八倍体小偃麦混合基因组形成的遗传基础研究和小偃麦种质系的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中间偃麦草(Thinopyrum intermedium,2n=6x=42,EeEeEbEbStSt或JJJSJSStSt)是进行小麦遗传改良的重要基因资源之一,利用其与普通小麦杂交育成的各种小偃麦种质系是转移偃麦草优异基因的重要桥梁材料。本研究利用细胞学、基因组原位杂交和分子标记分析的方法,对八倍体小偃麦混合染色体组的形成机理进行了探讨;综合利用形态学、细胞学、特异分子标记和基因组原位杂交技术,对选育的具有优良性状特点的小偃麦种质系鉴定,明确其主要的性状特点、细胞学特点和染色体构成特点。获得以下主要研究结果:
     1.利用细胞学和基因组原位杂交技术(GISH),对本实验室选育的10个八倍体小偃麦的根尖细胞(RTC)染色体数目、花粉母细胞减数分裂中期I(PMC MI)染色体构型及其外源染色体的构成特点等进行了分析。结果表明,八倍体小偃麦山农TE256、山农TE259、山农TE261、山农TE262、山农TE263、山农TE265、山农TE266、山农TE267-1、山农TE270和山农TE274等均在普通小麦全套染色体的基础上附加了14条中间偃麦草染色体,其外源染色体构成分别为2St+8JS+2J+2J-St、2St+8JS+4J、2St+8JS+2J+2J-St、2St+8JS+2J+2J-St、2St+8JS+2J+2J-St、6St+4JS+2J+2J-St、4St+6JS+2J+2J-St、2St+8JS+4J、2St+8JS+4J和4St+6JS+4J,10个八倍体小偃麦附加的外源染色体组均由来自于中间偃麦草的不同染色体组的染色体构成的混合基因组,且多数为JS(Ee)和J(Eb)基因组的混合。
     2.选用本实验室现有的5760对G-SSR、EST-SSR、STS和RAPD引物在中间偃麦草、二倍体长穗偃麦草、披萨偃麦草和拟鹅观草中进行中间偃麦草的多态性引物的筛选,并利用获得的中间偃麦草的多态性引物进一步在中间偃麦草、烟农15和三个供体种中进行全基因组扫描,筛选中间偃麦草各基因组(Ee、Eb和St基因组)的特异分子标记,分别得到440、430和430个中间偃麦草Ee、Eb和St的特异标记。利用全套中国春-长穗偃麦草双体异附加系和中国春-披萨偃麦草双体异附加系进行中间偃麦草Ee基因组和Eb基因组的特异分子标记的染色体定位,将142个和119个中间偃麦草Ee基因组和Eb基因组的特异分子标记定位在特定染色体上。获得的中间偃麦草基因组和染色体特异分子标记可用于基因定位、中间偃麦草染色体追踪、基因的转移和种质系的鉴定。
     3.利用筛选到的中间偃麦草Ee(JS)、Eb(J)和St基因组的特异分子标记,对中间偃麦草、烟农15和10个八倍体小偃麦进行分析,筛选出八倍体小偃麦中的中间偃麦草染色体组(染色体)的特异分子标记,发现多数标记来自中间偃麦草的Ee和Eb基因组。进一步证明八倍体小偃麦中附加的中间偃麦草染色体为混合基因组,且多数为Ee和Eb基因组的混合,与原位杂交结果一致。结合基因组原位杂交和特异分子标记分析结果,明确了山农TE256、山农TE259、山农TE261、山农TE262、山农TE263、山农TE267-1和山农TE270中附加的中间偃麦草染色体为2Ee、4Ee、5Ee、6Ee、7Ee和5Eb;山农TE265中附加的中间偃麦草染色体为2Ee、5Ee、7Ee和5Eb;山农TE266中附加的中间偃麦草染色体为2Ee、4Ee、5Ee、7Ee和5Eb;山农TE274中附加的中间偃麦草染色体为2Ee、5Ee、6Ee、7Ee和5Eb。
     4.对从中间偃麦草与小麦杂种后代选育的171份小偃麦种质系进行了鉴定,明确了63份小偃麦种质系的细胞学特点和主要性状特点,为其后续研究和利用提供了参考依据。在63份小偃麦种质系中,八倍体小偃麦45份,附加系2份、代换系16份。
     5.对八倍体小偃麦山农TE256、山农TE265和山农TE267-1苗期的抗白粉病、抗旱和耐盐性鉴定结果证明,3个八倍体小偃麦具有抗白粉病、抗旱和耐盐等优良特性,推测其抗性来自于中间偃麦草。
     6.利用基因组原位杂交和分子标记技术,鉴定明确了SN100109为小麦-中间偃麦草的双体异附加系,附加染色体为2Ee染色体,并将其携带的白粉病抗性基因定位到2Ee染色体上;SN0946为小麦-中间偃麦草的双体异代换系,其一对小麦2D染色体被1对2Ee染色体代换,并将其携带的白粉病抗性基因定位到2Ee染色体上。
Thinopyrum intermedium (2n=6x=42, EeEeEbEbStSt or JJJSJSStSt) is one of theimportant genetic resources for wheat genetic improvement, many kinds of Trititrigiagermplasm lines which were developed from the progeny of common wheat and Th.intermedium are an important bridge materials for transferring excellent Thinopyrum gene tocommon wheat, are also basis materials of gene discovery and genetic research. In the presentstudy, molecular markers, genomic in situ hybridization and genome comparison analysiswere used to study the formation mechanism of mixed genomes of octoploid Trititrigia, inorder to analyse the genetic basis of the octoploid Trititrigia species and types; And using themethods of morphology, cytology, molecular markers and genomic in situ hybridization, theTrititrigia germplasm lines with good characters and features were identified and analysed, inorder to clarify its main characteristics, characters of cytological features and chromosomestructure. The main research results were as following:
     1. By methods of cytology and genomic in situ hybridization (GISH), ten octoploidTrititrigia were analysed on chromosome number of root tip cells (RTC), chromosomeconfiguration of mediumterm I pollen mother cell meiosis (PMC MI) and constitution of alienchromosomes. The octoploid Trititrigia shannong TE256, shannong TE259, shannong TE261,shannong TE262, shannong TE263, shannong TE265, shannong TE266, shannong TE267-1,shannong TE270and shannong TE274all had intact wheat genome chromosomes plus14Th.intermedium chromosomes, and their constitutions of alien chromosomes were2St+8JS+2J+2J-St,2St+8JS+4J,2St+8JS+2J+2J-St,2St+8JS+2J+2J-St,2St+8JS+2J+2J-St,6St+4JS+2J+2J-St,4St+6JS+2J+2J-St,2St+8JS+4J,2St+8JS+4J and4St+6JS+4J. The alien chromosomes in each octoploid Trititrigia were all from differentgenomes of Th. intermedium, and mostly consisting of JS(Ee) and J (Eb) genomes.
     2. In total5760primers were used to amplify the genomic DNA of Th. intermedium, Th.elongatum, Th. bessarabicum and Pseudoroegneria strigosa. The obtained polymorphicprimers of Th. intermedium were used to amplify the genomic DNA of Th. intermedium, Th.elongatum, Th. bessarabicum, Pseudoroegneria strigosa and common wheat cultivarYannong15. The results showed that440,430, and430special molecular markers wereeffectively mapped to the Ee, Eb, and St genomes, respectively. Using two sets of disomicaddition lines (DA1Ee-DA7Eeand DA1Eb-DA7Eb),142and119special molecular markers were effectively mapped to the specific Eeand Ebchromosomes, respectively. These genomicspecific molecular markers will be useful in comparative gene mapping, chromosomeevolutionary analysis, taxonomic studies, gene introgression, and cultivar identification.
     3. Using the Ee(JS), Eb(J) and St genome-specific molecular markers of Th. intermedium,10octoploid Trititrigia, Th. intermedium and yannong15were analysed in order to obtain thegenome or chromosome-specific molecular markers of Th. intermedium in octoploidTrititrigia. The results showed that the special molecular markers of each octoploid Trititrigiawere mostly from Eeand Ebgenomes. Further, the added Th. intermedium chromosomes inthe ten octoploid Trititrigia were all confirmed to be mixed genomes, and mostly were fromEeand Ebgenomes, consistenting with the results of GISH. According to the results ofspecific molecular marker and GISH, the added alien chromosomes of Shannong TE256,Shannong TE259, Shannong TE261, Shannong TE262, Shannong TE263, Shannong TE267-1and Shannong TE270were2Ee,4Ee,5Ee,6Ee,7Eeand5Eb; Shannong TE265were2Ee,5Ee,7Eeand5Eb; TE266were2Ee,4Ee,5Ee,7Eeand5Eb; Shannong TE274were2Ee,5Ee,6Ee,7Eeand5Eb.
     4. By methods of morphology and cytology,171Trititrigia germplasm lines developedfrom the progenies between Th. intermedium and common wheat Yannong15had beenidentified. Sixty-three Trititrigia germplasm lines of major characteristics and cytologicalcharacteristic were obtained, providing references for the subsequent use. The63Trititrigiagermplasm lines included45octoploid Trititrigia,2disomic alien addition lines and16disomic substitution lines.
     5. By resistance identification of powdery mildew resistance in seedling and adult,drought resistance in seedling and salt tolerence in seedling, octoploid TrititrigiaShannongTE256, ShannongTE265and ShannongTE267-1were analysed. The results werethat they were all good resistance to powdery mildew, drought and tolerance to salt, and theresistance of them were inferred from Th. intermedium.
     6. Combining the methods of molecular markers and GISH, SN100109was a wheat-Th.intermedium disomic addition line, containing a pair of2Eechromosomes from Th.intermedium, and the powdery mildew resistance gene was located on the2Eechromosomes.SN0946was a wheat-Th. intermedium disomic substitution line, with a pair of chromosomesfrom common wheat substituted by a pair of2Eechromosomes from Th. intermedium, and thepowdery mildew resistance gene was located on the2Eechromosomes.
引文
[1]鲍印广.小麦-中间偃麦草异染色体系的分子细胞遗传学鉴定与遗传分析[D].山东农业大学博士学位论文,2010.
    [2]陈佩度.作物育种生物技术[M].北京:中国农业出版社,2001.
    [3]陈士强,秦树文,黄泽峰,戴毅,张璐璐,高营营,高勇,陈建民.基于SLAF-seq技术开发长穗偃麦草染色体特异分子标记[J].作物学报,2013,39(4):727-734.
    [4]陈孝,徐惠君,杜丽璞,尚立民,韩彬,施爱农,肖世和.利用组织培养技术向普通小麦导入簇毛麦抗白粉病基因的研究[J],中国农业科学,1996,29(6):1-8.
    [5]丁斌.小麦-中间偃麦草(Elytrigia intermedium)双体异附加系的选育与鉴定[D].山东农业大学硕士学位论文,2003.
    [6]高明君,郝水,何孟元,李娜.中间偃麦草染色体组构成的同工酶研究[J].遗传学报,1992,19(4):336-343.
    [7]高明君,郝水,何孟元,卜秀玲. TAI系列I中的冰草染色体与小麦部分同源关系的同工酶研究[J]遗传学报,1993b,20(5):462-467.
    [8]高明君,郝水,何孟元,卜秀玲.小冰麦异附加系列I天兰冰草染色体上的酯酶同工酶基因定位[J].植物学报,1993a,35(2):102-106.
    [9]葛江燕,陈士强,高营营,高勇,朱雪,黄泽峰,陈建民.基于抑制消减杂交开发长穗偃麦草(Lophopyrum elongatum)特异分子标记[J].作物学报,2012,38(10):18181826.
    [10]海霞,陶澜,戴秀梅.植物染色体C-显带技术及其在小麦育种中的应用研究进展[J].种子,2002,3:40-41.
    [11]韩方普.天兰冰草及八倍体小冰麦染色体组构成研究[J].遗传,1994,16(5):3l-34.
    [12]胡利君.偃麦草染色质向小麦中转移及小麦-偃麦草抗性新种质的鉴定[D].电子科技大学博士论文,2012.
    [13]吉万全,薛秀庄,王长有, Fedak G, Patroski R,刘广田.中间偃麦草的GISH分析[J].西北植物学报,2001,21(3):401-405.
    [14]解新民,马万里,王振兴,杨锡麟,李斌,马明.内蒙古不同地区根茎冰草过养化物酶同工酶比较研究[J].内蒙古师大学报(自然科学汉文版),1995,(l):51-54.
    [15]解新明,云锦风.植物遗传多样性及其检测方法[J].中国草地,2000,22(6):51-59.
    [16]李丹丹,王洪刚,刘树兵,高居荣,李兴锋.抗白粉病小偃麦异代换系的细胞学鉴定和RAPD分析[J].作物学报,2003,29(4):525-529.
    [17]李宏伟,刘曙东,高丽锋,贾继增.小麦EST-SSRs的通用性研究[J].作遗传资源学报,2003,3:252-55.
    [18]李平路,王洪刚.小麦异附加系的选育和鉴定研究进展[J].山东农业大学学报(自然科学版),2000,31(4):446-450.
    [19]李晴祺.冬小麦种质创新与评价利用[M].济南:山东科学技术出版社,1998.
    [20]李振岐.麦类病害[M].北京:中国农业出版社,1997.
    [21]李振声,穆素梅,蒋立训,周汉平,吴景科,余玲.蓝粒单体小麦研究[J].遗传学报,1982,9(6):431-439.
    [22]李振声,容珊,陈漱阳.小麦远缘杂交[M].北京:科学出版社,1985.
    [23]林小虎,王黎明,李兴锋,赵逢涛,高居荣,李文才,陆文辉,王洪刚.抗白粉病小麦-中间偃麦草双体异附加系的鉴定[J].植物病理学报,2005,35(1):60-65.
    [24]林小虎.中间偃麦草抗白粉病基因的染色体定位及分子标记鉴定[D].山东农业大学博士学位论文,2005.
    [25]卢宝荣.小麦族遗传资源的多样性及其保护[J].生物多样性,1995,3(2):63-68.
    [26]聂道泰,贾旭,胡适全,俞春江,庄家骏,周广和,钱幼亭.利用生物化学标记分析鉴定一个抗小麦黄矮病的小麦新种质[J].遗传学报,1994,21(6):468-473.
    [27]朴真三.天兰冰草染色体形态和带型的研究.遗传学报,1982,9(5):350-356.
    [28]亓增军.冬小麦种质“矮孟牛”的分子细胞遗传学研究[D].南京农业大学博士学位论文,2000.
    [29]祁适雨.小麦-天兰冰草中间类型的研究简报[J].黑龙江农业科学,1979,(2):19-20.
    [30]盛宝钦.用反应型记载小麦白粉病[J].植物保护,1988,14(1):49-51.
    [31]孙亮先,谢进金,黄周英.表达序列标记(EST)研究进展[J].泉州师范学院学报.(自然科学),2002,20(4):75-79.
    [32]孙善澄.小偃麦新种质与中间类型的选育途径、程序和方法[J].作物学报,1981,7(1):51-58.
    [33]孙智英.八倍体小偃麦和双体异附加系的选育及其染色体构成分析[D].山东农业大学硕士学位论文,1999.
    [34]唐顺学,李义文,梁辉,曲乐庆,白建荣,贾双娥,魏晓丽,李振声,贾旭, Friebe B.抗大麦黄矮病毒小麦-中间偃麦草二体异代换系的选育和细胞、生化、分子生物学鉴定[J].植物学报,2000,42(9):952-956.
    [35]王洪刚,刘树兵,亓增军,孔凡晶,高居荣.中间偃麦草在小麦遗传改良中的应用研究[J].山东农业大学学报(自然科学版),2000a,31(3):333-336.
    [36]王洪刚,张建民,刘树兵.抗白粉病小麦—中间偃麦草异附加系的细胞学和RAPD鉴定[J].西北植物学报,2000b,20(1):64-67.
    [37]王洪刚,朱军,刘树兵.利用细胞学和RAPD技术鉴定抗病小偃麦易位系[J].作物学报,2001,27(6):886-890.
    [38]王洪刚,刘树兵,李兴峰,高居荣,封德顺,陈冬花.六个八倍体小偃麦的选育和鉴定[J].麦类作物学报,2006,26(4):6-10.
    [39]王黎明.小麦-中间偃麦草异代系的选育、鉴定及其遗传分析[D].山东农业大学博士学位论文,2006.
    [40]王秋霞.小麦族H、P、St和Y基因组遗传演化分析[D].中国农业科学院博士学位论文,2012.
    [41]武东亮,辛志勇,陈孝,徐惠君,马有志,张增艳.抗黄矮病普通小麦偃麦草异附加系、异代换系的选育和鉴定[J].中国科学(C辑),1999,29(1):62-67.
    [42]徐远利,杨吉秀,宣朴,刘大钧杨世湖.用花粉母细胞分带和端体研究小麦与偃麦草的亲缘关系[J].中国农业科学,1996:1049-1053.
    [43]薛秀庄.小麦染色体工程与育种[M].河北:河北科学技术出版社,1993.
    [44]闫旭东.植物耐盐性鉴定及评价技术规程[M].北京:中国农业科学技术出版社,2012,pp3-7.
    [45]颜济,杨俊良编著.小麦族生物系统学,第五卷:曲穗草属披碱草属牧场麦属冠毛麦属毛麦属大麦披碱草属拟狐茅属网鞘草属沙滩麦属[M].北京:中国农业出版社,2013, pp473-516.
    [46]杨继.植物多倍体基因组的形成与进化[J].植物分类学报,2001,39(4):357-371.
    [47]杨世湖,徐利远,刘大钧.中间偃麦草染色体组型研究.作物学报,1988,14(4):279-283.
    [48]尤明山,李保云,唐朝晖,刘守斌,宋健民,毛善锋,刘广田.偃麦草E染色体组特异RAPD和SCAR标记的建立[J].中国农业大学学报,2002,(5): l-6.
    [49]张学勇,陈漱阳.普通小麦异代换系的产生和利用[J].遗传,1990,12(4):40-44.
    [50]张学勇,董玉琛.小麦与彭梯卡堰麦草杂种及其衍生后代的细胞遗传学研究: II来自小麦和彭梯卡(长穗)堰麦草及中间堰麦草杂种后代11个八倍体小偃麦的比较研究[J].遗传学报,1994,21(4):287-296.
    [51]张艳红,易津.偃麦草属5种植物种子发育过程中生理生化的研究[J].中国草地学报,2007,29(6):53-58.
    [52]赵逢涛.小麦-中间偃麦草杂交后代种质系的选育与鉴定[D].山东农业大学硕士学位论文,2005.
    [53]钟冠昌,穆素梅,张正斌.麦类远缘杂交[M].北京:科学出版社,2002.
    [54] Adams KL, Cronn R, Percifield R, and Wendel JF. Genes duplicated by polyploidy showunequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc[J].Natl. Acad. Sci. USA,2003,100:4649-4654.
    [55] Anderson J, Ogihara Y, Sorrells M, Tanksley S. Development of a chromosomal arm mapfor wheat based on RFLP markers[J]. Theoretical and Applied Genetics,1992,83:1035-1043.
    [56] Banks PM, Larkin PJ, Bariana HS. Lagudah ES. The use of cell culture forsubchromosomal introgressions of barley yellow dwarf virus resistance fromThinopyrum intermedium to wheat[J]. Genome,1995,38:395-405.
    [57] Bao, Y.G., X.F. Li, S.B. Liu, F. Cui and H.G. Wang. Molecular cytogenetic characterizationof a new wheat-Thinopyrum intermedium partial amphiploid resistant to powderymildew and stripe rust[J]. Cytogenet Genome Res.,2009,126:390-395.
    [58] Bento M, Pereira H, Rocheta M, Gustafson P, Viegas W, Silva M. Polyploidization as aretraction force in plant genome evolution: sequence rearrangements in Triticale[J]. PlosOne,2008,3(1): e1402.
    [59] Bottley, A. and R. Koebner. Variation for homoeologous gene silencing in hexaploidwheat[J]. The Plant Journal,2008,56(2):297-302.
    [60] Bottley, Xia GM, Koebner RMD. Homoeologous gene silencing in hexaploid wheat[J].The Plant Journal,2006,47(6):897-906
    [61] Castilho A, Miller TE, Heslop-Harrison JS. Physical mapping of translocation breakpointsin a set of wheat-Aegilops umbellulata recombinant lines using in situ hybridization[J].Theoretical and Applied Genetics,1996,93:816-825.
    [62] Cauderon Y.. étude cytogénétique de l’évolution du matériel issu decroisement entreTriticum aestivum et Agropyron intermedium[J]. Ann de l’Amél Plantes,1966,16:43-70.
    [63] Chen Q, Conner RL, Laroche A, Fedak G, Thomas JB. Genomic origins of Thinopyrumchromosomes specifying resistance to wheat streak mosaic virus and its vector, Aceriatosichella [J]. Genome,1999a,42:289-295.
    [64] Chen Q, Conner RL, Laroche A, Ji WQ, Armstrong KC, Fedak G. Genomic in situhybridization analysis of Thinopyrum chromatin in a wheat-Th. intermedium partialamphiploid and six derived chromosome addition lines [J]. Genome,1999b,42:1217-1223.
    [65] Chen Q, Conner RL, Laroche A, Thomas JB. Genome analysis of Thinopyrumintermedium and Th. ponticum using genomic in situ hybridization [J]. Genome,1998,41:580-586.
    [66] Chen Q, Conner RL, Li HJ, Sun SC, Ahmad F, Laroche A, Graf RJ. Molecular cytogeneticdiscrimination and reaction to wheat streak mosaic virus and the wheat curl mite in Zhongseries of wheat-Thinopyrum intermedium partial amphiploids [J]. Genome,2003,46:135-145.
    [67] Chen Q. Detection of alien chromatin introgression from Thinopyrum into wheat using Sgenomic DNA as a probe-A landmark approach for Thinopyrum genome research [J].Cytogenet Genome Res,2005,109:350-359.
    [68] Chen SQ, Huang ZF, Dai Y, Qin SW, Gao, YY, Zhang LL, Gao Y, Chen JM. Thedevelopment of7E chromosome-specific molecular markers for Thinopyrum elongatumbased on SLAF-seq technology[J]. Plos One,2013,8(6): e65122.
    [69] Chen X, Salamini R, and Gebhardt C. A potato molecular function map for carbohydratemetabolism and transport [J]. Theoretical and Applied Genetics,2001,102:284-295.
    [70] Chen Z, Wang J, Tian L, Lee H, Wang J, Chen M, Lee J, Josefsson C, Madlung A, WatsonB. The development of an Arabidopsis model system for genome-wide analysis ofpolyploidy effects[J]. Biological Journal of the Linnean Society,2004,82(4):689-700.
    [71] Comai L, Tyagi A, Winter K, Holmes-Davis R, Reynolds S, Stevens Y, Byers B.Phenotypic instability and rapid gene silencing in newly formed Arabidopsisallotetraploids[J]. The Plant Cell,2000,12(9):1551-1567.
    [72] Comai L. Genetic and epigenetic interactions in allopolyploid plants[J]. Plant Mol. Biol.,2000,43:387-399.
    [73] Cordeiro GM, Casu R, Mclntyre CL, Mannersb J M, Henry RJ. Microsa tellite markersfrom sugarcane (Saccharum spp) ESTs cross transferable to Erianthus and Sorghum[J].Plant Science,2001,160:1115-1123.
    [74] Crombach A, Hogeweg P. Chromosome rearrangements and the evolution of genomestructuring and adaptability[J]. Molecular Biology and Evolution,2007,24(5):1130-1139.
    [75] Decroocq V, Fave M G, Hagen L, Bordenave L, Decroocq S. Development andtransferability of apricot and grape EST microsatellite markers across taxa[J]. Theoreticaland Applied Genetics,2003,106(5):912-922.
    [76] Ding CB, Zhou YH, Yang RW, Zhang L, Zheng YL. Relationships amongPseudoroegneria Species based on RAMP[J]. Acta Botanica Yunnanica.2005,27(2):163-170.
    [77] Dong YZ, Liu ZL, Shan XH, Qiu T, He MY, Liu B. All opolyploidy in wheat inducesrapid and heritable alterations in DNA methylation patterns of cellular genes and mobileelements[J]. Russ. J. Genet.,2005,41:890-896.
    [78] Dubeovsky J, and Dvorak J. Genome plastieity a key factor in the success of polyploidwheat under domestication[J]. Seienee,2007,316:1862-1866.
    [79] Ehrendorfer F. Polyploidy and distribution[J]. Polyploidy-Biological Relevance. NewYork: Plenum Press,1980.
    [80] Eilam T, Anikster Y, Millet E, Manisterski J, and Feldman M. Nuclear DNA amount andgenome downsizing in natural and synthetic allopolyploids of the genera Aegilops andTriticum[J]. Genome,2008,51(8):616-627.
    [81] Eilam T, Anikster Y, Millet E, Manisterski J, Sagi-Assif O, Feldman M. Genome size andgenome evolution in diploid Triticeae species. Genome,2007,50(11):1029-1037.
    [82] Eujay I, Sorrells M, Baum M, Wolters P, Powell W. Assessment of genotypic variationamong cultivated durum wheat based on EST-SSR and genomic SSRs[J]. Euphytica,2001,119:39-43.
    [83] Fang DQ, Roose ML. Identifieation of closely related citruseultivars with intersimplesequence repeat markers[J]. Theoretical and Applied Genetics,1997,95:408-417.
    [84] Fedak G, Han F. Characterization of derivatives from wheat-Thinopyrum wide crosses [J].Cytogenet Genome Res.,2005,109:360-367.
    [85] Feldman M, Liu B, Segal G, Abbo S, Levy A, Vega J. Rapid elimination of low-copy DNAsequences in polyploid wheat: a possible mechanism for differentiation of homoeologouschromosomes[J]. Genetics,1997,147(3):1381-1387.
    [86] Feldman M, Lupton FGH, Miller TE. Wheats in evolution of crop plants,2ndEdition.J.Smartt and N.W.Simmonds eds (London Longnlan Seientific),1995, pp.184-192.
    [87] Feldman M., Levy AA. Allopolyploidy-a shaping force in the evolution of wheatgenomes[J]. Cytogenet. Genome Res.,2005,109:250-258.
    [88] Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM. Rapid elimination of low-copyDNA sequences in polyploid wheat: A possible mechanism for differentiation ofhomoeologous chromosomes[J]. Genetics,1997,147:1381-1387.
    [89] Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS. Characterization of wheat-alientranslocations conferring resistance to diseases and pests: current status [J]. Euphytica,1996,91:59-87.
    [90] Friebe B, Mukai Y, Dhaliwal HS, Martin TJ, Gill BS. Identification of alien chromatinspecifying resistance to wheat streak mosaic and greenbug in wheat germ plasm byC-banding and in situ hybridization [J]. Theoretical and Applied Genetics,1991,81:381-389.
    [91] Friebe B, Zeller FJ, Mukai Y, Forser BP, Bartos P, McIntosh RA. Characterization ofrust-resistant wheat-Agropyron intermedium derivatives by C-banding, in situhybridization and isozyme analysis [J]. Theoretical and Applied Genetics,1992,83:775-782.
    [92] Gale M, Devos K. Plant comparative genetics after ten years[J]. Science,1998,282(5389):656-659.
    [93] Gao L, Jing R, Huo N, Li Y, Li XP, Zhou RH, Chang XP, Tang JF, Ma ZY, Jia JZ. Onehundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat.Theoretical and Applied Genetics,2004,108:1392-1400.
    [94] Gill B. Nucleocytoplasmic interaction (NCI) hypothesis of genome evolution andspeciation in polyploid plants. In: Sasakuma T, Kinoshita T, eds. Yokohama.1991.
    [95] Gill BS, Friebe B, Endo TR. Standard karyotype and nomenclature system for descriptionof chromosome bands and structural abrrations in wheat (Triticum aestivum)[J]. Genome,1991,34,830-839.
    [96] Han F, Fedak G, Guo W, and Liu B. Rapid and repeatable elimination of a parentalgenome-specific repeat (pGc1R-la) in newly synthesized wheat allopolyploids[J].Genetics,2005,170:1239-1245.
    [97] Han F, Liu B, Fedak G. Genomic constitution and variation in five partial amphiploids ofwheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storageprotein analysis [J]. Theoretical and Applied Genetics,2004,109:1070-1076.
    [98] Hatey F, Tosser-Klopp G, Clouscard-Martinato C, Mulsant P, Gasser F. Expressedsequenced tags for genes:a review[J]. Genet. Sel. Evol.,1998,30(5):521-541.
    [99] He R, Chang Z, Yang Z, Yuan Z, Zhan H, Zhang X, Liu J. Inheritance and mapping ofpowdery mildew resistance gene Pm43introgressed from Thinopyrum intermedium intowheat [J]. Theoretical and Applied Genetics,2009,118:1173-1180.
    [100] Hegarty M, Hiscock S. Hybrid speciation in plants: new insights from molecular studies[J].New phytologist,2005,165(2):411-423.
    [101] Hohmann U., Busch W., Badaeva W. Badaeva K, Friebe B. Molecular cytogenetic analysisof Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat[J].Genome,1996,39:336-347.
    [102] Holton TA, Christopher JT, Mcclure L, Harker N, Henry RJ. Identification and mapping ofpolymorphic SSR markers for expressed gene sequences of barley and wheat [J]. Mol.Breeding,2002,9:63-71.
    [103] Hu LJ, Liu C, Zeng ZX, Li GR, Song XJ, Yang ZJ. Genomic rearrangement betweenwheat and Thinopyrum elongatum revealed by mapped functional molecular markers[J].Genes&Genomics,2012a,34:67-75.
    [104] Hu L, Li G, Zhan H, Liu C, Yang Z. New St-chromosome-specific molecular markers foridentifying wheat–Thinopyrum intermedium derivative lines[J]. J. Genet.,2012b,91:e69–e74.
    [105] Jiang J, Birchler JA, Parrott WA, Kelly-Dawe R. A molecular view of plant centromeres[J].Trends in Plant Science,2003,8(12):570-575.
    [106] Jiang JM, Gill BS. Sequential chromosome banding and in situ hybridization analysis [J].Genome,1993,36:792-795.
    [107] Kashkush K, Feldman M, and Levy AA. Transcriptional activation of retrotransposonsalters the expression of adjacent genes in wheat[J]. Nature Genetics,2003,33:102–106.
    [108] Kashkusha K, Feldmana M, and Levy AA. Gene loss, silencing and activation in a newlysynthesized wheat allotetraploid[J]. Genetics,2002,160:1651-1659.
    [109] Kato A., Vega JM, Han FP, Lamb JC, Birchler JA. Advances in plant chromosomeidentification and cytogenetic techniques. Current opinion in plant biology,2005,8(2):148-154.
    [110] Kenton A, Parokonny AS, Gleba YY, Bennett MD. Characterization of the Nicotianatabacum L. genome by molecular cytogenetics[J]. Molecular and General Genetics,1993,240(2):159-169.
    [111] Lagercrantz U, Lydiate D. Comparative genome mapping in Brassica[J]. Genetics,1996,144(4):1903-1910.
    [112] Lee HS, Chen in Arabidopsis Z.J. Protein-coding genes are epigenetically regulatedpolyploids[J]. Proc Natl Acad Sci USA,2001,98:6753-6758.
    [113] Leitch I, Bennett M. Polyploidy in angiosperms[J]. Trends in Plant Science,1997,2(12):470-476.
    [114] Levin D. Polyploidy and novelty in flowering plants[J]. American Naturalist,1983,122(1):1-25.
    [115] Levy A, Feldman M. The impact of polyploidy on grass genome evolution[J]. PlantPhysiology,2002,130(4):1587-1593.
    [116] Levy A, Feldman M. Genetic and epigenetic reprogramming of the wheat genome uponallopolyploidization[J]. Biological Journal of the Linnean Society,2004,82(4):607-613.
    [117] Li H, Wang X. Thinopyrum ponticum and Th. intermedium: the promising source ofresistance to fungal and viral diseases of wheat [J]. J Genet Genomics,2009,36,557-565.
    [118] Liu B, and Wendel JF. Non-mendelian phenomena in allopolyploid genome evolution[J].Curr. Genomics,2002,3:489-505.
    [119] Liu B, Vega JM, and Feldman M. Rapid genomic changes in newly synthesizedamphiploids of Triticum and Aegilops. ILChanges in low-copy coding DNA sequences[J].Genome,1998b41:535-542.
    [120] Liu B, Vega JM, Segal G, Abbo S, Rodova M, and Feldman M. Rapid genomic changes innewly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copynoncoding DNA sequences[J]. Genome,1998a,41:272-277.
    [121] Liu C, Yang ZJ, Li GR, Ren ZL. Analysis of St-chromosome-containing triticeaepolyploids using specific molecular markers[J]. Hereditas,2007,29(10):1271-1279.
    [122] Liu J, Chang ZJ, Zhang XJ, Yang ZJ, Li X, Jia, JQ, Zhan HX, Guo HJ, Wang, JM. PutativeThinopyrum intermedium-derived stripe rust resistance gene Yr50maps on wheatchromosome arm4BL[J]. Theoretical and Applied Genetics,2013,126:265-274.
    [123] Liu Q, Ge S, Tang H, Zhang X, Zhu G, Lu B. Phylogenetic relationships in Elymus(Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer andchloroplast trnL-F sequences[J]. New phytologist,2006,170(2):411-420.
    [124] Liu SB, Wang HG, Zhang XY, Li XF, Li DY, Duan XY, Zhou YL. Molecular cytogeneticidentification of a wheat-Thinopyrum intermedium (Host) Barkworth&DR Dewey partialamphiploid resistant to powdery mildew [J]. Journal of Integrative Plant Biology,2005a,47(6):726-733.
    [125] Liu SB, Wang HG. Characterization of a wheat-Thinopyron intermedium substitution linewith resistance to powdery mildew [J]. Euphytica,2005b,143:229-233.
    [126] Liu Z, Li D, Zhang X. Genetic relationships among five basic genomes St, E, A, B and Din Triticeae revealed by genomic Southern and in situ hybridization [J]. Journal ofIntegrative Plant Biology,2007,49(7):1080-1086.
    [127] Liu Z. W., Wang R. R. C.. Genome analysis of Elytrigia caespitosa, Lophopyrum nodosum,Pseudoroegneria geneiculata ssp. scythica and Thinopyrum intermedium (Triticeae:Gramineae)[J]. Genome,1993,36:102-111.
    [128] Luo PG, Luo HY, Chang ZJ, Zhang HY, Zhang M, Ren ZL. Characterization andchromosomal location of Pm40in common wheat: a new gene for resistance to powderymildew derived from Elytrigia intermedium [J]. Theor. Appl. Genet.,2009,118:1059-1064.
    [129] Ma XF, Gustafson JP. Allopolyploidization-accommodated genomic sequence changes intriticale. Ann. Bot.,2008,101:825-832.
    [130] Ma XF, Gustafson JP. Timing and rate of genome variation in triticale followingallopolyploidization[J]. Genome,2006,49:950-958.
    [131] Ma XF, Gustafson JP. Genome evolution of allopolyploids: a process of cytological andgenetic diploidization. Cytogenet. Genome Res.,2005,109:236-249.
    [132] Madlung A, Masuelli RW, Watson B, Reynolds SH, Davison J, Comai L. Remodeling ofDNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsisallotetraploids[J]. Plant Physiol.,2002,129:733-746.
    [133] Mahelka V, Kopecky D, Pa tová L. On the genome constitution and evolution ofintermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae)[J]. BMCEvolutionary Biology,2011,11:127.
    [134] Mason-Gamer RJ. Reticulate evolution, introgression, and intertribal gene capture in anallohexaploid grass[J]. Systematic Biology,2004,53(1):25-37.
    [135] McClintock B. The significance of responses of the genome to challenge[J]. Science,1984,226:792-801.
    [136] Michael P, Bai J, Laudencia-Chingcuanco D, Anderson O, Bikram-S G. Nonadditiveexpression of homoeologous genes iIs established upon polyploidization in hexaploidwheat[J]. Genetics,2009,181:1147-1157.
    [137] Mohan A, Goyal A, Singh R, Balyan HS, Gupta PK. Physical mapping of wheat and ryeexpressed sequence tag–simple sequence repeats on wheat chromosomes[J]. Crop science,2007,47: S-3-S-13.
    [138] Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes inhexaploid wheat by multicolor fluorescence in situ hybridization using total genomichighly repeated DNA probes [J]. Genome,1993,36:489-494.
    [139] Mullan DJ, Platteter A, Teakle NL, Appels R, Colmer TD. EST-derived SSR markers fromdefined regions of the wheat genome to identify Lophopyrum elongatum specific loci[J].Genome,2005,48:811-822.
    [140] Nagy ED, Moinar-Lang M, Linc G, Lang L. Identification of wheat-barley translocationsby sequential GISH and two-colour FISH in combination with the use of geneticallymapped barley SSR markers [J]. Genome,2002,45,1238-1247.
    [141] Naranjo T. Chromosome Rearrangements[J]. Encyclopedia of Plant and Crop Science,2004,1(1):270-272.
    [142] Niu Z., Klindworth DL, Yu G, Friesen TL, Chao S, Jin Y, Cai X, Ohm JB, Rasmussen JB,Xu Steven-S. Development and characterization of wheat lines carrying stem rustresistance gene Sr43derived from Thinopyrum ponticum [J]. Theor. Appl. Genet.,2014,127(4):969-980.
    [143] Ohm HW, Anderson JM, Sharma HC, Ayala NL, Thompson N, Uphaus JJ. Registration ofyellow dwarf virus resistant wheat germplasm line P961341[J]. Crop Science,2005,45:805-806.
    [144] Ozkan H, Levy AA, and Feldman M. All opolyploidy-induced rapid genome evolution inthe wheat (Aegilops-Triticum) group. Plant Cell,2001,13:1735-1747.
    [145] Ozkan H, Tuna M, Arumuganathan K. Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group[J]. J Heredity,2003,94(3):260-264.
    [146] Pedersen C, Langridge P. Identification of the entire chromosome complement of breadwheat by two-colour FISH [J]. Genome,1997,40:589–593.
    [147] Peng J, Lapitan NL. Characterization of EST-derived microsatellites in the wheat genomeand development of eSSR markers. Functional&integrative genomics,2005,5:80-96.
    [148] Pikaard CS, Lawrence RJ. Uniting the path to gene silencing. Nat. Genet.,2002,32:1-2
    [149] Ribeiro-Carvalho C, Guedes-Pinto H, Heslop Harrison JS, Schwarzacher T. Introgressionof rye chromatin on chromosome2D in the Portuguese wheat landrace ‘Barbela’[J].Genome,2001,44:1122-1128.
    [150] Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R,Delseny M, Feuillet C. Identification and characterization of shared duplications betweenrice and wheat provide new insight into grass genome evolution[J]. The Plant Cell,2008,20:11-24.
    [151] Scott KD, Eggler PS. Analysis of SSR derived from grape ESTs[J].Theor. Appl. Genet.,2000,100:723-726.
    [152] Sears ER. Transfer of alien genetic material to wheat [A]. In: Euansc LF (eds)[J]. WheatScience-Today and Tomorrow. Cambridge Vri. Press,1981:25-89.
    [153] Sepsi A, Molnár I, Szalay D, Molnár-Láng M. Characterization of a leaf rust-resistantwheat–Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISHand FISH[J]. Theoretical and Applied Genetics,2008,116(6):825-834.
    [154] Shaked H, Kashkush K, Ozkan H, Feldman M, and Levy AA. Sequence elimination andcytosine methylation are rapid and reproducible responses of the genome to widehybridization and allopolyploidy in wheat[J]. Plant Cell,2001,13:1749-1759.
    [155] Singh S, Li W L, Brown-Guedira G,et al. Simple sequence repeats from wheat ESTs arecross-transferable to rice, maize, and Sorghum. Plant[J]. Aniaml&Micribe GenomesConference,2002:125.
    [156] Song K, Lu P, Tang K, and Osborn TC. Rapid genome change in synthetic polyploids ofBrassica and its implications for polyploid evolution[J]. Proc. Natl. Acad. Sci.,1995,92:7719-7723.
    [157] Stebbins G. Variation and evolution in plants [M]. New York: Columbia University Press,1950.
    [158] Taketa S, Nakazaki T, Schwarzacher T, Heslop-Harrison JS. Detection of a4DLchromosome segment translocated to rye chromosome5R in an advanced hexaploidtriticale line Bronco90[J]. Euphytica,1997,97:91-96.
    [159] Tang S. Genomic in situ hybridization (GISH) analysis of Thinnopyrum intermedium, itspartial amphyiploid Zhong5and disease-resistant derivatives in wheat [J]. Theoretical andApplied Genetics,2000,100:344-352.
    [160] Taylor C, Madsen K, Borg S, Moller M C, Boelt B, Holm P H. The development ofsequence-tagged sites (STSs) in Lolium perenne L.: the application of primer sets derivedfrom other genera [J]. Theoretical and Applied Genetics,2001,103:648-658.
    [161] Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for thedevelopment and characterization of gene-derived SSR-markers in barley (HordeumvulgareL)[J]. Theoretical and Applied Genetics,2003,106:411-422.
    [162] Ungerer M, Baird S, Pan J, Rieseberg L. Rapid hybrid speciation in wild sunflowers[J].Proceedings of the National Academy of Sciences of the United States of America,1998,95(20):11757-11762.
    [163] Wang J, Tian L, Lee HS, Wei NE, Jiang H, Watson B, Madlung A, Osborn TC, Doerge RW,Comai L, Chen ZJ. Genomewide nonadditive gene regulation in arabidopsisallotetraploids[J]. Genetics,2006,172:507-517.
    [164] Wang J, Xiang FN, Xia GM. Fragments of tall wheatgrass to transfer of smallchromosome wheat chromosome via asymmetric somatic hybridization[J]. Sci. ChinaSeries C.,2004,47(5):434-441.
    [165] Wang RRC, Larson SR, Jensen KB. Analyses of Thinopyrum bessarabicum, T. elongatum,and T. junceum chromosomes using EST-SSR markers[J]. Genome,2010,53:1083-1089.
    [166] Wendel J, Schnabel A, Seelanan T. Bidirectional interlocus concerted evolutionfollowing allopolyploid speciation in cotton (Gossypium)[J]. Proceedings of theNational Academy of Sciences of the United States of America,1995,92(1):280-284.
    [167] Wendel J. Genome evolution in polyploids[J]. Plant Molecular Biology,2000,42(1):225-249.
    [168] Whan V A, Wilson K J, Moue S. Two polymorphic microsatellite markers form novelPenaeus monodon EST [J]. Animal Genetics,2000,31:14-157.
    [169] Xu GH, Su WY, Shu YJ, Cong WW, Wu L, Guo CH. RAPD and ISSR-assistedidentification and development of three new SCAR markers specific for the Thinopyrumelongatum E (Poaceae) genome. Genet. Mol. Res.,2012,11(2):1741-1751.
    [170] Yang ZJ, Li GR., Chang ZJ, Zhou JP, Ren ZL. Characterization of a partial amphiploidbetween Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp.trichophorum [J]. Euphytica,2006,149:11-17.
    [171] You MS, Li BY, Tian ZH, Tang ZH, Liu SB, Liu GT. Development of specific SSR markerfor Eegenome of Thinopyrum spp. using wheat microsatellites[J]. Chinese Journal ofAgricultural Biotechnology,2004,1(3):143-148.
    [172] Zeng ZX, Yang ZJ, Hu LJ. Development of St genome specific ISSR marker[J]. Acta Bot.Boreal Occident Sin.,2008,28(8):1533-1540.
    [173] Zhang L., Yan ZH, Zheng YL, Liu DC, Dai SF, Zhang LQ, Wei YM. Development ofEe-chromosome specific AFLP and STS molecular marker for Lophopyrum elongatum inChinese Spring wheat background[J]. J. Agric. Biotechnol.,2008,16(3):465-473.
    [174] Zhang XY., Dong YC, Li P, Wang RR. Distribution of E-and St-RAPD fragments in fewgenomes of Triticeae[J]. Acta Genetica Sinic.,1998,25(2):131-141.
    [175] Zhang XL, Shen XR, Hao YF, Cai JJ Ohm HW, Kong LR. A genetic map of Lophopyrumponticum chromosome7E, harboring resistance genes to Fusarium head blight and leafrust[J]. Theoretical and Applied Genetics,2011,122(2):263-270.
    [176] Zhang XY, Koul A, Petroski R, T. Ouellet, G. Fedak. Molecular verification andcharacterization of BYDV-resistant germplasm derived from hybrids of wheat withThinopyrum ponicum and Th. intermedium [J]. Theoretical and Applied Genetics,1996,93:1033-1039.
    [177] Zhang Z, Lin Z, Xin Z. Research progress in BYDV resistance genes derived from wheatand its wild relatives [J]. J Genet Genomics,2009,36:567-573.
    [178] Zhang Z, Xin Z, Ma Y, Chen X, Xu Q, Lin Z. Mapping of a BYDV resistance gene fromThinopyrum intermedium in wheat background by molecular markers [J]. Sci China Ser.C.,1999,42:663-668.
    [179] Zhang ZY, Wang LL, Xin ZY, Lin ZS. Development of new PCR markers specific to aThinopyrum intermedium chromosome2Ai-2and cloning of the St-specific sequences[J].Acta genetica Sinica,2002,29(7):627-633.
    [180] Zhang ZY, Xin ZY, Larkin PJ. Molecular characterization of a Thinopyrum intermediumgroup2chromosome (2Ai-2) conferring resistance to barley yellow dwarf virus [J].Genome,2001,44(6):1129-1135.
    [181] Zhong SB, Zhang DY, Li HB, Yao JX. Identification of Haynaldia villosa chromosomesadded to wheat using a sequential C-banding and gnomic in situ hybridization technique[J]. Theoretical and Applied Genetics,1996,92:116-120.
    [182] Zietkiewicz E, Rafalski A, Labuda D. Genome finger printing by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification[J]. Genomies,1994,20:176-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700