine mapped into a100kbp interval based on the B73RefGen_v2sequence between markers dCAPS1on BAC AC208523on the telomere side and ID7onBAC AC204382on the centromere side. The mapping interval was2.1Mbp shorter thanpreviously reported and was achieved by integrating results from three different mappingpopulations. Thirteen tightly linked markers to Ga1-s were developed in this study.
     4. SDGa25BAC library consisted of300000clones, and more than99%of the clonescontain maize nuclear DNA inserts with an average size of70kb. The library containedgenomic DNA that was equivalent of10×haploid genome. Two positive BAC clonescovering the whole mapping interval were sequenced.
     5. Based on the sequences of the positive BAC clones and B73RefGen_v2sequence,3genes was predicted. GRMZM2G027021and GRMZM2G039983had14and6exons, respectively. GRMZM2G027021was GTP-binding protein hflX. Compared to that of ga1, thethird exons of Ga1-s and Ga1-m were deleted. The deletion may be involved in pollen-pistilinteractions. GRMZM2G039983had homology to WDL1of Arabidopsis, which regulatedanisotropic growth of cells, and perhaps could inhibit ga1pollen tube growth on Ga1-s pistil.Compared to that of ga1, Ga1-s and Ga1-m alleles had insertions at the same site of3’untranslated region. Only Ga1-s allele had a CACTA transposon element in the insertionbetween the first and the second exon.
     6. The present paper reports introgression of Ga1-s into elite waxy corn hybrids JKN2000by marker assisted selection and the possibility of using Ga1-s as biological reproductivebarrier for the containment of gene flows between different types of corns. Ga1-s/Ga1-shybrids showed complete cross-incompatible to foreign pollen, whereas46%cross-compatible rate occurred in the ga1/ga1hybrids.
引文
崔法.高密度小麦遗传连锁图谱购及产量相关性状QTL定位.山东农业大学博士学位论文,2011
    顾铭洪,刘巧泉.作物分子设计育种及其发展前景分析.扬州大学学报,2009,30(1):64-67
    冯大领.大白菜BAC文库的构建及CO相关基因BAC克隆的筛选与分析.河北农业大学博士学位论文,2011
    何余堂,梁文科,孟良玉,马勇,赵大军.糯质玉米种质创新研究初报.作物杂志,2005,3:65-67
    何余堂,梁文科,张丽华,赵大军.玉米配子体基因研究进展.玉米科学,2005,13(3):10-13
    黄健华,苗雪霞,李木旺,等.家蚕基因特异性CAPS标记获得及其分子系统学应用.遗传,2005,27(4):584-588
    季洪强,崔子田,邵可可,等.玉米杂交不亲和ga1基因的初步定位.河南农业大学学报,2010,4(4):375-377
    李晓亮,王常芸.我国专用玉米的研究利用现状及发展前景.玉米科学,2004,12(04):106-109
    刘怀华.玉米异交不亲和基因Ga1-s的遗传定位及其过程的蛋白质组及转录组分析.山东农业大学博士学位论文,2011
    刘纪麟主编.玉米育种学.北京:中国农业出版社,2000
    刘庆昌主编.遗传学.第三版.北京:中国农业出版社,2007
    孙颖.花粉萌发和花粉管生长发育的信号转导.植物学报,2001,43(12):1211-1217
    谭亚玲,王石华,文建成. Rf-1位点CAPS标记对水稻不同胞质雄性不育育性恢复系的关系分析.分子植物育种,2009,7(3):461-464
    汤青林,宋明,王小佳.芸苔属植物自交不亲和性及其机理研究进展.生物工程进展,2001,21(4):22-25
    唐祈林,荣廷昭.特殊食用玉米的遗传育种概述.中国农学通报,2001,17(3):67-68
    王泽立,戴景瑞.植物基因的图位克隆.生物技术通报,2000,(04):21-27
    曾三省.玉米杂交不亲和性研究初探.玉米科学,1998,6(1):1-3
    张玉星,马艳芝,赵国芳.简单重复序列间扩增分子标记技术及其应用.生物技术通报,2009,09:54-56
    张洋.扇贝、对虾基因组BAC文库构建及其重要功能基因的初步筛选和分析.中国科学院海洋研究所博士论文,2008
    朱军主编.遗传学.第三版.北京:中国农业出版社,2001
    朱玉贤等.现代分子生物学.第三版.北京:高等教育出版社,2001
    Andress Lausser, et al. Sporophytic control of pollen tube growth and guidance in maize.Journal of Experimental Botany,2010,61(3):673-682
    Angevin F, Klein EK, Choime C, Gauffreteau A, Lavigne C, Messean A, Meynard JM.Modelling impacts of cropping systems and climate on maize cross-pollination inagricultural landscapes: The MAPOD model. European Journal of Agronomy,2008,28:471-484
    Ashman RB. Modification of cross-sterility in Maize. J Heredity,1975,66:5-9
    Ashman RB. Failure to verify the Ga9locus on chromosome4. Maize Genet Coop News Lett,1981.55:50-51
    Bagge M, Xia XC. Functional markers in wheat. Curr Opin Plant Biol,2007,10:211-216
    Bloom JC, Holland JB. Genomic localization of the maize cross-incompatibility gene,Gametophyte factor1(ga1). Maydica,2011,56(4):379-387
    Brugmans B, et al. A new and versatile method for the successful conversion of AFLPmarkers into simple single locus markers. Nucleic Acid Research,2003,31(10):1-9
    Chen CC, Chen CM, Hsu FC, Wang CJ, Yang JT, KaoYY. The pachytene chromosomes ofmaize as revealed by fluorescence in situ hybridization with repetitive DNA sequences.Theo. Appl. Genet,2000,101:30-36
    Chen SH, Wu J, Yang Y, Shi WW, Xu ML. The fgr gene responsible for rice fragrance wasrestricted within69Kb. Plant Science,2006,171:505-514
    Daolin Fu, et al. A Kinase-START Gene Confers Temperature-Dependent Resistance toWheat Strip Rust. Science,2009,323:1357-1360
    Della Porta G, Ederle D, Bucchini L, Prandi M, Verderio A, Pozzi C. Maize pollen mediatedgene flow in the Po valley (Italy): Source-recipient distance and effect of flowering time,European Journal of Agronomy,2008,28:255-265
    Devos Y, Demont M, Dillen K, Reheul D, Kaiser M, et al.(2009) Coexistence of geneticallymodified (GM) and non-GM crops in the European Union, Agronomy for SustainableDevelopment29:11-30
    Emma Marris. Five crop researcers who could change the world. Nature,2008,4December,456
    Evans MMS, Kermicle JL. Teosinte crossing barrier1, a locus governing hybridization ofteosinte with maize. Theo. Appl. Genet.,2001,103:259-265
    Evans MMS, Kermicle JL. Teosinte crossing barrier1, a locus governing hybridization offrom incongruity rather than active rejection. Sexual Plant Reproduction,2005,8(4):187-194
    Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genome (Oryzasativa L. ssp.japonica). Science,2002,296(5565):92-100
    Goggi AS, Caragea P, Lopez-Sanchez H, Westgate M, Arritt R, Clark C. Statistical analysis ofcross-fertilization between adjacent maize grain production fields. Field Crop Res,2006,99:147-157
    Gonzalez MD, Pollak LM, Goggi AS. Genotype×environment interactions in populationspossessing Ga1-s and ga1alleles for cross incompatibility in maize. Euphytica,2012,185(3):377-384
    Gupta PK, Roy JK, Prasad M. Single nucleotide polymorphisms: a new paradigm formolecular marker technology and DNA polymorphism detection with emphasis on theiruse in plants. Curr Sci,2001,80:524-535
    Hao CY, Wang LF, Zhang XY, You GX, Dong YS, Jia JZ, Liu X,Shang XW, Liu SC, Cao YS.Genetic diversity in Chinese modern wheat varieties revealed by microsatellite markers.Science in China Series C: Life Science,2006,3:218-226
    Hennig W. The revolution of biology of the genome. Cell Research,2004,14:1-7
    Henry C, Morgan D, Weekes R, Daniels R, Boffey C. Farm scale evaluations of GM crops:monitoring gene flow from GM crops to non-GM equivalent crops in the vicinity: part I:forage maize. Food and Rural Affairs Final Report,2000/2003: EPG1/5/138
    Hildebrandt F, Heeringa SF, Ruschendorf F, Attanasio M, Nurnberg G, Becker C, Seelow D,Huebner N, Chernin G, Vlangos CN, Zhou WB, O’Toole JF, Hoskins BE, Wolf MTF,Hinkes BG, Chaib H, Ashraf SZ, Schoeb DS, Ovunc B, Allen SJ, Vega-Warner V, Wise E,HarvilleHM, Lyons RH, Washburn J, MacDonald J, Nurnberg P, Otto EA. A systematicapproach to mapping recessive disease genes in individuals from outbred populations.PLos Genetics,2009,5(1):1-10
    Hosoda F, Nishimura S, Uchida H, et al. An F factor based cloning system for large DNAfragments. Nucleic Acids Research,1990,18:3863-3869
    International rice genome sequencing project. The map-based sequence of the rice genome.Nature,2005,436(7052):793-800
    Jimenez JR, Nelson OE. A new fourth chromosome Gametophyte locus in maize. J Heredity,1965,56:259-263
    Jin QS, Waters D, Cordeiro GM, Henry RJ, Reinke RF. Applications of single nucleotidepolymorphisms in crop genetics. Curr Opin Plant Biol,2002,5:94-100
    Kermicle JL, Evans MMS. The Zea mays sexual compatibility gene ga2: naturally occurringalleles, their distribution, and role in reproductive isolation. Heredity,2010,101:737-749.
    Kermicle JL, Evans MMS. The Gametophyte1locus and reproductive isolation among Zeamays subspecies. Maydica.2006,51(2):219-225
    Kermicle JL. A selfish gene governing pollen-pistil compatibility confers reproductiveisolation between maize relatives. Genetics,2006,172(1):499-506
    Kermicle JL and Evans MMS. Pollen-pistil barriers to crossing in maize and teosinte resultfrom incongruity rather than active rejection. Sex Plant Reprod,2005,18:187-194
    Kermicle JL, Evans MMS and Nelson OE. The Gametophyte factors of maize,The MaizeHandbook,1994, Springer-Verlag, New York, Inc:496-503
    Kimberly ASL, Robert J. Toonen Microsatellites for ecologists: a practical guide to using andevaluating microsatellite markers. Ecology Letters,2006:615-629
    Kozjak P, Sustar-Vozlic J and Meglic V. Adventitious presence of GMOs in maize in the viewof coexistence. Acta agriculturae Slovenica,2011,97(3):275-284
    Liu K, Muse SV. Power marker: an integrated analysis environment for genetic markeranalysis. Oxford University Press,2005:2128-2129
    Lin KH, Lai YC, Li HC.Genetic variation and its relationship to root weight in the sweetpotato as revealed by RAPD analysis. Scientia Horticulturae,2009,120(1):2-7
    Liu XY, Gu MH, Han YP, Ji Q, Lu JF, Gu SL, Zhang R, Li X, Yang JM, et al. DNAfingerprinting based on microsatellite-anchored fragment length polymorphism,andisolation of sequence-specific PCR markers in lupin. Molecular Breeding,2001,7:203-209
    Lai JS, Li RQ, Xu X, Jin WW, Xu ML, Zhao HN, Xiang ZK, Song WB, Ying K, Zhang M,Jiao YP, Ni PX, Zhang JG, Li D, Guo XS, Ye KX, Jian M, Wang B, Zheng HS, Liang HQ,Zhang XQ, Wang SC, Chen SJ, Li JS, Fu Y, Springer NM, Yang HM, Wang J, Dai JR,Schnable PS and Wang J. Genome-wide patterns of genetic variation among elite maizeinbred lines. Nature Genetics,2009,42(11):1027-1030
    Langhof M, Hommel B, Hüsken A, Njontie C, Schiemann J, Wehling P, Wilhelm R, Rühl G.Coexistence in Maize: Isolation distance in Dependence on Conventional Maize FieldDepth and Separate Edge Harvest, Crop Science,2010,50:1496-1508
    Lorieux M, Petrov N, Huang N, Guiderdoni E, Ghesquiere A. Non-reciprocal cross-sterility inmaize. Genetics,1952,37:101-124
    Mangelsdorf PC, Jones DF. The expression of Mendelian factors in the gametophyte of maize.Genetics,1926,11:423-455
    McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z,Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S,Ware D, Stain L. Development and mapping of2240new SSR markers for rice (Oryzasativa L.), DNA Research,2002,9:199-207
    Nelson OE. Non-reciprocal cross-sterility in maize. Genetics,1952,137:101-124
    Nelson OE. The gametophyte factors of maize. In: Freeling M, Walbot V (eds) The maizehandbook. Springer, New York,1993, pp496-503
    O'Brien SJ. Genetic Maps.Locus Maps of Complex Genomes.6th Ed. Cold Spring HarborLaboratory, Cold Spring Harbor, N.Y1993
    Paterson AH, Bowers JE, Bruggmann R, et al. The Sorghum bicolor genome and thediversification of grasses. Nature,2009,457:551-556
    Petefish A, Jones I, Plunket D, Murua M, Muszynski M. Molecular isolation of thegametophyte factor1(ga1) locus from Zea mays. Maize Conference,2012, P131
    Ross-Ibarra J, Tenaillon M, Gaut BS. Historical divergence and gene flow in the genus Zea.Genetics,2009,181:1399-1413
    Procissi A, Lassardiere S, Ferault F, Vezon D, Pelletier P. Five Gametophytic mutationsaffecting pollen development and pollen tube growth in Arabidopsis thaliana. Genetics,2001,158:1773-1783
    Riesgo L, Areal FJ, Sanvido O, Rodriguez-Cerezo E. Distances needed to limitcross-fertilization between GM and conventional maize in Europe, Nature Biotechnology,2010,28:780-782
    Schnable PS. The B73Maize Genome: Complexity, Diversity and Dynamics. Science,2009,326:1112-1115
    Schwarts D. The analysis of case of cross sterility in maize. PNAS,1950,36:719-724
    Weekes R, Allnutt T, Boffey C, Morgan S, Bilton M, Daniels R, Henry C. A study ofcrop-to-crop gene flow using farm scale sites of fodder maize (Zea mays L.) in the UK,Transgenic Research,2007,16:203-211
    Yang J et al. Construction and characterization of a bacterial artificial chromosome library ofmaize inbred line77Ht2. Plant Molecular Biology Reporter,2003,21:159-169.
    Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryzasativa L. ssp. indica).Science,2002,296(5565):79-92
    Yuen CYL, Pearlman RS, Silo-suh L, Hilson P, Carroll KL and Masson PH. WVD2andWDL1modulate helical organ growth and anisotropic cell expansion in Arabidopsis.Plant Physiology,2003,131:493-506
    Zhang H, Liu X, Zhang YE, Jiang C, Cui DZ, Liu HH, Li DT, Wang LW, Chen TT, Ning LH,Ma X, Chen HB. Genetic analysis and fine mapping of the Ga1-s gene region conferringcross-incompatibility in maize. Theo. Appl. Genet.124(3):459-465

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700