超甜38玉米对镉的耐受机理及强化富集研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,镉米事件被多次报道,土壤镉(Cd)污染已危及到人们的日常生活。在治理Cd污染土壤的各种方法中,植物修复以其成本低、不破坏土壤结构、易为社会接受等优点日渐受到重视。同时在修复植物的选择上,玉米因其种质资源丰富,易栽培,生长快,生物量大,适应性强且籽粒中含量低等特点,更是受到国内外不少研究者的关注。根据超甜38(CT38)玉米的营养生长和生殖生长特性,研究其生长周期中的两个关键阶段——幼苗过渡期和开花授粉期的Cd耐受机理和整株富集、分布状况,及授粉过程对整株玉米的Cd富集量和其在不同器官中的富集比例状况,最后,将实验室的研究成果在Cd污染土壤的实地修复中加以验证。获得的主要研究结果如下:
     1.探索了玉米CT38幼苗在过渡期对Cd的耐受机制。在CK(空白,背景值0.13mg/kg,下同)、1.00、5.00、20.00、50.00、100.00、200.00mg/kg土壤Cd含量的盆栽土中直接播种玉米CT38,测定其发芽状况,观察幼苗从利用胚乳生长到光合作用自养的过渡期内的生长情况,收集、测定其吐水水滴中重金属Cd含量,研究表明:玉米CT38种子的发芽率除Cd含量200mg/kg处理之外,其余处理与空白对照没有显著性下降(n=3,p=0.05,下同)。除根部截留之外,植物通过吐水排Cd也是玉米苗期重要的耐受机制。在5mg/kg以下的含Cd土壤中,植物能完全耐受重金属Cd的逆境胁迫,所吐水滴中Cd浓度低于检测限(<0.1ug/L,石墨炉原子吸收);在20~100mg/kg之间的含Cd土壤中,玉米植株可通过植物吐水排出多余的Cd而能正常的生长,吐水水滴中最高Cd浓度为10.4mg/L;当达到200mg/kg时,植物遭受重金属胁迫而受损伤,植物吐水排Cd能力减弱,最高Cd浓度降低为8.8mg/L,生长遭受严重的抑制,地上部和地下部干重仅为对照的25.4%和48.3%,并出现幼苗死亡现象。玉米秧苗吐Cd之前,随着土壤中Cd含量不断增加,转运系数(S/R)不断降低;而秧苗吐Cd现象出现以后,S/R则维持在0.5左右。另外,根部和土壤中Cd含量在植物吐Cd以后也呈显著线性相关,植物吐Cd之后,根部Cd含量是土壤中中的11.2倍左右。玉米秧苗吐水排Cd对耐受、富集Cd有重要的意义。
     2.研究了土壤中不同浓度的Cd胁迫对玉米CT38生长和生理影响。在Cd浓度分别为CK、1、5、20、50、100、200mg/kg的盆栽土壤中种植玉米CT38,授粉后分别测定玉米CT38植株的株高、叶面积、叶绿素含量、叶片中超氧化物歧化酶(SOD),过氧化氢酶(CAT)和过氧化物酶(POD)的活性以及丙二醛(MDA)的含量,并在扫描电镜下观察玉米的花粉状况。结果表明:灌浆期玉米CT38植株的高度和叶面积均随着土壤中重金属Cd含量的升高先增大后减小,5mg/kg以下低浓度Cd引起的升高并未达到显著水平,50mg/kg以上高浓度Cd的抑制效果显著。灌浆期玉米叶绿素含量随着土壤中重金属Cd含量的增加呈现先升高后降低的现象,5mg/kg处理下最高;而叶绿素a/b则并未表现出明显下降趋势。随土壤中重金属Cd含量升高,灌浆期玉米叶片SOD活性先升高后降低,20mg/kg处理时最高,CAT和POD活性则一直升高;玉米植株体内MDA含量则一直上升,且在20mg/kg浓度之后,上升较为明显。籍此,我们结合苗期的状况认为,玉米生长后期抵抗Cd胁迫的耐性不及苗期明显,苗期100mg/kg处理仍能正常生长,拔节后50mg/kg处理即表现出严重的矮化症状。另外,随着土壤中重金属含量的升高,玉米的生殖系统受到威胁,花粉的萌发孔发生明显的变异。在50mg/kg Cd胁迫下,玉米的花粉萌发孔明显凹陷,100mg/kg Cd胁迫下无花粉产生。
     3.研究了整株玉米对Cd的富集和分配。对完成生长周期的玉米CT38植株,分别测定其营养生长器官(根、茎、叶)和生殖生长器官(雄花和雌穗,雌穗包括苞叶、穗柄、穗轴、花丝和籽粒)的生物量和重金属含量,并计算出各器官对Cd的富集量和富集比例。结果显示:虽然生物量干重在低浓度Cd胁迫下增加,高浓度Cd胁迫下降低,但玉米植株生殖器官的干重占整株的比例与对照相比没有明显的差异。虽然玉米各器官重金属Cd含量随土壤Cd含量升高而增加,但营养器官和生殖器官富集重金属的比例却没有明显变化,玉米营养器官(根、茎、叶)富集的重金属占整株的78.9~88.5%,对重金属Cd有截留作用;而玉米生殖器官雄花和雌穗对重金属Cd的富集作用相对较弱,在雌穗内,苞叶、穗轴、穗柄等非食用部位对籽粒富集有分流作用,所富集的重金属占雌穗的50%以上;重金属进入籽粒之前要先经过营养器官的截留和生殖器官非食用部位的分流,最后到达籽粒中Cd的量占整株的6%以下。
     4.研究了授粉及籽粒生长对整株玉米CT38富集Cd的影响。对干凈盆栽土上生长的玉米CT38,在拔节期进行一次CdCl2溶液汚灌处理,汚灌后盆栽土中Cd的含量分别达5、50、100mg/kg水平,玉米完成自然生长周期后,测量重金属含量,对比授粉与不授粉植株对Cd的富集量和各器官的富集比例,结果发现:尽管不授粉玉米整株的生物量干重比授粉的低16.4~22.4%,但不授粉的玉米植株比授粉玉米植株富集的Cd多46.2%;整株玉米营养器官和生殖器官之间的分配并未随授粉控制而发生明显变化,可能与整株玉米的生理结构有关。
     5.对广州市白云区4个自然村蔬菜基地土壤中的5种重金属镍(Ni)、铜(Cu)、锌(Zn)、镉(Cd)、铅(Pb)的含量进行测定与分析,并运用单因子污染指数以及多因子污染指数法中的算术平均法和内梅罗污染指数法对土壤中重金属的污染状况进行评价。结果表明,所调查的四个行政村的蔬菜基地土壤主要是重金属Cd污染,Ni、Cu、Zn、Pb四种金属并未超标。从污染程度来看,横沥村>南浦村>方石村>大岭村。根据土壤重金属污染评价结果,我们认为选人和镇横沥村为修复示范工程地址最为合适。
     6.在实地修复工程中进一步检验玉米CT38对Cd的富集能力,并结合本课题组前期工作,对氨三乙酸(NTA)的添加量和添加时间进行探索,根据整株Cd富集量的大小确定最佳添加措施。另外,采用袋封花丝方式阻止玉米授粉,与正常授粉玉米对比修复前后土壤中的Cd含量,用地学统计软件(GS+软件)做图,评价整体修复效果。结果表明:在实地修复中,玉米CT38比土著玉米华珍(HZ)在整株上能富集更多的Cd。在无NTA添加的条件下,CT38比HZ多25.9%;而在授粉后添加25mmol NTA/株玉米,CT38富集的Cd比HZ多39.3%;授粉后添加25mmol NTA/株玉米,虽能显著增加玉米CT38对重金属的富集量,但各器官富集比例并未发生明显的变化。而授粉前添加NTA,能改变各器官中重金属的比例,且随着NTA添加量的增加茎中富集比例下降,叶中富集比例上升。通过实地修复工程,进一步验证了不授粉玉米植株的修复效果比授粉玉米植株高。不授粉的修复措施下,土壤中重金属Cd含量从修复前的0.4~0.5mg/kg降低至修复后的0.24mg/kg以下;而授粉的修复措施下,重金属Cd含量从修复前的0.4~0.5mg/kg降低至0.24~0.28mg/kg以内。同时,实地修复的玉米籽粒中重金属含量为0.03~0.062mg/kg,符合《食品安全国家标准食品中污染物限量》(GB2072-2012)规定的低于0.1mg/kg要求,证实了“边修复边生产”的方案是可行的。
In recent years, there have been many reports about contaminated rice in China whichtells us that Cd pollution has been endangering the people's daily life. Among all the methodsfor cleaning up Cd-contaminated soil, phytoremediation is particularly attractive because ofits special characteristics. Compared with other plants that could be used forphytoremediation purposes, maize is highly regarded by researchers around the world becauseof its excellent characteristics that include availability of many genotypes, ease of cultivation,fast growth, high biomass yield, versatile adaptation and low concentration of pollutant thatends up in seeds.
     The life cycle of maize includes two key phases: the vegetative phase and thereproductive phase; and two key periods: seedling time and pollination time. Therefore, westudied the mechanism of cadmium tolerance on maize seedlings and the effect of pollinationon the accumulation of Cd in maturing plants. Also, by covering the ear silk in order toprevent the pollination process, we studied the effect of pollination on the Cd accumulationand distribution in every organ of the plant. Finally, we tested our lab results by using thetechnology to clean up contaminated soil in a trail field. The primary results from the presentstudy are presented below:
     1. We have studied the mechanism by which maize seedlings tolerate Cd in soil duringthe seedling phase. Maize seeds, genotype CT38, were grown in pots containing variousamounts of Cd: CK(Blank) with a background level0.13mg Cd/kg soil and1.00,5.00,20.00,50.00,100.00and200.00mg/kg of soil. We determined the germination rate andinvestigated the growth conditions of maize seedlings during the transition period from theendosperm stage to living solely by photosynthesis. We analyzed the Cd content in theguttation. The germination success of the maize CT38seeds were not statistically affected bythe Cd, except at the highest level of the200mg Cd/kg soil (n=3, p=0.05). Besides theintercept in the root, the tolerance mechanism was also related to the maize's ability toexclude Cd by guttation. When the Cd content in soil was below5mg/kg, the maize couldendure the pollution without Cd appearing in guttation. When the Cd content in soil was from20mg/kg to100mg/kg, the maize could still endure the pollution while excluding Cd fromguttation,in which the highest Cd concentration was no more than10.4mg/L. However,when the Cd content in the soil was200mg/kg,the capability of the maize to exclude Cdweakened, Cd concentration in the guttation was only8.8mg/L, and the plant could notendure the high Cd pollution any more. The dry mass weight of shoots and roots of maize plants in200mg Cd/kg soil were only25.4%and48.3%, respectively, of that in the blankcontrol. What’s more,there were some dead plants among those grown in the200mg Cd/kgtreated soil. If the maize seedlings had not excluded Cd from guttation, the Transfer Factor(TF) would have become smaller with the increasing of Cd content in soil. Once the maizeplant exclude Cd from guttation, the TF was about equal to0.5and did not change withincreasing Cd content in the soil. Furthermore, there was a strong liner relationship betweenthe Cd content in the maize root and the Cd content in soil after the Cd appeared in the maizeseedling’s guttation. The Cd concentration in the root is11.2times higher than that in the soil.In short, the phenomenon of excluding Cd from guttation is an important feature of the maizeseedlings’ ability to endure and accumulate Cd in soil.
     2. We investigated the effect of different Cd concentrations in soil on the growth andphysiological features of maize plant. Maize seeds were planted in a series pots with differentlevels of Cd; i.e.,0,1,5,20,50,100mg Cd (as CdCl2/kg of soil). After pollination in thepustulation period, we measured the height and leaf area of the plants and determined thechlorophyll content. In addition, we recorded changes in the activity of three antioxidantenzymes (i.e., SOD, CAT and POD) and the content of malonaldehyde (MDA). We alsoexamined the condition of the plants’ pollen by the Scanning Electron Microscopy (SEM).The results showed that the height and leaf area of maize plant during the postulation perioddid not significantly increase from the blank to the5mg/kg level, but decreased significantlyfrom50to100mg/kg. The chlorophyll content of the maize during the postulation periodincreased at first, reaching a maximum in the5mg/kg treatment plant and then decreased.The Cd content in the soil did not affect the concentration of chlorophyll a/b in the plants. Asthe concentration of Cd in the soil increased, the activity of SOD initially increased and thendecreased with increasing Cd, but the activity of CAT and POD increased in all treatmentgroups. The content of MDA in the plants also increased in all treatments, especially at thelevels of20-100mg Cd/kg soil. Comparing this behavior with the response of the seedlings,we concluded that the maize plant after the elongation phase cannot tolerate the Cd stress aswell as the seedlings did. In the seedling phase, maize could endure100mg Cd/kg soilwithout any obvious ill effects, but after entering the pollination phase after elongation, themaize plants exhibited the serious shorten symptom. What’s more, the reproductive organs ofmaize plant have been affected, and the germ pore of the maize pollen changed with theincreasing of Cd content in the soil. The operculum of pollen germ hole became smaller anddeeper at50mg Cd/kg soil treatments and, more seriously, there was no pollen among plantssubjected to the100mg Cd/mg soil treatments.
     3. We have studied the accumulation and distribution of Cd in maize plants. For thematuring maize plant, we determined the dry mass and Cd concentration in every organ,including vegetative organs and reproductive organs. The vegetative organs are the root, stemand leaf, while the reproductive organs include the flower and ear that is divided into bract,ear stalk, ear cob, silk and seeds. From the original data on the dry mass weight andconcentration, we calculated the amount of Cd accumulated and the percentage in every organ.The results showed that low Cd treatments can increase the dry mass weight slightly, whilehigh Cd concentrations in the soil can cause the dry mass weight to decrease significantly.However, the percentage of dry mass weight found in the reproductive organs is almost thesame under all treatment conditions. Further, even though the Cd concentration in every organincreased with increasing amounts of Cd in soil, the distribution of Cd in vegetative andreproductive organs is nearly the same under all of the treatment levels. Specifically, thepercentage of Cd accumulated in vegetative organs was about78.9~88.5%, which shows thevegetative organs are the major sink for absorbed Cd. Only a much lower percentage Cdentered the flower and the ear. In the maize ear the non-edible organs, including bracket, coband ear stalk, absorbed more than50%of Cd that accumulated in the reproductive organs.We conclude that the presence of the non-edible organs can prevent the Cd from entering theseeds, which are the most important and worthy organs of the whole maize plant. In summary,after considering all of the sinks for Cd in the maize plant, we find that the percentage of Cdin the seeds is not more than6%of the Cd accumulated by the plant.
     4. We studied the effect of pollination on the Cd accumulation in maize. For the maizegrowing on the clean soil, we irrigated them in a solution of CdCl2once before pollination inorder to make the Cd content in pot soil5,50,100mg Cd/kg soil. When the maize plantsfinished their life period, we determined the Cd concentration in every organ and comparedthe results between the plants that were allowed to pollinate and those that were preventedfrom being pollinated. The comparison showed that even though the dry mass weight ofun-pollinated plants was16.4~22.4%lower than that of the pollinated plants, the Cdaccumulation in un-pollinated plant is more46.2%higher than in the pollinated plant.However, the distribution between vegetative organs and reproductive organs did not changeunder different pollination conditions. This result shows that the physiology of the maizeduring pollination plays an important role in the accumulation of Cd by the plants.
     5. We field-tested our lab results on vegetable fields in four villages in the BaiyunDistrict of Guangzhou City where the soil is heavily polluted by heavy metal. The soils wereanalyzed for five heavy metals; i.e., Ni, Cu, Zn, Cd and Pb. The heavy metal conditions were assessed using single pollution indices for each contaminant and two kinds of integratedpollution indices, including the arithmetic mean and the Nemerow pollution index. The resultsshowed that the Cd pollution is the most serious condition in the investigated soils and thatthe levels of the other metals (i.e., Ni, Cu, Zn and Pb) in the soil are safe. The Cdcontamination in the fields of the four villages decreased in the following order: Hengli>Nanpu>Fangshi>Daling. Based on these results, we chose the vegetable fields in Henglivillage as the location for phytoremediation.
     6. The phytoaccumulation ability of maize CT38was tested in the field trail. Building onour results obtained in our laboratory, we studied the optimal amount and time for addingnitrilotriaceticacid (NTA) that would results in the maximum Cd accumulation in the wholemaize plant. Furthermore, we prevented pollination by covering the silk with a plastic bag inorder to maximize the Cd accumulation that we saw. The Cd concentrations before and afterphytoremediation of the fields were used to generate maps (drawn by Geological Statisticssoftware (GS+, Version5.0)) to visualize the overall effect of phytoremediation. The resultsshowed that the maize CT38accumulated more Cd than did the native maize species, HZ.Without the addition of NTA, CT38accumulated25.9%more Cd than HZ did. Further, afterthe addition of25mmol of NTA, CT38accumulated39.3%more Cd than did HZ. AddingNTA after pollination, although the amount of Cd accumulated increased, the relativedistribution of Cd within the organs of the plant did not change. While adding NTA beforepollination cannot increase the Cd accumulation but can change the percentage of every organ.The percentage of Cd in the leaf increased and the percentage in the stem decreased when theNTA was added. By using phytoremediation engineering techinques in the field, we haveverified that the un-pollinated maize can accumulate more Cd than pollinated maize. Throughun-pollinated phytoremediation, the Cd content in field decreased from0.4~0.5mg Cd/kg soilto0.24mg/kg or less, while the decrease with pollinated phytoremediation was from0.4~0.5mg Cd/kg of soil to0.24~0.28mg/kg. Most importantly, the Cd concentration in seedsin the field phytoremediation study was in the range of0.03~0.062mg Cd/kg of seeds, whichwas below the Chinese government’s permitted concentration (0.1mg Cd/kg seeds) in coarsecereals (GB2072-2012). Therefore, this study shows that it is possible to conduct maizephytoremediation of Cd-contaminated soil while, at the same time, harvesting a crop, forsubsequent consumption by animals or humans.
引文
[1]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996:27-28.
    [2]殷培培.植物修复重金属污染土壤的影响因素及应用前景分析[J].安徽农学通报(上半月刊),2009,15(13):32-33.
    [3]应兴华,金连登,徐霞,等.我国稻米质量安全现状及发展对策研究[J].农产品质量与安全,2010,(06):40-43.
    [4]章家恩.我国水稻安全生产存在的问题及对策探讨[J].北方水稻,2007,(4):1-7.
    [5] Barbee J Y, Prince T S. Acute respiratory distress syndrome in a welder exposed tometal fumes [J]. Southern Medical Journal,1999,92(5):510-512.
    [6] Jarup L. Hazards of heavy metal contamination [J]. British Medical Bulletin,2003,68(1):167-182.
    [7] Jarup L, Hellstrom L, Alfven T, et al. Low level exposure to cadmium and early kidneydamage: the OSCAR study [J]. Occupational and Environmental Medicine,2000,57(10):668-672.
    [8] Jarup L, Persson B, Elinder C G. Decreased glomerular filtration rate in cadmiumexposed solderers [J]. Occupational and Environmental Medicine,1995,52(12):818-822.
    [9] Hellstrom L, Elinder C G, Dahlberg B, et al. Cadmium exposure and end-stage renaldisease [J]. American Journal of Kidney Diseases,2001,38(5):1001-1008.
    [10] Alfven T, Elinder C G, Carlsson M D, et al. Low-level cadmium exposure andosteoporosis [J]. Journal of Bone and Mineral Research,2000,15(8):1579-1586.
    [11] Staessen J A, Roels H A, Emelianov D, et al. Environmental exposure to cadmium,forearm bone density, and risk of fractures: prospective population study [J]. Lancet,1999,353(9159):1140-1144.
    [12] Jarup L, Berglund M, Elinder C G, et al. Health effects of cadmium exposure--a reviewof the literature and a risk estimate [J]. Scandinavian Journal of Work, Environment&Health,1998,24(Suppl1):1-51.
    [13] Nishijo M, Nakagawa H, Morikawa Y. Mortality of inhabitants in an area polluted bycadmium:15year follow up [J]. Occupational and Environmental Medicine,1995,52(3):181-184.
    [14]徐稳定,石林,耿曼.燃煤电厂烟气中汞控制技术研究概况[J].电站系统工程,2006,22(06):1-4.
    [15] Weiss, B, Clarkson, T W, Simon, W. Silent latency periods in methylmercury poisoningand in neurodegenerative disease [J]. Environmental Health Perspectives,2002,110(Suppl5):851-854.
    [16]小精灵儿童网站.欧洲食品局建议减少无机砷摄入[EB/OL].http://new.060s.com/article/2010/01/27/183049.htm.
    [17]常青山,马祥庆,王志勇.南方重金属矿区重金属的污染特征及评价[J].长江流域资源与环境,2007,16(03):395-399.
    [18]张素娟,肖玲,关帅朋,等.蓝田冶炼厂周边农田土壤重金属复合污染分析评价[J].干旱地区农业研究,2009,27(05):265-270.
    [19]包丹丹,李恋卿,潘根兴,等.苏南某冶炼厂周边农田土壤重金属分布及风险评价[J].农业环境科学学报,2011,30(08):1546-1552.
    [20]李鹏,李晔,曾璞,等.某冶炼厂周边农田土壤重金属污染状况分析与评价[J].安徽农业科学,2011,39(02):863-865.
    [21]孙滔.科学新闻:目击中国重金属污染之痛.2009.
    [22]刘杨,张薇,吉普辉,等.沈阳张士灌区六种蔬菜的镉污染[J].生态学杂志,2011,30(06):1229-1233.
    [23]高定,郑国砥,陈同斌,等.城市污泥土地利用的重金属污染风险[J].中国给水排水,2012,28(15):102-105.
    [24]姚金玲,王海燕,于云江,等.城市污水处理厂污泥重金属污染状况及特征[J].环境科学研究,2010,23(06):696-702.
    [25]曾经,付晶.长株潭地区公路两侧土壤重金属污染特性[J].长沙理工大学学报(自然科学版),2011,8(02):81-85.
    [26]秦莹,娄翼来,姜勇,等.沈哈高速公路两侧土壤重金属污染特征及评价[J].农业环境科学学报,2009,28(04):663-667.
    [27]程旺大,姚海根,吴伟,等.土壤-水稻体系中的重金属污染及其控制[J].中国农业科技导报,2005,7(04):51-54.
    [28] Taylor, M D. Accumulation of cadmium derived from fertilisers in New Zealand soils[J]. Science of the Total Environment,1997,208(1-2):123-126.
    [29] Grant, C A, Bailey, L D, Harapiak, J T, et al. Effect of phosphate source, rate andcadmium content and use of Penicillium bilaii on phosphorus, zinc and cadmiumconcentration in durum wheat grain [J]. Journal of the Science of Food and Agriculture,2002,82(3):301-308.
    [30] Grant, C A, Sheppard, S C. Fertilizer impacts on cadmium availability in agriculturalsoils and crops [J]. Human and Ecological Risk Assessment,2008,14(2):210-228.
    [31]周翠,杨祥田,何贤彪.电子垃圾拆解区周边农田土壤重金属污染评价[J].浙江农业学报,2012,24(05):886-890.
    [32]张朝阳,彭平安,刘承帅,等.华南电子垃圾回收区农田土壤重金属污染及其化学形态分布[J].生态环境学报,2012,21(10):1742-1748.
    [33]林文杰,吴荣华,郑泽纯,等.贵屿电子垃圾处理对河流底泥及土壤重金属污染[J].生态环境学报,2011,20(01):160-163.
    [34] Tessier A, Campbell, P G C, Blsson M. Sequential extraction procedure for thespeciation of particle trace metals [J]. Analytical Chemistry,1979,51(7):844-851.
    [35]刘传德,王强,于波,等.农田土壤重金属污染的特点和治理对策[J].农技服务,2008,25(07):118-119.
    [36]谢黎虹,许梓荣.重金属镉对动物及人类的毒性研究进展[J].浙江农业学报,2003,15(06):52-57.
    [37]周建民.重金属污染土壤的螯合诱导植物提取及其环境风险研究[D].华南理工大学,2006.
    [38]丁园.重金属污染土壤的治理方法[J].环境与开发,2000,15(02):25-28.
    [39] Salt D E, Blaylock M, Kumar N P, et al. Phytoremediation: a novel strategy for theremoval of toxic metals from the environment using plants [J]. Nature Biotechnology,1995,13(5):468-474.
    [40]龙新宪,杨肖娥,倪吾钟.重金属污染土壤修复技术研究的现状与展望[J].应用生态学报,2002,13(6):757-762.
    [41] Battke, F, Ernst, D, Fleischmann, F, et al. Phytoreduction and volatilization of mercuryby ascorbate in Arabidopsis thaliana, European beech and Norway spruce [J]. AppliedGeochemistry,2008,23(3):494-502.
    [42] Salt, D E, Smith, R D, Raskin, I. Phytoremediation [J]. Annual Review of PlantPhysiology and Plant Molecular Biology,1998,49:643-668.
    [43]骆永明.强化植物修复的螯合诱导技术及其环境风险[J].土壤,2000,32(02):57-61.
    [44] Watanabe M E. Phytoremediation on the brink of commercialization [J]. EnvironmentalScience&Technology,1997,31(4): A182-A186.
    [45] Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by analysis ofherbarium specimens of indicator plants [J]. Journal of Geochemical Exploration,1977,749-57.
    [46]吴大付,张莉,任秀娟,等.超富集植物研究新进展[J].河南科技学院学报(自然科学版),2011,39(03):55-59.
    [47] Cunningham S D, Berti W R. Remediation of Contaminated Soils With Green Plants:An Overview [J]. In Vitro Cellular&Developmental Biology-plant,1993,29(4):207-212.
    [48]胡嫣然,周守标,吴龙华,等.朝天委陵菜的重金属耐性与吸收性研究[J].土壤,2011,43(03):476-480.
    [49]魏树和,周启星,王新,等.一种新发现的镉超积累植物龙葵(Solanum nigrum L)[J].科学通报,2004,49(24):2568-2573.
    [50]聂发辉.关于超富集植物的新理解[J].生态环境,2005,14(01):136-138.
    [51]陈英旭,陈新才,于明革.土壤重金属的植物污染化学研究进展[J].环境污染与防治,2009,31(12):42-47.
    [52]胡蝶,陈文清.土壤重金属污染现状及植物修复研究进展[J].安徽农业科学,2011,39(05):2706-2707.
    [53]党志,卢桂宁,杨琛,等.金属硫化物矿区环境污染的源头控制与修复技术[J].华南理工大学学报(自然科学版),2012,40(10):83-89.
    [54]陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(03):207-210.
    [55]韦朝阳,陈同斌,黄泽春,等.大叶井口边草一种新发现的富集砷的植物[J].生态学报,2002,22(05):777-778.
    [56]杨肖娥,龙新宪,倪吾钟,等.东南景天(Sedum alfredii H)一种新的锌超积累植物[J].科学通报,2002,47(13):1003-1006.
    [57]薛生国,陈英旭,林琦,等.中国首次发现的锰超积累植物商陆[J].生态学报,2003,23(05):935-937.
    [58]何启贤.镉超富集植物筛选研究进展[J].环境保护与循环经济,2013,(01):46-49.
    [59]熊愈辉,杨肖娥,叶正钱,等.东南景天对镉、铅的生长反应与积累特性比较[J].西北农林科技大学学报(自然科学版),2004,32(06):101-106.
    [60]刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)一种新的镉超富集植物[J].科学通报,2003,48(19):2046-2049.
    [61]魏树和,杨传杰,周启星.三叶鬼针草等7种常见菊科杂草植物对重金属的超富集特征[J].环境科学,2008,29(10):2912-2918.
    [62]魏树和,周启星,任丽萍.球果蔊菜对重金属的超富集特征[J].自然科学进展,2008,18(04):406-412.
    [63]王激清,茹淑华,苏德纯.用于修复土壤超积累镉的油菜品种筛选[J].中国农业大学学报,2003,8(01):67-70.
    [64]王松良,郑金贵.芸苔属蔬菜的Cd富集特性及其修复土壤Cd污染的潜力[J].福建农业大学学报,2004,33(01):94-99.
    [65]汤叶涛,仇荣亮,曾晓雯,等.一种新的多金属超富集植物圆锥南芥(Arabispaniculata L.)[J].中山大学学报(自然科学版),2005,44(04):135-136.
    [66]聂发辉.镉超富集植物商陆及其富集效应[J].生态环境,2006,15(02):303-306.
    [67]李硕,刘云国,李永丽,等.水葱修复土壤镉污染潜力的研究[J].环境污染与防治,2006,28(02):84-86.
    [68]中国科学院南京土壤研究所.锌镉复合污染土壤的植物修复方法[R].
    [69]祝鹏飞,宁平,曾向东,等.有色冶炼污染区土壤污染及重金属超积累植物的研究[J].安全与环境工程,2006,13(01):48-51.
    [70]李玉双,孙丽娜,孙铁珩,等.超富集植物叶用红菾菜(Beta vulgaris var.cicla L.)及其对Cd的富集特征[J].农业环境科学学报,2007,26(04):1386-1389.
    [71]胡鹏杰,周小勇,仇荣亮,等. Zn超富集植物长柔毛委陵菜对Cd的耐性与富集特征[J].农业环境科学学报,2007,26(06):2221-2224.
    [72] Tang Y T, Qiu R L, Zeng X W, et al. Zn and Cd hyperaccumulating characteristics ofPicris divaricata Vant.[J]. International Journal of Environment and Pollution,2009,38(1-2):26-38.
    [73]李金天.杨桃(Averrhoa carambola)对Cd富集特征与Cd污染土壤植物修复[D].广州:中山大学,2005.
    [74]杰清.陈同斌的科学研究经历.2013.
    [75]韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状[J].地球科学进展,2002,17(6):833-839.
    [76]黑亮,吴启堂,龙新宪,等.东南景天和玉米套种对Zn污染污泥的处理效应[J].环境科学,2007,28(04):4852-4858.
    [77]董文茂.修复毒土珠三角土壤治理或迎新契机[J].环境,2005,(10):38-41.
    [78] Liu Y, Zhuang P, Li Z, et al. Cadmium accumulation in maize monoculture andintercropping with six legume species [J]. Acta Agriculturae Scandinavica Section B-Soiland Plant Science,2013,63(4):376-382.
    [79] Fassler E, Robinson B H, Gupta S K, et al. Uptake and allocation of plant nutrients andCd in maize, sunflower and tobacco growing on contaminated soil and the effect of soilconditioners under field conditions [J]. Nutrient Cycling in Agroecosystems,2010,87(3):339-352.
    [80] Vamerali T, Bandiera M, Mosca G. Field crops for phytoremediation ofmetal-contaminated land. A review [J]. Environmental Chemistry Letters,2010,8(1):1-17.
    [81] Tian Y, Zhang H, Guo W, et al. Assessment of the phytoremediation potential ofbioenergy crop maize (zea mays) in soil contaminated by cadmium: Morphology,photosynthesis and accumulation [J]. Fresenius Environmental Bulletin,2012,21(11C):3575-3581.
    [82] Luyi Z, Huayong Z, Wei G, et al. Photosynthetic responses of energy plant maize undercadmium contamination stress [J]. Advanced Materials Research,2011,356-360:283-286.
    [83] Thewys T, Witters N, Meers E, et al. Economic Viability of Phytoremediation of aCadmium Contaminated Agricultural Area Using Energy Maize. Part II: Economics ofAnaerobic Digestion of Metal Contaminated Maize in Belgium [J]. International Journalof Phytoremediation,2010,12(7):663-679.
    [84] Thewys T, Witters N, Van Slycken S, et al. Economic Viability of Phytoremediation ofa Cadmium Contaminated Agricultural Area Using Energy Maize. Part I: Effect on theFarmer's Income [J]. International Journal of Phytoremediation,2010,12(7):650-662.
    [85]陈英旭等.土壤重金属的植物污染化学.北京:科学出版社,2008.
    [86]李文学,陈同斌.超富集植物吸收富集重金属的生理和分子生物学机制[J].应用生态学报,2003,14(04):627-631.
    [87] BarcelóJ, Poschenrieder C. Phytoremediation: principles and perspectives [J].Contributions to Science,2003,2(3):333-344.
    [88] Wuana R A, Okieimen F E. Phytoremediation Potential of Maize (Zea maysL.). AReview [J]. African Journal of General Agriculture,2010,6(4):275-287.
    [89]刘海海.玉米的特征及分布[EB/OL].http://baike.baidu.com/link?url=gWEc6Q0iJBKgxSE4g4nAnoqlFDGDTYxGyhAgneizXO5HKUU8wjLS8_iCqeT4rhgDr4aJiiZAEcpo-PWyIGVn_v3jsN1oYRVSC7NuW-o_Dg1NwSvEn42d9hwTBuRakQGz#1.
    [90]联合国粮农组织数据库.2012中国玉米统计[EB/OL].http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E.
    [91]胡成华.玉米籽粒的排列与进化[J].植物杂志,1989,(04):38-39.
    [92]王举.玉米生长对水分的要求[EB/OL].http://www.dongping.gov.cn/contents/687/14426.html.
    [93]百度文库.玉米生长发育过程对环境条件的要求[EB/OL].http://wenku.baidu.com/link?url=Y6Qt8uLwLtrYVKNo1A71VNfmzcGWCx0vH0TzwvvWIxCwSfDTey_gwo9QrLh3AN5OpivHJWY5wjsYuDWUrUhkTIfO-OvWweDVwqOXN0JHDLm.
    [94]佟亚屏.中国玉米种质资源的整理与成就[J].中国种业,2001,(3):7-8.
    [95]董海合,李凤华,杨兆顺,等.玉米种质资源与种质创新研究的现状[J].天津农业科学,2005,11(2):25-27.
    [96]叶雨盛,孙甲,郝楠,等.我国玉米种质资源创新的现状[J].种子,2008,27(10):76-78.
    [97] Nascimento D, Araujo C W, Baoshan X. Phytoextraction: A review on enhanced metalavailability and plant accumulation [J]. Scientia Agricola,2006,63(3):299-311.
    [98] Kimenyu P N, Oyaro N, Chacha J S, et al. The Potential of Commelina bengalensis,Amaranthus hybridus, Zea mays for Phytoremediation of Heavy Metals fromContaminated Soils [J]. Sains Malaysiana,2009,38(1):61-68.
    [99] Korentejar L. Review of the agricultural use of sewage sludge:Benefits and potentialhazards [J]. Water SA,1991,17(3):189-196.
    [100] Máthé-Gáspár G, Anton A. Phytoremediation study: Factors influencing heavy metaluptake of plants [J]. Acta Biologica Szegediensis,2005,49(1-2):69-70.
    [101] Wuana R A, Okieimen F E, Imborvungu J A. Removal of heavy metals from acontaminated soil using organic chelating acids [J]. International Journal ofEnvironmental Science and Technology,2010,7(3):485-496.
    [102] Pereira B F F, de Abreu C A, Romeiro S et al. Pb-phytoextraction by maize in aPb-EDTA treated oxisol [J]. Scientia Agricola,2007,64(1):52-60.
    [103] Zhang H, Dang Z, Zheng L C, et al. Remediation of soil co-contaminated with pyreneand cadmium by growing maize (Zea mays L.)[J]. International Journal ofEnvironmental Science and Technology,2009,6(2):249-258.
    [104] Schmidt U. Enhancing phytoextraction: The effect of chemical soil manipulation onmobility, plant accumulation, and leaching of heavy metals [J]. Journal of EnvironmentalQuality,2003,32(6):1939-1954.
    [105] Scragg, A. Environmental Biotechnology[M]. Oxford: Oxford University Press,2006.
    [106] Pe iulyt D, Repe kien J, Levinskait L, et al. Growth and metal accumualationability of plants in soil polluted with Cu, Zn and Pb [J]. Ekologija,2006,148-52.
    [107] Adiloglu A I, Adiloglu S, Gonulsuz E, et al. Effect of Zinc Application on CadmiumUptake of Maize Grown in Zinc Deficient Soil [J]. Pakistan Journal of BiologicalSciences,2005,810-12.
    [108]李晔,李玉双,孙丽娜,等.重金属Cd胁迫对不同玉米品种生理生化指标的影响[J].安徽农业科学,2011,39(05):2627-2628
    [109] Klaus A A, Lysenko E A, Kholodova V P. Maize plant growth and accumulation ofphotosynthetic pigments at short-and long-term exposure to cadmium [J]. RussianJournal of Plant Physiology,2013,60(2):250-259.
    [110] Pinto A P, Simoes I, Mota A M. Cadmium impact on root exudates of sorghum andmaize plants: A speciation study [J]. Journal of Plant Nutrition,2008,31(10):1746-1755.
    [111] Nocito F F, Espen L, Crema B, et al. Cadmium induces acidosis in maize root cells [J].New Phytologist,2008,179(3):700-711.
    [112] Huang H L, Zhang S Z, Chen B D, et al. Uptake of atrazine and cadmium from soil bymaize (Zea mays L.) in association with the arbuscular mycorrhizal fungus Glomusetunicatum [J]. Journal of Agricultural and Food Chemistry,2006,54(25):9377-9382.
    [113] Bi X Y, Feng X B, Yang Y G, et al. Allocation and source attribution of lead andcadmium in maize (Zea mays L.) impacted by smelting emissions [J]. EnvironmentalPollution,2009,157(3):834-839.
    [114] Liu D H, Wang M, Zou J H, et al. Uptake and accumulation of cadmium and somenutrient ions by roots and shoots of maize (Zea mays L.)[J]. Pakistan Journal of Botany,2006,38(3):701-709.
    [115] Anwer S, Ashraf M Y, Hussain M, et al. Citric acid mediated phytoextraction ofcadmium by maize (zea mays l.)[J]. Pakistan Journal of Botany,2012,44(6):1831-1836.
    [116] Eva G, Levai L, Szilvia V, et al. Effects of Biofertilizers on Maize and SunflowerSeedlings under Cadmium Stress [J]. Communications in Soil Science and PlantAnalysis,2012,43(1-2SI):272-279.
    [117] Kurtyka R, Ma kowski E, Burdach Z, et al. Interactive effects of temperature and heavymetals (Cd, Pb) on the elongation growth in maize coleoptiles [J]. Comptes RendusBiologies,2012,335(4):292-299.
    [118] Mohsenzadeh S, Shahrtash M, Mohabatkar H. Interactive effects of salicylic acid andsilicon on some physiological responses of cadmium-stressed maize seedlings [J]. IranianJournal of Science and Technology Transaction A-Science,2011,35(A1):57-60.
    [119] Lombi E, Zhao F J, Wieshammer G, et al. In situ fixation of metals in soils usingbauxite residue: biological effects [J]. Environmental Pollution,2002,118(3):445-452.
    [120] Maxted A P, Black C R, West H M, et al. Phytoextraction of cadmium and zinc fromarable soils amended with sewage sludge using Thlaspi caerulescens: Development of apredictive model [J]. Environmental Pollution,2007,150(3):363-372.
    [121] Zhao Z Q, Xi M Z, Jiang G Y, et al. Effects of IDSA, EDDS and EDTA on heavymetals accumulation in hydroponically grown maize (Zea mays, L.)[J]. Journal ofHazardous Materials,2010,181(1-3):455-459.
    [122]周建民,党志,陈能场,等.3-吲哚乙酸协同螯合剂强化植物提取重金属的研究[J].环境科学,2007,28(09):2085-2088.
    [123] Wojcik, M, Tukendorf, A. The effect of EDTA on maize seedlings response toCd-induced stress [J]. Zeitschrift Fur Naturforschung C-A Journal of Biosciences,1999,54(9-10):754-758.
    [124]谢志宜,陈能场.缓释微胶囊EDTA强化玉米提取土壤中铅铜的效应研究[J].生态环境学报,2012,21(06):1125-1130.
    [125] Hseu, Z Y, Jien, S H, Wang, S H, et al. Using EDDS and NTA for enhancedphytoextraction of Cd by water spinach [J]. Journal of Environmental Management,2013,11:758-64.
    [126]白薇扬,赵清华,谭怀琴.非生物螯合剂EDTA与生物螯合剂EDDS联合施用提高植物提取土壤重金属效应的研究[J].重庆理工大学学报(自然科学),2013,27(08):47-53.
    [127] Custos J M, Moyne C, Treillon T, et al. Contribution of Cd-EDTA complexes tocadmium uptake by maize: a modelling approach [J]. Plant and Soil,2014,374(1-2):497-512.
    [128] Fassler E, Robinson B H, Gupta S K, et al. Uptake and allocation of plant nutrients andCd in maize, sunflower and tobacco growing on contaminated soil and the effect of soilconditioners under field conditions [J]. Nutrient Cycling in Agroecosystems,2010,87(3):339-352.
    [129]李静,依艳丽,李亮亮,等.几种重金属(Cd、Pb、Cu、Zn)在玉米植株不同器官中的分布特征[J].中国农学通报,2006,22(4):244-247.
    [130] Zhang L, Zhang, L, Song, F B. Cadmium uptake and distribution by different maizegenotypes in maturing stage [J]. Communications in Soil Science and Plant Analysis,2008,39(9-10):1517-1531.
    [131]山东省农业科学院玉米研究所.玉米器官之间的相互关系及其调节.北京:农业出版社,1987:143.
    [132]伍端平.玉米育苗移栽好处多[J].农村新技术,2008,(07):7.
    [133] Wang C X, Tao L, Ren J. The response of maize seedlings to cadmium stress underhydroponic conditions [J]. Russian Journal of Plant Physiology,2013,60(2):295-299.
    [134]惠俊爱,党志,叶庆生.镉胁迫对玉米光合特性的影响[J].农业环境科学学报,2010,29(02):205-210.
    [135]刘萍,李明军.植物生理学实验技术[M].北京:科学出版社,2007.
    [136]严竞平,魏永超.夏玉米吐水规律的研究[J].百泉农专学报,1985,13(01):58-65.
    [137] Guo B, Peng Z, Han F, et al. Study of low-molecular weight organic acids in maizeroots under the stress of cadmium using capillary zone electrophoresis [J]. Journal ofSeparation Science,2007,30(16):2742-2747.
    [138] Chaneva, G, Parvanova, P, Tzvetkova, N, et al. Photosynthetic Response of MaizePlants Against Cadmium and Paraquat Impact [J]. Water Air and Soil Pollution,2010,208(1-4):287-293.
    [139] Wang H, Zhao S C, Liu R L, et al. Changes of photosynthetic activities of maize (Zeamays L.) seedlings in response to cadmium stress [J]. Photosynthetica,2009,47(2):277-283.
    [140]徐向华,施积炎,陈新才,等.锰在商陆叶片的细胞分布及化学形态分析[J].农业环境科学学报,2008,27(02):515-520.
    [141]山东省农业科学院玉米研究所.玉米营养器官的生长生理.北京:农业出版社,1987:14-16.
    [142] Kupper H, Zhao F J, McGrath S P. Cellular compartmentation of zinc in leaves of thehyperaccumulator Thlaspi caerulescens [J]. Plant Physiology,1999,119(1):305-311.
    [143]苏春田,唐健生,潘晓东,等.重金属元素在玉米植株中分布研究[J].中国农学通报,2011,27(8):323-327.
    [144]张晓琳,鄂勇,胡振帮,等.污泥施田后土壤和玉米植株中重金属分布特征[J].土壤通报,2010,41(2):479-484.
    [145]陈燕,刘晚苟,郑小林,等.玉米植株对重金属的富集与分布[J].玉米科学,2006,14(6):93-95.
    [146]刘艳红,张德刚,刘杰,等.锡矿区周边玉米植株中重金属分布特征与污染状况[J].安徽农业科学,2010,38(24):13312-13314.
    [147]郭凤台,张航,杨庆娥,等.污水灌溉对小麦和玉米的重金属积累和分布的影响[J].节水灌溉,2008,(2):14-16.
    [148]梁海玲,李文宝,林明月,等.水肥一体化技术对鲜食甜糯玉米生长特性与产量的影响[J].广西农业科学,2010,41(12):1314-1316.
    [149]李丽君,郑普山,谢苏婧.镉对玉米种子萌发和生长的影响[J].山西大学学报(自然科学版),2001,24(01):93-94.
    [150]梁烜赫,曹铁华.重金属对玉米生长发育及产量的影响[J].玉米科学,2010,18(04):86-88.
    [151]陈志良,莫大伦,仇荣亮.镉污染对生物有机体的危害及防治对策[J].环境保护科学,2001,27(04):37-39.
    [152]郑世英,王丽燕,商学芳,等. Cd~(2+)胁迫对玉米抗氧化酶活性及丙二醛含量的影响[J].江苏农业科学,2007,(01):36-38.
    [153]袁园,张怡明,赵江,等.喷施生长调节剂对夏玉米生长发育的影响[J].玉米科学,2011,19(03):110-112.
    [154]王艳芳,崔震海,阮燕晔,等.不同类型春玉米灌浆期间籽粒中内源激素IAA、GA、ZR、ABA含量的变化[J].植物生理学通讯,2006,42(2):225-228.
    [155]王振华,于翠芳,郝连友,等.春玉米雌穗与籽粒发育过程中内源激素变化动态初探[J].莱阳农学院学报,1996,13(4):262-267.
    [156]刁家连,于翠芳,毕建华,等.夏玉米籽粒发育过程中内源激素变化的系统研究[J].莱阳农学院学报,1996,13(4):251-256.
    [157]张凤路,王志敏,赵明,等.玉米籽粒败育过程的激素变化[J].中国农业大学学报,1999,4(3):1-4.
    [158]聂胜委,黄绍敏,张水清,等.重金属胁迫后效对玉米产量的影响[J].华北农学报,2013,28(04):123-129.
    [159] Ning P, Liao C S, Li S, et al. Maize cob plus husks mimics the grain sink to stimulatenutrient uptake by roots [J]. Field Crops Research,2012,130:38-45.
    [160]魏秀国,何江华,陈俊坚,等.广州市蔬菜地土壤重金属污染状况调查及评价[J].土壤与环境,2002,11(03):252-254.
    [161]柴世伟,温琰茂,张云霓,等.广州市郊区农业土壤重金属含量特征[J].中国环境科学,2003,23(06):33-37.
    [162]柴世伟,温琰茂,张亚雷,等.广州市郊区农业土壤重金属污染评价分析[J].环境科学研究,2006,19(04):138-142.
    [163]广东省土壤肥料总站,广东省土壤肥料研究所,广州市农业环境与植物保护总站,等.广州市白云区耕地地力调查与质量评价成果报告[R].2006.
    [164]土壤环境监测技术规范(HJ/T66-2004)[S].北京:中国环境科学出版社,2005.
    [165] GB15618-1995,土壤环境质量标准[S].1995.
    [166]许炼烽,刘腾辉.广东土壤环境背景值和临界含量的地带性分异[J].华南农业大学学报,1996,17(04):61-65.
    [167]唐结明,姚爱军,梁业恒.广州市万亩果园土壤重金属污染调查与评价[J].亚热带资源与环境学报,2012,7(02):27-35.
    [168] GB2762-2012,食品安全国家标准食品中污染物限量[S].2012.
    [169]周振民.污水灌溉区土壤重金属污染对玉米生长影响研究[J].中国农村水利水电,2010,(4):62-65.
    [170]金星龙,翟慧泉,岳俊杰,等.津郊污灌区土壤及蔬菜重金属污染调查与评价[J].安徽农业科学,2010,38(7):3701-3703.
    [171]潘亭亭,张双全,张秋荣,等.城市污泥与玉米秸秆共热解重金属的形态变化[J].中国矿业大学学报,2011,40(3):487-491.
    [172]许田芬,谢方文,丘锦荣,等.污泥植物处理后对玉米生长及土壤重金属含量的影响[J].中国环境科学,2012,32(9):1640-1646.
    [173]康少杰,刘善江,邹国元,等.污泥肥和生活垃圾肥对小麦-玉米重金属累积及产量的影响[J].土壤通报,2011,42(3):752-757.
    [174]李梦红.污泥农用后土壤中重金属对小麦和玉米品质的影响及评价[J].作物杂志,2010,(5):26-29.
    [175]杨新华,孙九胜,王新勇,等.生活垃圾堆肥对土壤重金属含量及玉米产量、品质的影响[J].新疆农业科学,2012,49(11):2096-2101
    [176]李旭华,王心义,杨建,等.焦作矿区煤矸石山周围土壤和玉米作物重金属污染研究[J].环境保护科学,2009,35(2):66-69.
    [177]姚佳,王莉丽,刘连利,等. ICP-OES法测定锦州某铁合金厂附近水、土壤、玉米中重金属含量[J].渤海大学学报(自然科学版),2007,28(3):230-234.
    [178]楼玉兰,章永松,林咸永.氮肥形态对污泥农用土壤中重金属活性及玉米对其吸收的影响[J].浙江大学学报(农业与生命科学版),2005,31(4):392-398.
    [179] Vaculik M, Landberg T, Greger M, et al. Silicon modifies root anatomy, and uptake andsubcellular distribution of cadmium in young maize plants [J]. Annals of Botany,2012,110(2SI):433-443.
    [180] Da Cunha K, Do Nascimento C, Da Silva A J. Silicon alleviates the toxicity ofcadmium and zinc for maize (Zea mays L.) grown on a contaminated soil [J]. Journal ofPlant Nutrition and Soil Science,2008,171(6):849-853.
    [181]王红新,郭绍义,许信旺,等.接种丛枝菌根对复垦矿区玉米中重金属含量的影响[J].农业环境科学学报,2007,26(4):1333-1337.
    [182]廖继佩,林先贵,曹志洪,等.丛枝菌根真菌与重金属的相互作用对玉米根际微生物数量和磷酸酶活性的影响[J].应用与环境生物学报,2002,8(4):408-413.
    [183] Meers E, Van Slycken S, Adriaensen K, et al. The use of bio-energy crops (Zea mays)for phytoattenuation of heavy metals on moderately contaminated soils: A fieldexperiment [J]. Chemosphere,2010,78(1):35-41.
    [184] Thewys, T, Witters, N, Van Slycken, S, et al. Economic Viability of Phytoremediationof a Cadmium Contaminated Agricultural Area Using Energy Maize. Part I: Effect on theFarmer's Income [J]. International Journal of Phytoremediation,2010,12(7):650-662.
    [185] Thewys T, Witters N, Meers E, et al. Economic Viability of Phytoremediation of aCadmium Contaminated Agricultural Area Using Energy Maize. Part II: Economics ofAnaerobic Digestion of Metal Contaminated Maize in Belgium [J]. International Journalof Phytoremediation,2010,12(7):663-679.
    [186] Mench M, Lepp N, Bert V, et al. Successes and limitations of phytotechnologies at fieldscale: outcomes, assessment and outlook from COST Action859[J]. Journal of Soils andSediments,2010,10(6):1039-1070.
    [187]田玺泽,张丹蓉,叶斌,等.南湖荡圩区农田表层土壤营养物质空间分布[J].江苏农业科学,2012,40(06):306-309.
    [188] Lan J C, Zhang S R, Lin H C, et al. Efficiency of biodegradable EDDS, NTA andAPAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L.grown in Cd-contaminated soils [J]. Chemosphere,2013,91(9):1362-1367.
    [189] Hseu Z Y, Jien S H, Wang S H, et al. Using EDDS and NTA for enhancedphytoextraction of Cd by water spinach [J]. Journal of Environmental Management,2013,11:758-64.
    [190]山东省农业科学院玉米研究所.玉米生理[M].北京:农业出版社,1987.
    [191] Durbak A, Yao H, McSteen P. Hormone signaling in plant development [J]. CurrentOpinion in Plant Biology,2012,15(1):92-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700