用户名: 密码: 验证码:
硬粒小麦—簇毛麦双倍体花粉辐射高效诱导属间染色体易位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
簇毛麦是小麦的一个野生近缘种,抗白粉病、锈病、全蚀病、眼斑病及梭条花叶病毒病等多种病害,还兼有抗寒耐旱、分蘖力强、密穗多花、籽粒蛋白质含量高等特性,是小麦遗传改良的优良基因源。抗白粉病基因Pm21和抗梭条花叶病基因Wss1已分别以整臂易位6VS·6AL和4VS·4DL的形式被成功转移到普通小麦背景中。为了定位、转移和利用簇毛麦其它有益基因,本研究以硬粒小麦-簇毛麦双倍体为基础材料,用花粉辐射诱导小麦-簇毛麦属间染色体易位,研究辐射诱导效应和易位染色体的传递行为,并用筛选的EST-STS分子标记对普通小麦背景中的簇毛麦染色体或染色体片段的身份进行鉴定。
     1小麦-簇毛麦染色体易位的高效诱导与传递
     为了诱导更多小麦-簇毛麦属间染色体易位,采用60Co-γ射线800 rad、1200 rad、1600 rad三种剂量照射硬粒小麦-簇毛麦双倍体即将成熟的花粉,分别在照射后第1、2、3天从辐射处理过的麦穗上取新鲜花粉给已去雄的普通小麦中国春授粉。用基因组原位杂交方法,在M1代检测小麦-簇毛麦属间染色体易位,分别在BC1、BC2、BC3代考查易位染色体的传递行为。结果表明:这3种辐射剂量都可以高效诱导小麦-簇毛麦染色体易位,并且M1代种子发芽正常。在800~1600rad剂量范围内,随着辐射剂量的提高,易位诱导频率和染色体臂内断裂融合频率增加。辐射处理后第1天采集的花粉,授粉后产生的M1植株易位诱导频率较高。M1代检测到的小麦-簇毛麦易位染色体有70%以上可通过雌配子传递给BC1代,在BC1代重现的易位染色体在随后的世代中绝大多数都能检测到。各种类型易位染色体在不同遗传背景中的传递率具有相对稳定性,通过雌、雄配子的传递率均为整臂易位染色体>外源小片段易位染色体>外源大片段易位染色体。易位染色体通过雌配子的传递率通常高于通过雄配子的传递率。
     2基于EST-PCR的簇毛麦染色体特异分子标记筛选及应用
     通过用普通小麦中国春对易位诱导群体连续回交,已得到普通小麦背景中只包含单条簇毛麦染色体或单条小麦-簇毛麦易位染色体的一些单株。为了鉴定这批材料中的簇毛麦染色体身份,根据小麦、水稻的EST序列合成了240对STS引物,其中34对引物在普通小麦中国春与簇毛麦间存在多态性;进一步对亲本及簇毛麦二体异附加系进行PCR扩增分析,标记CINAU32-300可追踪簇毛麦1V染色体,标记CINAU33-280 CINAU34-510、CINAU35-1100和CINAU37-400可追踪簇毛麦2V染色体,标记CINAU38-250可追踪簇毛麦3V染色体,标记CINAU39-950和CINAU40-800可追踪簇毛麦4V染色体,标记CINAU41-745、CINAU42.1050和CINAU43-245可追踪簇毛麦5V染色体,标记CINAU44-765和CINAU45-495可追踪簇毛麦7V染色体。加上本研究室已开发的2个6V染色体特异标记,用这些簇毛麦染色体特异分子标记鉴定辐射诱导材料的部分回交后代,选育出小麦背景中只包含单条簇毛麦染色体的整套1V~7V染色体系,同时有18条易位染色体的簇毛麦身份得到确定,表明这些标记可以用来快速检测普通小麦背景中的簇毛麦染色体或染色体片段。
     3普通小麦-簇毛麦1V染色体系的选育与鉴定
     簇毛麦1V染色体长臂具有编码高分子量谷蛋白亚基的位点Glu-V1,短臂具有编码低分子量谷蛋白亚基的位点Glu-V3和ω、γ醇溶蛋白位点Gli-V1,小麦-簇毛麦1V附加系和代换系的蛋白质含量和沉降值均高,将簇毛麦1V染色体的优质基因导入普通小麦,进一步创造小麦-簇毛麦1V染色体易位系是小麦品质改良的有效途径。为转移和利用簇毛麦1V染色体上的优质基因,在(中国春/硬粒小麦-簇毛麦双倍体(60Co-γ射线照射花粉)//中国春)回交后代中,综合运用染色体C-分带、荧光原位杂交、高分子量谷蛋白亚基分析和分子标记分析,从BC1F1-BC1F3代中检测到1V染色体系,在BC1F3、BC2F1代中选育出分别涉及簇毛麦1V染色体长臂和短臂的四种染色体结构变异系,包括1VS·W易位系、W·1VL易位系、1VS单端体系和1VL端二体系,为小麦育种创造了新的种质资源
Haynaldia villosa (L.) Schur, a wild relative of common wheat, possesses many unique useful traits, such as resistances to powdery mildew, rust, take-all, eyespot, wheat streak mosaic virus, as well as drought and frost tolerance, good tiller ability, dense spike, polyanthus, and high protein content in kernels. Therefore, it is a potential gene resource for wheat improvement. Powdery mildew resistance gene Pm21 and wheat streak mosaic virus resistance gene Wssl have been transferred from H. villosa into common wheat. To localize, transfer and utilize other interested genes of H, villosa, the pollens of T. durum-H. villosa amphiploid were irradiated by 60Co-γ-rays and a mass of wheat-H, villosa intergeneric chromosomal translocations were induced in the present research. Effects of irradiation induction and transmission activities of different translocation types in different genetic backgrounds were investigated.chromosome or chromosome segments of H. villosa in common wheat background were identified by EST-STS molecular markers.
     1 Induction and transmission of wheat-H. villosa intergeneric chromosomal translocations To induce as many as wheat-H. villosa intergeneric translocation chromosomes involved in different chromosomes and chromosome segments of H. villosa, T. durum-H. villosa amphiploid was irradiated with 800,1200 and 1600 rad 60Co-y-rays, and pollens collected from the spikes 1,2 and 3 days after irradiation was pollinated to emasculated common wheat c.v. Chinese Spring. Wheat-H. villosa chromosome translocations were detected using genomic in situ hybridization technique in the M1 and their transmission was analyzed in BC1, BC2 and BC3 generations. The results showed that all the three dosages of irradiation treatments were highly efficient for inducing wheat-H. villosa translocations, and the produced M1 seeds were viable to germinate. The translocation induction efficiency and interstitial chromosome breakage-fusion frequency was increased as the irradiation dosage increased from 800 rad to 1 600 rad. Minor increase of translocation induction frequency was observed when using the pollen collected from the spikes one day than those 2 or 3 days after irradiation. More than 70%of the translations detected in the M1 generation could be transmitted to the BC1 through female gametes. Most of the translocations recovered in the BC1 generation could be recovered in the following generations. Various types of translocations showed relatively stable transmission ability in different genetic backgrounds with an order of 'whole arm translocation> small alien segment translocation> large alien segment translocation', either through male or female gametes. Transmission ability through female gametes was generally higher than that through male gametes.
     2 Screening and Application of EST-based PCR Markers Specific to Individual Chromosomes of H villosa
     All plants involved in wheat-H villosa translocation chromosomes were backcrossed with Chinese Spring, and some plants involved in single chromosome or chromosome segment of H. villosa in common wheat background have been developed. To identify H. villosa chromosomes or chromosome segments in these materials,240 STS primer pairs were designed based on the EST sequences of wheat and rice, and 34 of them could amplify specific polymorphic bands between Chinese Spring and H. villosa. These 34 STS primer pairs were further used for screening markers specific to individual chromosomes of H. villosa using 1V-7V disomic addition lines and their parents. The results showed that the marker CINAU32_3oo could be used for tracing chromosomeⅣ, CINAU33_28o, CINAU34.510, CINAU35-1100 and CINAU37-400 for 2V, CINAU38-250 for 3V, CINAU39.950 and CINAU40.800 for 4V, CINAU41.745, CINAU42-1050 and CINAU43-245 for 5V, CINAU44-765 and CINAU45-495 for 7V. These EST-STS markers combined with the two 6V specific markers developed in our institute were used to identify the H. villosa chromosome and chromosome segments of backcrossed generations derived from pollen irradiation. A set of 1V-7V addition lines and 18 translocation chromosomes involved in different H. villosa chromosomes have been identified. Therefore, these chromosome-specific EST-STS markers could be used to detect chromosomes and chromosome segments of H. villosa in common wheat background.
     3 Development and characterization of Wheat-H villosa alien Chromosome Lines involved inⅣ
     Glu-Vl loci coding for high molecular weight glutenin subunits is located on long arm, and Glu-V3 loci coding for low molecular weight glutenin subunits and Gli-Vl loci coding gliadin (co-type and y-type) are located on short arm of chromosome IV. Higher seed protein concentration and SDS-sedimentation value were found in addition or substitution lines of 1V in Chinese Spring background than those in Chinese Spring. The development of wheat-H.villosa alien chromosome lines involved in chromosome 1V is an efficient method for introducing high quality genes from 1V into common wheat and provide potential genetic resources for wheat quality improvement. Chromosome C-banding, fluorescence in situ hybridization, high molecular weight glutenin subunits combined with molecular marker analysis were applied to detect chromosome 1V and its structure aberrants in backcrossed generations derived from (Chinese Spring/T. durum-H. villosa amphiploid (irradiated by 60Co-γ-rays)//Chinese Spring). Alien chromosome lines involved in 1V were identified from BC1F1 to BC1F3. Four variants with chromosome structure changes of 1V were identified in BC1F3 and BC2F1, including whole arm translocation 1VS·W, whole arm translocation W·1VL, monotelosomic 1VS and ditelosomic 1VL, they would be new germplasms for wheat breeding.
引文
1. 陈静,邓光兵,余懋群,任正隆.小麦-簇毛麦端体附加系中6VS的细胞遗传学行为及其抗性遗传研究.四川农业大学学报,2001,19(1):1-5
    2. 陈孝,徐惠君,杜丽璞,尚立民,韩彬,施爱农,肖世和.利用组织培养技术向普通小麦导入簇毛麦抗白粉病基因的研究.中国农业科学,1996,29(5):2-8
    3. 陈孝,施爱农,尚立民.簇毛麦对不同白粉病菌菌系的抗性反应及其在小麦遗传背景下的表达.植物病理学报,1997,27(1):17-22
    4. 陈发棣,陈佩度,刘文轩.大赖草第2,7,14条染色体在小麦背景中的传递行为.南京农业大学学报.1999,22(4):5-8
    5. 陈军方,英加,王苏铃,陈佩度,齐莉莉.利用phlb突变创制普通小麦-簇毛麦6VS端二体代换系.遗传学报,2001,28(1):52-55
    6. 陈佩度,刘大钧.普通小麦与簇毛麦杂种后代的细胞遗传学研究.南京农学院学报,1982,4(4):1-16
    7. 陈佩度,刘大钧,Gill BS.染色体分带和非整倍体技术在小麦细胞遗传研究中的综合运用.南京农业大学学报,1986,9(4):1-8
    8. 陈佩度,齐莉莉,周波,刘大钧.抗白粉病普通小麦-簇毛麦易位系选育及分子细胞遗传学分析.植物遗传理论与应用研讨会文集,1994:pp350-355
    9. 陈佩度,周波,齐莉莉,刘大钧.用分子原位杂交(GISH)鉴定小麦-簇毛麦双二倍体、附加系、代换系和易位系.遗传学报,1995,22(5):380-386
    10.陈佩度,刘大钧,齐莉莉,周波,张守忠,盛宝钦,段霞瑜,王保通,金欣藻,刘正德,黄光明,蒋滨.小麦条锈病新抗源的抗谱鉴定初析,植物病理学报,2001,31(1):31-36
    11.陈佩度主编.作物育种生物技术.北京,中国农业出版社,2001:56-64
    12.陈全战,亓增军,冯伟高,王苏铃,陈佩度.利用离果山羊草3C染色体诱导簇毛麦2V染色体结构变异.遗传学报,2002,9(4):355-358
    13.陈全战,王官锋,陈华锋,陈佩度.普通小麦-簇毛麦易位系T4VS·4VL-4AL的选育与鉴定.作物学报,2007,33(6):871-877
    14.陈全战,曹爱忠,亓增军,张伟,陈佩度.利用离果山羊草3C染色体诱导簇毛麦2V染色体结构变异.中国农业科学,2008,41(2):362-369
    15.陈漱阳.普通小麦与簇毛麦杂种的研究.遗传学报,1981,8:340-343
    16.迟世华,杨足君,冯娟,周建平,刘成,任正隆.簇毛麦基因组特异DNA序列标记的建立和应用.麦类作物学报,2006,26(4):1-5
    17.董凤高,陈佩度,刘大钧.簇毛麦染色体的改良C-分带.遗传学报,1991,18(16):525-528
    18.董玉琛.小麦的基因源.麦类作物学报,2000,20(3):78-81
    19.傅杰,陈漱阳,张安静.普通小麦与簇毛麦双二倍体的合成、育性及细胞遗传学研究.遗传学报,1989,16(5):348-356
    20.傅杰,陈漱阳.小麦属与簇毛麦属—人工杂交新类群.西北植物学报,1990,10(1):67-69
    21.傅杰,周荣华,赵继新,陈漱阳,杨群慧.不同小麦背景小簇麦双二倍体的品质、抗病性及分子细胞遗传学研究.西北植物学报,2001,21(6):1103-1109
    22.傅体华,任正隆.簇毛麦染色体的形态学及Giemsa-C带的多态性研究,Ⅰ簇毛麦染色体的核型及C-带核型.四川农业大学学报,2001a,19(4):400-403
    23.傅体华,任正隆.簇毛麦染色体的形态学及Giemsa-C带的多态性研究,Ⅱ簇毛麦染色体在人工双二倍体中的C-带变化.四川农业大学学报,2001b,19(4):404-405
    24.金善宝主编.中国小麦学.北京,中国农业出版社,1996:394-395
    25.洪敬欣,彭永康.小麦-簇毛麦染色体代换系、易位系染色体RAPD标记筛选.华北农学报,2004,19(3):103-105
    26.李辉,陈孝,辛志勇,马有志,徐惠君.普通小麦-簇毛麦6DL6VS抗白粉病易位系的选育及鉴定.中国农业科学,1999,32(5):9-15
    27.李辉,陈孝,辛志勇,徐惠君,马有志,刘常宏.组织培养诱导普通小麦-簇毛麦抗白粉病易位系研究.河北农业科学,2005a,9(1):1-5
    28.李辉,陈孝,施爱农,孔凡晶,Leath S, Murphy JP,贾旭.簇毛麦抗白粉病基因的RAPD及RFLP标记.中国农业科学,2005b,38(3):439-445
    29.李桂萍,陈佩度,张瑞奇,王春梅,曹爱忠,张守忠.小麦-簇毛麦6VS/6AL易位染色体在不同小麦背景中的遗传稳定性及其在配子中的传递.麦类作物学报,2007,27(2):183-187
    30.李洪杰,朱至清.簇毛麦的利用价值和染色体操作.植物学通报,1999,16(5):504-510
    31.李洪杰,郭北海,张艳敏,李义文,杜立群,李银心,贾旭,朱至清.利用组织培养和辐射诱变创造高频率小麦与簇毛麦染色体易位.遗传学报,2000a,27(6):511-519
    32.李洪杰,李义文,张艳敏,李辉,郭北海,王子宁,温之雨,刘志勇,朱至清,贾旭.组织培养创造抗白粉病小麦一簇毛麦染色体易位及分子标记辅助选择.遗传学报,2000b,27(7):608-613
    33.李集临,徐香玲,郭长虹.电离辐射诱发小黑麦(Triticale)染色体易位系的研究.原子能农业应用,1985,增刊:64-71
    34.李集临,徐香玲,徐萍,郭长虹.利用中国春-山羊草2C二体附中系与中国春-偃麦草5E二体附加系杂交诱发染色体易位与缺失.遗传学报,2003,30(4):345-349.
    35.李懋学,张赞平.作物染色体及其研究技术.北京:中国农业出版社,1996
    36.李义文,李洪杰,梁辉,唐顺学,贾双娥,沈天民,李振声,贾旭.荧光原位杂交分析小麦一簇毛麦杂种减数分裂与染色体易位.遗传学报,2000,27(4):317-324
    37.李浚明,杨作民,田慧琴,黄放,耿平田.普通小麦与簇毛麦属间杂种体细胞无性系的建立及双二倍体的合成.遗传,1991,13(1):1-3
    38.刘大钧,陈佩度,裴广铮,王耀南.将簇毛麦种质转移给小麦的研究.遗传学报,1983 10(2):103-113
    39.刘大钧,陈佩度.簇毛麦和硬粒小麦-簇毛麦双二倍体的N-分带.遗传学报,1984,11(2):106-108
    40.刘大钧,陈佩度,吴沛良,王耀南,邱伯行,王苏玲.硬粒小麦-簇毛麦双二倍体.作物学报,1986,12(3):155-162
    41.刘道峰,王献平,景建康,张相歧.用顺序GISH-FISH技术鉴定小麦-中间偃麦草小片段易位系.遗传学报,2000,27(10):878-882
    42.刘金元,陶文静,刘大钧,陈佩度,李万隆,向齐军,段霞瑜.小麦-簇毛麦易位系6VS/6AL中6VS的遗传传递及其所携Pm21基因的遗传稳定性分析.植物学报,1999,41(10):1058-1060
    43.刘守斌,唐朝晖,尤明山,李保云,毛善锋,宋建民,刘广田.簇毛麦染色体组特异性RAPD标记的筛选、定位和应用.遗传学报,2002,29(5):453-457
    44.刘守斌,唐朝辉,尤明山.簇毛麦基因组特异性PCR标记的建立和应用.遗传学报,2003,30(4):350-356.
    45.刘守斌,唐朝晖,尤明山,李保云,宋建民,刘广田.簇毛麦1V染色体SSR标记的筛选.作物学报,2004,30(2):138-142
    46.马渐新,周荣华,贾继增,董玉深.小麦背景中簇毛麦6V染色体的遗传稳定性及其在配子中的传递.遗传学报,1999,26(4):384-390
    47.裴广铮,陈佩度,刘大钧.小麦与簇毛麦杂种后代抗白粉病株系的细胞遗传学分析.南京农业大学学报,1986,9(1):1-9
    48.齐莉莉,陈佩度,刘大钧,周波,张守忠,盛宝钦,向齐君,段霞渝,.周益林.小麦白粉病新抗源-基因Pm21.作物学报,1995,21(3):257-262
    49.孙光祖,陈义纯,张月学,尚志敏,王广金,阎文义,唐凤兰.辐射选育小麦易位系的研究.核农学报,1990,4(1):1-6
    50.孙善澄,袁文业.小麦-偃麦草-簇毛麦-黑麦四属杂种的产生及其形态学、细胞学研究.遗传学报,1996,23(3):214-219
    51.孙仲平,王占斌,徐香玲,李集临.利用杀配子染色体2C诱导中国春-黑麦二体附加系染色体畸变的研究.遗传学报,2004,31(11):1268-1274
    52.唐顺学,梁辉,李义文.小麦背景下BYDV抗性携带染色体的遗传行为.遗传学报,2000,27 (6):520-526
    53.王春梅,别同德,陈全战,曹爱忠,陈佩度.簇毛麦6V染色体短臂特异分子标记的开发和应用.作物学报,2007a,33(10):1595-1600
    54.王春梅,冯袆高,庄丽芳,曹亚萍,亓增军,别同德,曹爱忠,陈佩度.普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选.作物学报,2007b,33(11):1741-1747
    55.王秋英,吉万全,薛秀庄,王长有.普通小麦-簇毛麦抗白粉病异代换系的选育.西北农业学报,1999,8(1):27-29
    56.王苏玲,陈佩度,邱伯行,黄俐,刘大钧.普通小麦-簇毛麦染色体异附加系的细胞学稳定性分析.南京农业大学学报,1989,12(1):9-14
    57.王苏玲,齐莉莉,陈佩度.大赖草及近缘种染色体C-分带的研究.植物学报,1999,41(3):258-262
    58.英加,李滨,穆素梅,李振生.蓝粒小麦易位系的荧光原位杂交鉴定.植物学报,2001,43(2):164-168
    59.余懋群,邓光兵,Cerbah M.染色体荧光原位杂交及C-带鉴定小麦中的簇毛麦染色体.应用与环境生物学报,1997,3(4):301-304
    60.袁文业,孙善澄.小麦-偃麦草-簇毛麦三属杂交后代形态学、细胞学和育性研究.作物学报,1994,20(4):504-507
    61.张玲丽,李秀全,杨欣明,李洪杰,王辉,李立会.小麦优良种质资源高分子量麦谷蛋白亚基组成分析.中国农业科学,2006,39(12):2406-2414.
    62.张文俊,景建康,胡含.黑麦6R染色体在小麦背景中的传递.遗传学报,1995,22(3):211-216.
    63.张增艳,马有志.应用基因组原位杂交技术鉴定抗黄矮病小麦新种质. 中国农业科学,1998,31(3):1-4
    64.赵和,卢少源,李宗智.小麦高分子量麦谷蛋白亚基遗传变异及其与品质和其它农艺性状关系的研究.作物学报,1994,20(1):67-75.
    65.钟少斌,张德玉,李浩兵,姚景侠.小麦-簇毛麦杂种染色体的DNA原位杂交研究.江苏农学院学报,1994,15(3):6-8
    66.钟少斌,张德玉.生物素标记的重复DNA序列与黑麦染色体的原位杂交.作物学报,1995,21(6):691-694
    67.周荣华, Schwa T用基因组原位杂交技术检测新麦草杂交后代. 中国科学:C辑,1997,27(6):543-549
    68. Acosta AC. The transfer of stem rust resistance from rye to wheat. Diss Abstr,1962,23:34--35
    69. Adams MD, Kelley JM, Jeannine D, Gocayne B, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR, Venter CJ. Complementary DNA sequencing expressed sequence tags and human genome project. Science,1991,252:1651-1656
    70. Allard RW, Shands RG. Inheritance of resistance to stem rust and powdery mildew in cytologically stable spring wheats derived from Triticum timopheevi. Phytopathology,1954,44:266-274
    71. Ambros PF, Matzke MA, Matzke AJM. Detection of a 17 kb unique sequence (T-DNA) in plant chromosomes by in situ hybridization. Chromosoma,1986,94:11-18.
    72. Anamthawat-Jonsson K, Heslop-Harrison JS. Isolation and characterization of genome-specific DNA sequences in Triticeae species. Mol Gen Genet,1993,240:151-158
    73. Appels R, Driscoll C, Peacock WJ. Heterochromatin and highly repeated DNA sequences in rye (Secale cereale). Chromosoma,1978,70:67-89
    74. Appels T, Dennis ES, Smyth DR, Peacock WJ. Two repeated DNA sequences from the heterochromatin regions of rye (Secale cereale) chromosomes. Chromosoma,1981,84:265-277
    75. Banks PM, Larkin PJ, Bariana HS, Lagudah ES, Appels R. The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome.1995,38:395-405
    76. Bariana HS,. McIntosh RA. Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and its genetic linkage with other disease resistance genes in chromosome 2A. Genome 1993,36:476-482
    77. Baum M, Laguda ES, Appels R. Wide crosses in cereals. Ann Rev P1 Physiol Mol Biol 1992,43: 117-143.
    78. Bedbrook JR, Jones J, O'Dell M, Thompson R, Flavell R. A molecular description of telomeric heterochromatin in Secale species. Cell,1980,19:545-560
    79. Belostotsky DA, Ananiev EV. Characterization of relic DNA from barley genome. Theor Appl Genet,1990,80:374-380
    80. Bie TD, Cao YP, Chen PD. Mass production of intergeneric chromosomal translocatons through pollen irradiation of Triticum durum-Haynaldia villosa amphiploid. J integr Plant Biol,2007,49 (11):1619-1626
    81. Blanco A, Simeone R, Tanzarella OA. Morphology and chromosome pairing of a hybrid between Triticum durum Desf. and Haynaldia villosa (L.) Schur. Theor Appl Genet.1983,64:333-337
    82. Blanco A, Orecchia C, Simeone R. Cytology, morphology and fertility of the amphiploid Triticum durum Desf.x Haynaldia villosa (L.) Schur. In: Sakamoto S (ed) Proc 6th Int Wheat Genet Symp. Kyoto University, Kyoto,1984, pp 205-211
    83. Blanco A, Simeone R, Resta P. The addition of Dasypyrum villosum (L.) Candargy Chromosomes to durum wheat(Triticum durum Desf.). Theor Appl Genet,1987,74:328-333.
    84. Blanco A. Chromosome pairing variation in Triticum turgidum L. x Dasypyrum villosum (L.) Candargy hybrids and genome affinities. In: Proc.7th. Intern Wheat Genet Symp (Cambridge U K), 1988, pp 63-67
    85. Blanco A, Resta P, Simeone R, Parmar S, Shewry PR, Sabelli P, Lafiandra D. Chromosomal location of seed storage protein genes in the genome of Dasypyrum villosum (L.) Candargy. Theor Appl Genet,1991,82:358-362
    86. Bonhomme A, Gale MD, Koebner RMD, Nicolas P, Jahier J, Bernard M. RFLP analysis of an Aegilops ventricosa chromosome that carries a gene conferring resistance to leaf rust (Puccinia recondita) when transferred to hexaploid wheat. Theor Appl Genet,1995,90:1042-1048.
    87. Brettel RIS, Banks PM, Cauderon Y, Chen X, Cheng ZM, Larkin PJ, Waterhouse PM. A single wheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat. Ann Appl Biol,1988,113:599-603
    88. Cai XW, Liu DJ. Identification of a 1B/1R wheat rye translocation. Theor Appl Genet,1989,77: 81-83
    89. Cao AZ, Wang XE, Chen YP, Zou XW, Chen PD. A sequence-specific PCR marker linked with Pm21 distinguishes chromosomes 6AS,6BS,6DS of Triticum aestivum and 6VS of Haynaldia villosa. Plant Breed,2006,125:201-205
    90. Ceoloni C, Del Signore G, Pasquini M, Testa A, Transfer of mildew resistance from Triticum longissimum into wheat by phl induced homoeologous recombination. In: Miller TE, Koebner RMD. (Eds). Proc.7th Int. Wheat Genet. Symp. Cambridge, UK.1988, pp 221-226
    91. Ceoloni C, Del Signore G, Ercoli L, Donini E. Locating the alien chromatin segment in common wheat-Aegilops longissima mildew resistant transfers. Hereditas,1992,116:239-245
    92. Chen PD, Tsujimoto H, Gill BS. Transfer of Ph1 genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor Appl Genet,1994,88:97-101
    93. Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet,1995,91:1125-1128
    94. Chen Q, Conner RL, Laroche A. Molecular characterization of Haynaldia villosa chromatin in wheat lines carrying resistance to wheat curl mite colonization. Theor Appl Genet,1996,93: 679-684
    95. Chen PD, Liu WX, Yuan JH, Wang XE, Zhou B, Wang SL, Zhang SZ, Feng YG, Yang BJ, Liu GX, Liu DJ, Qi LL, Zhang P, Friebe B, Gill BS. Development and characterization of wheat-Leymus racemosus translocation lines with resistance to Fusarium Head Blight. Theor Appl Genet,2005 111:941-948
    96. Chen YP, Wang HZ, Cao AZ, Wang CM, Chen PD. Cloning of a resistance gene analog from wheat and development of a codominant PCR marker for Pm21. J Integr Plant Biol,2006,48 (6): 715-721
    97. Chennaveeraiah MA. Karyomorphologic and cytotaxonomic studies in Aegilops. Acta Horti Gotoburgensis,1960,23(4):85-178
    98. Darlington CD:Misdivision and the genetics of the centromere. J Genet,1939,37:341-364
    99. Davies PA, Pallotta MA, Driscoll CJ. Centric fusion between nonhomologous rye chromosomes in wheat. Can J Genet Cytol,1985,27:627-632
    100. De Pace C, Benedettelli S, Qualset CO. In:Proc 7th Int Wheat Genet Symp, UK: Cambridge,1988, pp 503-509
    101. De Pace C, Paolini V, Scarascia MGT. Evaluation and utilization of Dasypyrum villosum as a genetic resources for wheat improvement. In Wheat resources:meeting diverse needs, New York, 1990, pp 1279-2911
    102. De Pace C, Delre V, Scarascia Mugnozza GT, Qualset CO, Cremonini R, Frediani M, Cionini PG. Molecular and chromosomal characterization of repeated and single-copy DNA sequences in the genome of Dasypyrum villosum. Hereditas,1992,116:55-65
    103. De Pace C, Snidaro D, Ciaffi M, Vittori D, Ciofo A, Cenci A, Tanzarella OA, Qualset CO, Scarascia Mugnozza GT. Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality. Euphytica,2001,117:67-75
    104. Dennis ES, Gerlach WL, Peacock WJ. Identical polypyrimidine-polypurine satellite DNAs in wheat and barley. Heredity,1980,44:349-366
    105. Donini P, Koebner RMD, Ceoloni C. Cytogenetic and molecular mapping of the wheat-Aegilops longissima chromatin breakpoints in powdery mildew-resistant introgression lines. Theor Appl Genet,1995,91:738-743
    106. Dore C, Cauderon Y, Chueca MC. Inflorescence culture of Triticum aestivum × Secale cereale hybrids:production, characterization and cytogenetic analysis of regenerated plants. Genome,1988, 30:511-518
    107. Doussinault G, Delibes A., Sanchez-Monge R, Garcia-Olmedo E. Transfer of a dominant gene for resistance to eyespot disease from a wild grass to hexaploid wheat. Nature,1983,303:698-700
    108. Driscoll CJ, Jensen NF. Characteristics of leaf rust resistance transferred from rye to wheat. Crop Sci,1964,4:372-374
    109. Driscoll CJ, Jensen NF. Release of a wheat-rye translocation stock involving leaf rust and powdery mildew resistances. Crop Sci,1965,5:279-280.
    110. Dvorak J. Transfer of leaf rust resistance from Aegilops speltoides to Triticum aestivum. Can J Genet Cytol,1977,19:133-141
    111. Dvorak J, Knott DR. Homoeologous chromatin exchange in radiation-induced gene transfer. Can J Genet Cytol,1977,19:125-131
    112. Dvorak J, Knott DR. Chromosome location of two leaf rust resistance genes transferred from T. speltoides to T. aestivum. Can J Genet Cytol,1980,22:281-289
    113. Dvorak J, Knott DR. Location of a Triticum speltoides chromosome segment conferring resistance to leaf mst in Triticum aestivum. Genome,1990,33:892-897
    114. Endo TR. On the Aegilops chromosomes having gametocidal action on common wheat. Proc 5th Int Wheat Genet Symp. New Delhi,1978, pp 306-314
    115. Endo TR. Selective gametocidal action of a chromosome of Aegilops cylindrical in a cultivar of common wheat. Wheat Inf Serv,1979,50:24-28
    116. Endo TR. Gametocidal chromosomes of three Aegilops species in common wheat. Can J Genet Cytol,1982,24:201-206
    117. Endo TR. An Aegilops longissima chromosome causing chromosome abberations in common wheat. Wheat Inf Serv,1985a,60:29-30
    118. Endo TR. Two types of gametocidal chromosome of Aegilops sharonensis and Ae.longissima. Jpn J Genet,1985b,60:125-135
    119. Endo TR. Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica in common wheat. Journal of Heredity,1988,79:,366-370
    120. Endo TR. Gametocidal chromosomes and their induction of chromosome mutations in wheat. Jap J Genet,1990,65:135-152
    121. Endo TR. Structural changes of rye chromosome 1R induced by gametocidal chromosome. Jap J Genet 1994,69:11-19
    122. Feldman M, Mello-Sampayo T. Suppression of homoeologous paring in hybrids of polyploid wheatsxTriticum speltoides. Can J Genet,1967,9:307-313
    123. Friebe B, Larter EN. Identification of a complete set of isogenic wheat-rye D-genome substitution lines by means of Giemsa C-banding. Theor. Appl. Genet,1988,76:473-479.
    124. Friebe B, Hatchett JH, Sears RG, Gill BS. Transfer of Hessian fly resistance from 'Chaupon' rye to hexaploid wheat via a 2BS/2RL wheat-rye chromosome translocation. Theor Appl Genet,1990,79: 385-389
    125. Friebe B. Identification of alien chromatin specifiying resistance to wheat steak mosaic virus and greenbug in wheat germplasm by c-banding and in situ hybridization. Theor Appl Genet,1991,81: 381-389
    126. Friebe B, Zeller FJ, Mukai Y. Characterization of rust-resistant wheat-Agropyron intermedum derivatives by C-banding, in situ hybridization and isozyme analysis. Theor Appl Genet,1992a,83: 775-782
    127. Friebe B, Mukai Y, Gill BS, Cauderon Y. C-banding and in situ hybridization analyses of Agropyron intermedium, a partial wheat x Ag.intermedium amphiploid, and six derived chromosome addition lines. Theor Appl Genet,1992b,84:899-905
    128. Friebe B, Jiang J, Knott DR, Gill BS. Compensating indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci,1994a,34: 400-404
    129. Friebe B, Heun M, Tuleen N, Zeller FJ, Gill BS. Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci,1994b,34:621-625
    130. Friebe B, Gill BS, Tuleen NA, Cox TS. Registration of KS93WGRC28 powdery mildew resistant T6BS.6RL wheat germplasm. Crop Sci,1995,35:1237-
    131. Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS. Characterization of wheat-alien translocations conferring resistance to diseases and pests:current status. Euphytica,1996,91:59-87
    132. Friebe B, Zhang P, Linc G, Gill BS. Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenet Genome Res,2005,109:293-297
    133. Fu TH, Yang ZJ, Ren ZL. Dosage effect of the kr genes on preventing crossability of Chinese Spring with Dasypyrum villosum (L.) Candargy. Wheat Infor Ser,1995,81:1-5
    134. Fu TH, Ren ZL, Zhang HQ. Cytogenetic analysis of a trigeneric hybrid of Triticum,Dasypyrum and Secale by C-banding technique. J Genet Breed,1997,51 (4):335-340
    135. Fu TH, Ren ZL. Transmission of Dasypyrum villosum chromosomes through F1 gametes in the Triticum durum-Dasypyrum villosum amphiploid x common wheat Hybrid populations. J Sichuan Agric Univ,2001,19 (4):335-339
    136. Gale MD, Miller TE. The introduction of alien genetic variation into wheat.1987, pp 173-210. In: Lupton FGH (Ed). Wheat Breeding: Its scientific basis, Chapman and Hall, UK
    137. Gall JG, Pardue ML. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA,1969,63:378-383
    138. Gerlach WL, Appels R, Dennis ES, Peacock WJ. Evolution and analysis of wheat genomes using highly repeated DNA sequences. In Proc Int Wheat Genet Symp,1978,5:81-91
    139. Gill BS, Kimber G. The giemsa C-banded karyotype of rye. Proc Natl Acad USA,1974a,71, 1247-1249
    140. Gill BS, Kimber G. Giemsa C-banding and the evolution of wheat. Proc Natl Acad USA,1974b,71, 4086-4090
    141. Gill BS, Friebe B, Endo TR. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome,1991,34: 830-839
    142. Gonzalez AI, Pelaez MI, Ruiz ML. Cytogenetic variation in somatic tissue cultures and regenerated plants of barley (Hordeum vulgare L.). Euphytica,1996,91:37-43
    143. Guidet F, Rogowsky P, Taylor C, Song W, Langridge P. Cloning and characterization of a new rye-specific repeated sequence. Genome,1991,34:81-87
    144. Gyarfas J. Transference of disease resistance from Triticum timopheevii to Triticum aestivum. MSc Thesis, University of Sydney, Australia.1968
    145. Harlant JR, de Wet JMJ. Toward a rational classification of cultivated plant. Taxon,1971,20 (4): 509-517
    146. Hart GE. Genetics and evolution of multilocus isozymes in hexaploid wheat. In: Isozymes-Current Topics in Biological and Medical Reasearch. Alan, R. Liss, Inc., New York,1983,10:365-380
    147. Heun M, Friebe B, Bushuk W. Chromosomal location of the powdery mildew resistance gene of Amigo wheat. Phytopathology,1990,80:1129-1133
    148. Holloran GM. Paring between Triticum aestivum and Haynaldia villosa chromosome. J Heredity, 1966,57:233-235
    149. Hsiao C, Chatterton NJ, Asay KH, Jensen KB. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome,1995,38 (2):211-223
    150. Hyde BB. Addition of the genome of Haynaldia villosa to Triticum aestivum. Amer J Botany, 1953a,40:168-174
    151. Hyde BB. Addition of individual Haynaldia villosa chromosomes to hexaploid wheat. Amer J Botany,1953b,40:174-182
    152. Ishikawa G, Yonemaru J, Saito M, Nakamura T. PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes. BMC Genomics,2007,8: 135-146
    153. Islam AKMR, Shepherd KW. Alien genetic variation in wheat improvement. In:Gupta PK, Tsuchia T (Eds). Chromosome engineering in plants:Genetics, Breeding, Evolution, Part A, Elsevier Sci. Publ., Amsterdam, The Netherlands.1992, pp 291-312
    154. Jahier J. Pairing between Dasypyrum villosum (L.) Candargy and Secale cereale L. chromosomes. In: Proc 7th Intern Wheat Genet Symp (Cambridge U K),1988,315-321
    155. Jan CC, De Pace C, McGuire PE, Qualset CO. Hybrids and amphiploids of Triticum aestivum L. and T. turgidum L., with Dasypyrum villosum (L.) Candargy. Z Pflanzenzuchtg,1986,96:97-106
    156. Jiang J, Gill BS. Sequential chromosome banding and in situ hybridization analysis. Genome,1993, 36:792-795.
    157. Jiang JM, Friebe B, Gill BS. Recent advances in alien gene transfer in wheat. Euphytica,1994,73: 199-212
    158. Johnson SS, Phillips RL, Rines HW. Meiotic behavior in progeny of tissue culture regenerated oat plants (Avena sativa L.) carrying near-telocentric chromosomes. Genome,1987a,29:431-438
    159. Johnson SS, Phillips RL, Rines HW. Porssible role of heterochromatin in chromosome breakage induced by tissue culture in oats (Avena sativa L.). Genome,1987b,29:439-446
    160. Jones JDG, Flavell RB. The mapping of highly-repeated DNA families and their relationship to C-bands in chromosomes of Secale cereale. Chromosoma,1982,86:595-612
    161. Jorgensen JH, Jensen CJ. Gene Pm6 fore resistance to powdery mildew in wheat. Euphytica,1973, 22:4-23
    162. Karp A, Maddock SE. Chromosome variation in wheat plants regenerated from cultured immature embryos. Theor Appl Genet,1984,67:249-255
    163. Kerber ER, Dyck PL. Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops spettoides×Triticum monococcum. Genome,1990,33:530-537
    164. Kibirige-Sebunya I, Knott DR. Transfer of stem rust resistance to wheat from an Agropyron chromosome having a gametocidal effect. Can J Genet Cytol,1983,25:215-221
    165. Kimber G, Athwal BS. A reassessment of the course of evolution of wheat. Proc Natl Acad Sci USA, 1972,69:912-915
    166. Knott DR. The inheritance of rust resistance. Ⅵ. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Can J Plant Sci,1961,41:109-123
    167. Knott DR. Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance. Can J Genet Cytol,1968,10:695-696
    168. Knott DR, Dvorak J, Nanda JS. The transfer to wheat and homology of an Agropyron elongatum chromosome carrying a resistance gene to stem rest. Can J Genet Cytol,1977,19:75-79
    169. Knott DR. Transferring alien genes to wheat.1987, pp 462-471. In: Heyne EG (ed). Wheat and wheat improvement,2nd edn., Monogr 13, Am Soc Agron
    170. Koebner RMD, Shepherd KW. Induction of recombination between rye chromosome 1RL and wheat chromosomes. Theor Appl Genet,1985,71:208-215
    171. Koebner RMD, Shepherd KW, Appels R. Controlled introgression to wheat of genes from rye chromosome arm IRS by induction of allosyndesis. Theor Appl Genet,1986,73:209-217
    172. Kostoff D. The genomes of Triticum timopheevi Zhuk., Secale cereale L. and Haynaldia villosa Schur. Ztscher. Induktive Abstam. u. verebung lehre,1936,72:115-118
    173. Kostoff D. Chromosome behavior in Triticum hybrids and allied genera. III. Triticum-Haynaldia Hybrids Zeitschr Zucht A.1937,21:380-382
    174. Kota RS. A cytogenetic and agronomic study of induced translocation lines of common wheat (Triticuru aestivum L. em Thell) immune from wheat streak mosaic virus.1980, MSc thesis South Dakota State University, S. D., USA.
    175. Lapitan NLV, Sears RG, Gill BS. Translocation and other karyotypic structural changes in wheat x rye hybrids regenerated from tissue culture. Theor Appl Genet,1984,68:547-554
    176. Larkin PJ, Scowcroft WR. Somaclonal variation a novel source of variability from cell cultures for plant improvement. Theor Appl Genet,1981,60:197-214
    177. Lay CL, Wells DG, Gardner WAS. Immunity from wheat streak mosaic virus in irradiated Agrotricum progenies. Crop Sci,1971,1:431-432
    178. Li WL, Chen PD, Qi LL, Liu DJ. Isolation, characterization and application of a species-specific repeated sequence from Haynaldia villosa. Theor Appl Genet,1995,90:526-533
    179. Li HJ, Guo BH, Li YW, Du LQ, Jia X, Chu CC. Molecular cytogenetic analysis of intergeneric chromosomal translocations between wheat (Triticum aestivum L.) and Dasypyrum villosum arising from tissue culture. Genome,2000a,43:756-762
    180. Li HJ, Guo BH, Zhang YM, Li YW, Du LQ, Li YX, Jia X, Zhu ZQ. High efficient intergeneric chromosomal translocations between wheat (Triticum aestivum L.) and Dasypyrum villosa arising from tissue culture and irradiation. Acta Genetica Sinica,2000b,27 (6):511-519
    181. Linde-Laursen I, Jensen HP, Jorgensen JH. Resistance of Triticale, Aegilops and Haynaldia species to the take-all fungus, Gaeumannomyces graminis. Z. Pflanzenzuchtung,1973,70:200-213
    182. Liu DJ, Chen PD, Pei GZ, Wang YN, Qiu BX, Wang SL. Transfer of Haynaldia villsoa chromosome into Triticum aestivum. In:Proceedings of 7th International Wheat Genetics Symposium. Cambridge, U. K.1988, pp 355-361
    183. Liu DJ, Chen PD, Raupp WJ. Determination of homoeologous groups of Haynaldia villosa chromosomes. In: Proceedings of 8th International Wheat Genetics Symposium. Beijing, China. 1993, pp 181-185
    184. Liu ZY, Sun QX, Ni ZF, Yang TM. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breeding,1999,118:215-219
    185. Liu WX, Chen PD, Liu DJ. Development of Triticum aestivum-Leymus racemosus translocation lines by irradiating adult plants at meiosis. Acta Botanica Sinica,1999c,41:463-467
    186. Liu WX, Chen PD, Liu DJ. Selection, breeding and identification of T01-A Triticum aestivum-Leymus racemosus translocation line. Acta Agron Sin,2000a,26, (3):305-309
    187. Liu WX, Chen PD, Liu DJ. Studies on the development of Triticum-aestivum-Leymus racemosus translocation lines by pollen irradiation. Acta Genet Sin,2000b,27 (1):44-49
    188. Liu S, Anderson JA. Targeted molecular mapping of a major wheat QTL for Fusarium head blight resistance using wheat ESTs and synteny with rice. Genome,2003,46:817-823
    189. Lowry JR, Sammons DJ, Baenziger PS, Moseman JG. Identification and characterization of the gene conditioning powdery mildew resistance in'Amigo'wheat. Crop Sci,1984,24:129-132
    190. Lukaszewski AJ. Reconstruction in wheat of complete chromosomes 1B and 1R from the IRS W 1BL translocation of "Kavkas" origin. Genome,1993,36:821-824
    191. Lukaszewski AJ. Manipulation of the genome by chromosome breakage. In: Gill BS, Raupp WJ (eds):Proceedings of the US-Japan Symposium, Classical and Molecular Cytogenetic Analysis, 1994, pp 136-139
    192. Lukaszewski AJ. Further manipulation by centric misdivision of the IRS W 1BL translocation in wheat. Euphytica,1997,94:257-261
    193. Maan SS. Exclusive preferential transimission of an alien chromosome in common wheat. Crop Sci, 1975,15:287-292
    194. Maan SS. Alien chromosome controlling sporophytic sterility in common wheat. Crop Sci,1976, 16:580-583
    195. Marais GF, Marais AS. The derivation of compensating translocations involving homoeologous group 3 chromosomes of wheat and rye. Euphytica,1994,79:75-80
    196. Marais EF, Pretorius ZA. Gametocidal effects and resistance to wheat leat rust and stem rust in derivation of a Triticum turgidum spp. durum/Aegilops speltoides hybrid. Euphtica,1996,88: 117-124
    197. McFadden ES, Sears ER. The genome approach in radical wheat breeding. J Amer Soci Agrom, 1947,39:1011-1026
    198. McIntosh RA., Baker EP, Driscoll CJ. Cytogenetic studies in wheat I. Monosomic analysis of leaf rust resistance in cultivars Uruguay and Transfer. Aust J Biol Sci,1965,18:971-977
    199. McIntosh RA, Gyarfas J. Triticum timopheevii as a source of resistance to wheat stem rust. Z Pflanzenzfichtg,1971,66:240-248
    200. McIntosh RA, Luig NH. Recombination between genes for reaction to P. graminis at or near the Sr9 locus. In: Sears ER, Sears LMS. (eds). Proc. 4th Int Wheat Genet Symp Univ Missouri, Columbia, USA.1973, pp 425-432
    201.McIntosh RA, Dyck PL, Green GJ. Inheritance of leaf rest and stem rust resistance in wheat cultivars Agent and Agatha. Aust J Agric Res,1977,28:37-45
    202. McIntosh RA., Miller TE, Chapman V. Cytogenetical studies in wheat Ⅻ. Lr28 for resistance to Puccinia recondite and Sr34 for resistance to P.graminis tritici. Z. Pflanzenziichtg,1982,89: 295-306
    203. McIntosh RA. Genetic and cytogenetic studies involving Lr18 resistance to Puccinia recondite. In: Sakamoto S (ed). Proc 6th Int Wheat Genet Symp, Kyoto, Japan.1983. pp 777-783
    204. McIntosh RA. Alien sources of disease resistance in bread wheats. In: Sasakuma T, Kinoshita T (eds). Proc of Dr H. Kihara Memorial Int. Symp. on Cytoplasmic Engineering in Wheat. Nuclear and organellar genomes of wheat species. Yokohama, Japan.1991,pp 320-332.
    205. McIntosh RA, Wellings CR, Park RE. Wheat rusts: an atlas of resistance genes. CSIRO, Australia, 1995
    206. McIntyre CL, Pereira S, Moran ZB (1990). New secale cereale rye DNA derivatives for the detection of rye chromosome segments in wheat. Genome,33:635-640
    207. Metakovsky EV. Gliadin allele identification in common wheat. II. Catalogue of gliadin alleles in common wheat. Genet Bread,1991,45:325-344
    208. Michelmore RW. The impact zone: genomics and breeding for durable disease resistance. Current Opinion in Plant Biology,2003,6:397-404
    209. Miller TE. Investigation of a preferentially transmitted Aegilops sharonensis chromosome in wheat. Theor Appl Genet,1982,61:27-33
    210. Miller TE, Reader SM, Ainsworth CC, Summers RW. The introduction of a major gene for resistance to powdery mildew of wheat, Erysiphe graminis f. sp. tritici from Aegilops speltoides into wheat, T. aestivum. In:Joma ML, Slootmaker LAJ (eds). Cereal Breeding Related to Integrated Cereal Production Proc of the EUCARPIA Conference, Wageningen, The Netherlands.1987, pp 179-183
    211. Miller TE, Reader SM, Singh D. Spontaneous non-Robertsonian translocations between wheat chromosomes and an alien chromosome. In: Miller TE, Koebner RMD (eds). Proc.7th Int Wheat Genet Symp Cambridge, UK.1988, pp 387-390
    212. Miller TE. Fluorescent in situ hybridization a useful aiel to the intruduction of alien genetic variation into wheat. Euphytica,1996,89:113-119
    213. Minelli S, Ceccarelli M, Mariani M, De pace C, Cionini PG. Cytogenetics of Triticum(?) Dasypyrum hybrids and derived lines [J]. Cytogenetics and Plant Breeding,2005,109:385-392
    214. Montebove L, De Pace C, Jan CC, Scarascia Mugnozza GT, Qualset CO. Chromosomal location of isozyme and seed storage protein genes in Dasypyrum villosum (L.) Candargy. Theor and Appl Genet,1987,73:836-845
    215. Monte JV, Mclintyre CL, Gustafson JP. Analysis of phylogenetic relationships in the Triticeae tribe using RFLPs. Theor Appl Genet,1993,86:649-665
    216. Morris R, Schmidt JW, Johnson VA. Aneuploid studies at the University of Nebraska. EWAC Newsl,1969,2:55-56
    217. Mukade K, Kamio M, Hosoda K. The transfer of leaf rust resistance from rye to wheat by intergeneric addition and translocation. Gamma Field Symp No.9. 'Mutagenesis in Relation to Ploidy level'.1970. pp 69-87
    218. Mukai Y, Gill BS. Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome,1991,34:448-452
    219. Mukai Y, Friebe B, Gill BS. Comparison of C-banding patterns and in situ hybridization sites using highly repetitive and total genomic rye DNA probe of'Imperial'rye chromosomes added to 'Chinese Spring'wheat. Jpn J Genet,1992,67:71-83
    220. Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome,1993a,36:489-494
    221. Mukai Y, Friebe B, Hatchett JH, Yamamoto M, Gill BS. Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma,1993b,102:88-95
    222. Murray TD, De La Pena RC, Yildirim A, Jones SS. A new source of resistance to Pseudocereasporella herpotricoides, cause of eye spot disease of wheat, located on chromosome 4V of Dasypyrum villosum. Plant Breed,1994,113:281-286
    223. Nyquist NE. Monosomic analysis of stem rust resistance of a common wheat strain derived from Triticum timopheevi. Agronomy Journal,1957,49:222-223
    224. Nyquist NE. Differential fertilization in the inheritance of stem rust resistance in hybrids involving a common wheat strain derived from Tritieum timopheevi. Genetics,1962,47:1109-1124
    225. Okamoto M. Asynaptic effect of chromosome V. wheat Information Service,1957,5-6
    226. Payne PI, Corfield KG, Blackman JA. Identification of a high-molecular-weight subunit of glutenin whose presence correlates with bread-making quality in wheats of related pedigree. theor appl genet, 1979,55,153-159
    227. Payne PI, Law CN, Mudd EE. Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet, 1980,58,113-120
    228. Payne PI, Lawrence GJ. Catalogue of alleles for the complex gene loci, Glu-Al, Glu-B1 and Glu-Dl which code for high molecular weight subunits of glutenin in hexaploid wheat. Cereal Research Communications,1983,11:29-35
    229. Peacock WJ, Gerlach WL, Dennis ES. Molecular aspects of wheat evolution: repeated DNA sequences. In Wheat Science-today and tommow. Edited by Evans LT, Peacock WP. Cambridge University Press, Cambridge,1981,41-60
    230. Pedersen C, Linde-Laursen I. Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chromosome Res,1994,2:67-71
    231. Pedersen C, Linde-Laursen R. Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence. Genome,1996,39:93-104
    232. Pedersen C, Langridge P. Identification of the entire chromosome complement of bread wheat by two-color FISH. Genome,1997,40:589-593
    233. Pikaard CS. Nucleolar dominance and silencing of transcription. Trends Plant Sci,1999,4:478-483
    234. Pickering RA. Plant regeneration and variants from calli derived from immature embryos of diploid barley (Hordeum vulgare L.) and H.vulgare L.(?) H.bulbosum L. crosses. Theor Appl Genet,1998, 78:105-112
    235. Qi LL, Chen PD, Liu DJ, Zhou B, Zhang SZ. Development of translocation lines of Triticum aestivum with powdery mildew resistance introduced from Haynaldia villosa. In Proc.8th Inter. Wheat Genetice Symposium.1993, pp 333-337
    236. Qi LL, Cao MS, Chen PD, Li WL, Liu DJ. Identification, mapping and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome,1996,39:191-197
    237. Qi LL, Wang SL, Chen PD, Liu DJ, Gill BS. Identification and physical mapping of three Haynaldia villosa chromosome-6V deletion lines. Theor Appl Genet,1998,97:1042-1046
    238. Qi LL, Chen PD, Liu DJ, Gill BS. Homoeologous relationships of Haynaldia villosa chromosomes with those of Triticum aestivum as revealed by RFLP analysis. Genes Genet Syst,1999,74:77-82
    239. Qualset CO, Scarascia MGT. Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality.Euphytica,2001,117:67-75
    240. Rayburn AL, Gill BS. Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered,1985a,76:78-81
    241. Rayburn AL, Gill BS. Molecular evidence for the origin and evolution of chromosome 4A in polyploid wheats. Can J Genet Cytol,1985b,27:246-250
    242. Rayburn AL and Gill BS. Molecular identification of the D-genome chromosomes of wheat. The Journal of Heredity,1986,77253-255
    243. Rayburn AL, Gill BS. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep,1987,4:102-109
    244. Rayburn AL, Gill BS. Repeated DNA sequences in Triticum (Poaceae):chromosomal mapping and its bearing on the evolution of B and G genomes. Plant Syst Evol,1988,159:229-235
    245. Reader SM, Abbo S, Purdie KA. Direct labeling of plant chromosomes by rapid in situ hybridization. Trend Genet,1994,10:265-266
    246. Redaelli R. Two-dimension mapping of gliadins using biotypes and null mutants of common wheat cultivar Savatovskaya 29. Hereditas,1994,121:131-137
    247. Riley R, Chapman V. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature (London),1958,182:713-715
    248. Riley R, chapman V, Johnson R. Introduction of yellow-rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature,1968.217:383-384
    249. Robertson WMRB:Chromosome studies. I. Taxonomic relationships shown in the chromosomes of Tettegidae and Acrididiae: V-shaped chromosomes and their significance in Acrididiae, Locustidae and Grillidae:chromosomes and variation. J Morphol,1916,27:179-331
    250. Saghai-Maroof MA, Soliman KM, Torgensen RA, Allard RW. Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proc Natl Acad Sci USA,1984,81:8014-8018
    251. Sando WJ. Intergeneric hybrids of Triticum and Secale with Haynaldia villosa. J Agric Res,1935, 51:759-800
    252. Scoles GJ. Gamete abortion induced by an Agropyron chromosome. Can J Genet Cytol,1982,24: 637
    253. Sears ER. Misdivision of univalents in common wheat. Chromosoma,1952,4:535-550
    254. Sears ER. Addition of the genome of Haynaldia villosa to Triticum aestivum. Amer J Botany,1953, 40:168-174
    255. Sears ER. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symposia in Biology,1956,9,1-22
    256. Sears ER, Okamoto M. Intergenomic chromosome relationships in hexaploid wheat. In: Proc Tenth Intl Congr Genet,1958,2:258-259
    257. Sears ER. Agropyron-wheat transfers induced by homoeologous pairing. In: Sears ER, Sears LMS. (Eds). Proc 4th Int Wheat Genet Symp Univ of Missouri, Columbia, USA.,1973a, pp 191-199
    258. Sears LMS. Misdivision of five different 3B monosomics in Chinese Spring wheat. Proc 4th Int Wheat Genet Symp, Columbia, MO,1973b, pp 739-743
    259. Sears ER. An induced homoeologous-pairing mutant in Triticum aestivum. Genetics,1975,80:74
    260. Sears ER. Analysis of wheat-Agropyron recombinant chromosomes. In: Proc. 8th Eucarpia Congress, Madrid, Spain,1977, pp 63-72
    261. Sears ER. Transfer of alien genetic material to wheat. In: Euans LT, Peacock WJ (eds). Wheat Science-Today and Tomorrow. Cambridge Uni Press, New York,1981, pp 75-89
    262. Sears RG, Deckard EL. Tissue culture variability in wheat callus induction and plant regeneration. Crop Sci,1982,22:546-550
    263. Sears RG, Hatchett JH, Cox TS, Gill BS. Registration of Hamlet, a Hessian fly resistant hard red winter wheat germplasm. Crop Sci,1992,32:506
    264. Sharma D, Knott DR. The transfer of leaf-rust resistance from Agropyron to Triticum by irradiation. Cana J Genet Cytol,1966,8:137-143
    265. Sharma HC, Gill BS. Current status of wide hybridizadon in wheat. Euphytica,1983,32:17-31
    266. Sharma H. Ohm H, Goulart L, Lister R, Appels R, Benlhabib O. Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome,1994, 38:406-413
    267. Sharma HC. How wide can a wide cross be?. Euphytica,1995,82:43-64
    268. Sharp PJ, Kreis M, Shewry PR. Location of beta-amylase sequences in wheat and its relatives. Theor Appl Genet,1988,75:286-290
    269. Shewry PR, Parmar S, Pappin DJC. Characterization and genetic control of the prolamins of haynaldia villosa:relationship to cultivated species of the Triticeae (rye, wheat and barley). Biochem Genet,1987,25:309-325
    270. Shewry PR, Milsem I, Tathmama S. The prolamin storage proteins of wheat and related cereals. Prog Biophys Molec Biol,1994,61:37-59
    271. Smith EL, Schlehuber AM, Young Jr HC, Edwards LH. Registration of agent wheat. Crop Sci, 1968,8:511-512
    272. Snape JW, Parker BB, Simpson E, Ainsworth CC, Payne PI, Law CN. The use of irradiated pollen for differential gene transfer in wheat. Theor Appl Genet,1983,65:103-111
    273. Soliman AS, Heyne EG, Johnston CO. Resistance to leaf rust in wheat derived from Aegilops umbellulata translocation lines. Crop Sci,1963,4:246-248
    274. Sprague R. Relative susceptibility of certain species of Gramineae to Cercosporella herpotrichoides. J Agric Res,1936,53:659-670
    275. Steinitz-Sears LM. Somatic instability of telocentric chromosomes in wheat and the nature of the centromere. Genetics,1966,54:241-248
    276. Taketa S, Awayama T, Ichii M, Sunakawa M, Kawahara T, Murai K. Molecular cytogenetic identification of nullisomy 5B induced homoeologous recombination between wheat chromosome 5D and barley chromosome 5H. Genome,2005,48:115-124
    277. Talbert LE and Clack TH. Identification of D-genome chromosomes on Chinese Spring of Southern blots using genome-specific repetitive DNA. J Hered,1991,82:509-512
    278. Tixier MH, Sourdille PMS. Detection of wheat microsallite using no-radioactive silvermitrate staining method [J]. Genetic Breed,1997,51:175-177
    279. Trethowan RM, Pena RJ, van Ginkel M. The effect of indirect tests for grain quality on the grain yield and industrial quality of bread wheat. Plant Breed,2001,120:509-512
    280. Tsujimoto H. Gametocidal genes in wheat and its relatives. I. Genetic analysis in common wheat of a gametocidal gene derived from Aegilops speltoides. Can J Genet Cytol,1984,26:78-84
    281. Tsujimoto H, Tsunewaki K. Gametocidal genes in wheat and its relatives. II. Suppressor of the chromosome 3C gametocidal gene of Aegilops triuncialis. Can J Gene. Cytol,1985,27:178-184
    282. Tsujimoto H, Noda K. Chromosome breakage in wheat induced by the gametocidal gene of Aegilops triuncialis L.:Its utilization for wheat genetics and breeding. Proc 7th Int wheat Genet Symp Cambridge,1988, pp 455-460
    283. Tsujimoto H, Gill BS. Repetitive DNA sequences from polyploidy Elymus trachycaulus and the diploid progenitor species: detection and genome affinity of Elymus chromatin added to wheat. Genome,1991,34:782-789
    284. Van Campenhout S, Vander Stappen J, Sagi L. Locus-specific primers for LMW glutenin genes on each of the group 1 chromosomes of hexaploid wheat. Theor Appl Genet,1995,91:313-319
    285. Vega JM, Feldman M. Effect of the pairing gene Phl on centromere division in common wheat. Genetics,1998,148:1285-1294
    286. von Bothmer R, Claesson L. Production and meiotic pairing of intergeneric hybrids of Triticum(?)Dasypyrum species. Euphytica,1990,51:109-117
    287. Wells DG, Wong R, Sze-Chung, Lay CL, Gardner WAS, Buchenau GW. Registration of C.I.15092 and C.I.15093 wheat germ plasm. Crop Sci,1973.13:776
    288. Wells DG, Kota RS, Sandhu HS, Gardner WAS, Finney KF. Registration of one disomic substitution line and five translocation lines of winter wheat germ plasm resistant to wheat streak mosaic virus. Crop Sci,1982,22:1277-1278
    289. Wienhues A. Transfer of rust resistance of Agropyron to wheat by addition substitution and translocation. In: MacKey J (Ed). Proc 2nd Int Wheat Genet. Symp Heredims Supp, Vol.2, Lund, Sweden.1966, pp 328-341
    290. Wienhues A. Translocations between wheat chromosomes and an Agropyron chromosome conditioning rust resistance. In: Sears ER, Sears LMS (Eds). Proc 4th Int Wheat Genet Syrup Univ of Missouri, Columbia, USA,1973, pp 201-207
    291. Wood EAJ, Sebesta EE, Stark KJ. Resistance of'Gaucho'triticale to Schizaphis graminum. Environ Entomol,1974,3:720-721
    292. Yildirim A, Jones SS, Murray TD. Mapping a gene conferring resistance to Pseudocercosporella herpotrichoides on chromosome 4V of Dasypyrum villosum in a wheat background. Genome,1998, 41:1-6
    293. Yu MQ, Deng GB, Zhang XP, Ma XQ, Chen J. Effect of phlb mutant on chromosome pairing in hybrids between Dasypyrum villosum and Triticum aestivum. Plant Breed,2001,120:285-289
    294. Zeller EJ, Hsam SL. Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. In: Sakamoto S (ed). Proc 6th Int Wheat Genet Syrup, Kyoto, Japan,1983, pp 161-173
    295. Zhang HB, Dvorak J. Isolation of repeated DNA sequences from Lophopyrum elongatum for detection of Lophopyrum chromatin in wheat. Genome,1990,33:282-293
    296. Zhang P, Friebe B, Lukaszewski AJ, Gill BS: The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma,2001a,110:335-344
    297. Zhang P, Li W, Friebe B, Gill BS. Simultaneous painting of three genomes in hexploid wheat by BAC-FISH. Genome,2004,47:979-987
    298. Zhang Q, Li Q, Wang X, Wang H, Lang S, Wang Y, Wang S, Chen P, Liu D. Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS-4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica,2005,145,317-320
    299. Zhang W, Gao AL, Zhou B, Chen PD. Screening and applying wheat microsatellite markers to trace individual Haynaldia villosa chromosomes. Acta Genetica Sinica,2006,33 (3):236-243
    300. Zhong GY, Qualset CO. Allelic diversity of high-molecular-weight glutenin protein subunits in natural populations of Dasypyrum villosum (L.) Candargy. Theor Appl Genet,1993,86:851-858
    301. Zhong SB, Zhang DY, Li BH, Yao JX. Identification of Haynaldia villosa chromosomes added to wheat using a sequential C-banding and genomic in situ hybridization technique. Theor Appl Genet, 1996,92:116-120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700