粳稻穗部性状遗传分析和QTL定位及关联作图
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国的粳稻种植面积701.1万hm2占全世界粳稻种植面积(1254.2万hm2)的一半以上。杂交粳稻年种植面积仅占粳稻种植总面积的3%,与取得巨大成就的杂交籼稻相比,杂交粳稻还有很大的发展空间。杂交粳稻在抗病虫等方面具有一定的优势,但产量竞争优势并不明显。改良穗部性状是提高产量的有效途径。发掘穗部性状有利等位变异是改良穗部性状的基础。本研究首先利用栽培粳稻品种秀水79和粳稻恢复系C堡及其衍生的含有370个家系的重组自交系群体对一次枝梗数和二次枝梗数进行了遗传分离分析。然后以其中254个家系为作图群体构建了粳稻SSR标记连锁图谱,并在此图谱基础上对粳稻的穗部性状和剑叶性状进行了QTL定位。最后利用SSR分子标记对太湖流域粳稻地方品种和现今生产上大面积推广应用的育成品种组成的粳稻自然群体进行穗部性状和标记的关联分析。主要研究结果如下:
     1.运用主基因+多基因混合遗传模型,对2005年和2006年粳稻品种秀水79与C堡及其杂交后代通过一粒传衍生的重组自交系群体(F7:8和F8:9,简称“秀堡RIL群体”)370个家系的主茎穗一次枝梗数和二次枝梗数进行遗传分析的结果显示,一次枝梗数性状受两对连锁主基因控制,同时存在多基因,主基因遗传率分别为66%和40%,多基因遗传率分别为11%和41%;二次枝梗数性状受2对独立的主基因控制,同时存在多基因,主基因遗传率分别为80%和65%,多基因遗传率分别为10%和12%。
     2.以915对SSR引物扩增粳稻品种秀水79和粳稻恢复系C堡的总DNA,发现105对引物在双亲之间存在多态性。第1染色体多态率最小,为7.8%。第7染色体多态率最大,为16.4%。以秀堡RIL群体中的254个家系(F10:11)为作图群体,用这105对引物进行基因型鉴定,构建了粳稻SSR分子标记连锁图谱。由91个信息位点构成的连锁图谱全长969cM,位点间平均图距10.6 cM。秀水79总等位基因频率为0.537,C堡为0.463,符合1:1的分离比例。
     3.在2个生长环境下种植秀堡RIL群体254个家系(F10:11)及其亲本,调查穗部6个性状和剑叶4个性状。利用上述SSR分子标记连锁图谱,进行加性效应位点,加性与加性互作位点对,以及QTL与环境互作效应的检测,结果(1)10个性状共检测到53个加性位点。一次枝梗数检测到5个加性位点,解释表型变异的4%-11%。二次枝梗数检测到4个加性位点,解释表型变异的2%-16%。穗长检测到6个加性位点,解释表型变异的1%-34%。每穗颖花数检测到6个加性位点,解释表型变异的2%-11%。每穗实粒数检测到6个加性位点,解释表型变异的3%-6%。着粒密度检测到4个加性位点,解释表型变异的2%-21%。剑叶长检测到3个加性位点,解释表型变异的8%-40%。剑叶宽检测到5个加性位点,解释表型变异的4%-16%。剑叶叶面积指数检测到5个加性位点,解释表型变异的0.6%-14%。剑叶卷曲度检测到9个加性位点,解释表型变异的2%-9%。(2)在检测到的所有加性位点中,发现3个多效性位点同时作用于剑叶性状和穗部性状,其中第9染色体分别位于RM6570-RM5652和RM5652-RM410区段内的2个位点均同时控制剑叶长和穗长,分别解释剑叶长表型变异的41%和40%和穗长表型变异的34%和34%。这种多效性现象与剑叶长和穗长的相关性(r=0.86,P<0.01)一致。(3)除二次枝梗数没有检测到互作位点外,其它9个性状共检测到29对加性×加性互作位点,解释单个性状表型变异的1.0%-17.5%。所有检测到的主效位点和上位性互作位点均不存在基因型与环境的互作。
     4.利用91个SSR标记对太湖流域粳稻地方品种核心种质(58份代表性材料)及目前生产上大面积推广的粳稻育成品种(36份代表性材料)的基因组变异进行扫描。分别分析两个群体的连锁不平衡位点和其组成自然群体后的群体结构。采用TASSEL软件的GLM (general linear model)方法对粳稻穗部7个性状进行标记与性状的关联分析,并对与性状关联的等位变异作解析。结果(1)地方品种和推广品种在相同和不同染色体间均存在较高程度的连锁不平衡,且LD衰减较慢。(2)对这两个群体组成的自然群体进行结构分析发现,此群体由8个亚群组成,且亚群的划分与抽穗期生态类型划分相关,表明抽穗期的分化具有一定的遗传基础。(3)共有28个等位变异位点与7个穗部性状关联,其中17个位点同时与多个性状关联,这与多个性状间显著相关相互印证。(4)鉴定出50个优异等位变异和28个携带这些优异等位变异的载体材料。
Japonica rice growing area in China is 7,011,000 hm2 each year and accounts for more than 50 percent of world's japonica area (12,542,000 hm2). The area planted with japonica hybrid rice only occupied 3% of the total area of japonica rice in China. Therefore, great space exists for developing japonica hybrid rice, compared with indica hybrid rice, in which great achievement had been made. Japonica hybrid rice has advantage in resistant to disease and pests, but competition heterosis in yield is not obvious. Improving panicle traits is an efficiency method for yield enhancement. Discovering favorable alleles for panicle traits is the foundation for panicle trait improvement. In this study, genetic segregation analysis of primary branch number and secondary branch number per panicle were performed firstly by using 370 recombinant inbred lines (RILs) and their parents, Xiushui 79 and C Bao, which are both japonica rice cultivars. Secondly, a SSR linkage map in japonica rice was constructed by using 254 RILs selected from above 370 RILs. Thirdly, QTLs of panicle traits and flag leaf traits were detected based on the map. Finally, association analysis between panicle traits and SSR markers was conducted in natural population composed of 58 core collections of landrace and 36 cultivars currently used widely in japonica rice in Taihu Lake valley. The main results are as follows:
     1. Primary branch number per panicle was controlled by two linkage major genes plus polygenes. Major gene heritability was 66% in 2005 and 40% in 2006, and polygene heritability was 11% in 2005 and 41% in 2006. Secondary branch number per panicle was controlled by two major genes plus polygenes. Major gene heritability was 80% in 2005 and 65% in 2006, and polygene heritability was 10% in 2005 and 12% in 2006. The results above were obtained by analyzing 2 years of segregation data of primary branch number and secondary branch number in RIL population (370 lines, F7:8 in 2005 and F8:9 in 2006, Xiubao RIL population for short)) made from Xiushui 79 and C Bao with the mixed major-gene plus polygenes inheritance model.
     2. Among 915 pairs of SSR primers used for screening polymorphism between Xiushui 79 and C Bao,105 pairs of primers amplified polymorphic products using total DNA of the two parents as template. Chromosome 1 showed the smallest polymorphism rate (7.8%). Chromosome 7 showed the largest polymorphism rate (16.4%). A SSR linkage map was constructed by genotyping 254 family lines (F10:11) from Xiubao RIL population by using above 105 SSR markers. The map containing 91 information loci has a total distance of 969 cM, averaging 10.6 cM between two loci. The total allele frequency for the RIL population was calculated at 0.537 and 0.463 for Xiushui 79 and C Bao, respectively, fitting to the expected allelic frequency of 1:1.
     3. Phenotypes values of six panicle traits and four flag leaf traits in two growing environments were investigated in 254 Xiubao RILs and their parents. QTLs of additive effects and additive×additive effects for these ten traits were detected and their interaction with environments was analyzed based on above SSR linkage map. The results showed that:(1) 53 additive effects QTLs for all ten traits were identified. Five additive QTLs were detected for primary branch number per panicle, explained 4%~11% of the phenotypic variation; Four additive QTLs were detected for secondary branch number per panicle explained 2%~16% of the phenotypic variation; Six additive QTLs were detected for panicle length, explained 1%~34% of the phenotypic variation; Six additive QTLs were detected for spikelet number per panicle, explained 2%~11% of the phenotypic variation; Six additive QTLs were detected for filled grain number per panicle, explained 3%~6% of the phenotypic variation; Four additive QTLs were detected for spikelet density, explained 2%~21% of the phenotypic variation; Three additive QTLs were detected for flag leaf length, explained 8%~40% of the phenotypic variation; Five additive QTLs were detected for flag leaf width, explained 4%~16% of the phenotypic variation; Five additive QTLs were detected for flag leaf area, explained 0.6%~14% of the phenotypic variation; Nine additive QTLs were detected for leaf rolled index, explained 2%~9% of the phenotypic variation. (2) Three pleiotropic effects loci were found which have simultaneous effects on flag leaf traits and panicle traits, two large effect loci in RM6570-RM5652 and RM5652-RM410 on chromosome 9, respectively, have simultaneous positive effects on FLL and PL. They explained 41% and 40% of the phenotypic variation in FLL, respectively,34% and 34% of the phenotypic variation in PL, respectively. The pleiotropic was confirmed by correlation analysis that FLL and PL have the largest contributions to each other (r=0.86, P< 0.01). (3) Twenty nine epistatic interaction QTL pairs detected for all traits except SBN, explained 1.0%~17.5% of the phenotypic variation for single trait.
     4. The genotyping data of 91 SSR markers on representative sample of 58 core collections of Japonica rice landrace in Taihu Lake valley and 36 accessions currently used widely in japonica rice production were used in the present study. Linkage disequilibriums of pairwise loci were analyzed for the two populations and population structure was analyzed for the natural population which was composed of the two above populations. Then the association analysis between SSR loci and 7 panicle traits was performed by using TASSEL GLM (general linear model) program. Alleles of loci significantly associated with the traits in two environments were analysised. The results showed that:(1) Various degrees of LD were detected not only among markers on the same chromosomes but also among markers on the different chromosomes, and the LD attenuation was slow. (2) Genetic structure analysis showed that the natural population was composed of eight subpopulations, which associated with their heading date eco-types, indicating the classification of heading date eco-types was of found genetic bases. (3) Twenty eight loci associated with the panicle traits were screened out from the natural population. Seventeen (60%) loci were found to associate with two or more traits simultaneously, which was confirmed by correlation analysis that most traits were significant correlated to each other. (4) Fifty favorable alleles and 28 their carrier materials were screened out.
引文
陈献功,刘金波.洪德林.粳稻直立穗和弯曲穗3个杂交组合6个世代穗角和每穗颖花数的遗传分析[J].作物学报,2006,32:1143-1150
    陈忠明.三系杂交粳稻选育进展、问题及对策[J].上海农业科技,2000,(3):4-6
    邓华凤,何强,舒服,等.中国杂交粳稻研究现状与对策[J].杂交水稻,2006,21:1-6
    方福平.中国及世界粳稻生产现状[J].世界农业,2005,12:22-23,36
    盖钧镒,章元明,王建康.植物数量性状遗传体系[M].北京:科学出版社,2003:8-223
    郭媛,万志兵,陈献功,等.粳稻一次枝梗数和二次枝梗数的遗传分析[J].南京农业大学学报,2008,31:8-12
    郭媛,程保山,洪德林.粳稻SSR连锁图谱的构建及恢复系卷叶性状QTL分析[J].中国水稻科学,2009,23:256-262
    洪德林,陶瑾,陆作楣,粳稻BT型六盐不育系选育及配合力分析[J].江苏农业科学,1997,2:2-5
    洪德林,粳稻BT型同质恢与非同质恢育性恢复力及后代经济性状研究[J].江苏农业科学,1998a,5:2-7
    洪德林,潘恩飞,陈长青.杂交粳稻与纯系粳稻收获指数比较研究[J].南京农业大学学报,1998b,21(4):12-18
    洪德林,杨开晴,潘恩飞.粳稻不同生态类型间F1的杂种优势及其亲本的配合力分析[J].中国水稻科学,2002,16(3):216-220
    荆彦辉,孙传清,谭禄宾,等.云南元江普通野生稻穗颈维管束和穗部性状的QTL分析[J].遗传学报,2005,32(2):178-182
    荆彦辉,付永彩,孙传清,等.水稻穗颈维管束及产量相关性状的QTL分析[J].中国农业大学学报,2004,9(5):16-21
    金伟栋,洪德林.太湖流域粳稻地方品种核心种质的构建[J].江苏农业学报,2007,23:516-525
    李建红,洪德林.新选粳稻BT型不育系主要农艺及品质性状的配合力分析[J].南京农业大学学报,2004,27(4):11-16
    李仕贵,马玉清,何平,等.一种未知的卷叶基因的识别和定位[J].四川农业大学学报,1998,16:391-393
    李仕贵,何平,王玉平,等.水稻剑叶性状的遗传分析和基因定位[J].作物学报,2006,26(3):261-265
    李铮友.水稻杂种优势利用[M].北京:农业出版社,1977,29-44
    刘金波,洪德林.粳稻穗角和每穗颖花数的遗传分析[J].中国水稻科学,2005,19:223-230
    彭勇,梁永书王世全,等.水稻SSR标记在RI群体中的偏分离[J].分子植物育种,2006,4:786-790
    邵元健,陈宗祥,张亚芳,等.一个水稻卷叶主效QTL的定位及其物理图谱的构建[J].遗传学报,2005a,32:501-506.
    邵元健,潘存红,陈宗祥,等.水稻不完全隐性卷叶主基因rl(t)的精细定位[J].科学通报,2005b,50:2107-2113
    沈革志,王新其,殷丽青,等.T-DNA插入水稻群体中卷叶突变体R1-A2的遗传分析[J].实验生物学报,2003,36:460-464
    沈福成.水稻卷叶性状遗传初探[J].贵州农业科学,1983,3:9-12
    汤述翥,张宏根,梁国华,等.三系杂交粳稻发展缓慢的原因及对策[J].杂交水稻,2008,23(1):1-5
    滕胜,钱前,曾大力,等.水稻穗颈维管束及穗部性状的QTL分析[J].植物学报,2002,44(3):301-306
    万志兵,洪德林,程海涛,等.粳稻新老品种株型性状比较[J].南京农业大学学报,2005,28(1):1-7
    王才林,汤玉庚.中国杂交粳稻育种的现状与展望[J].中国农业科学,1989,22(5):8-13
    汪得凯,刘合芹,李克磊,等.一个窄叶突变体的鉴定和基因定位[J].科学通报,2009,54:752-758
    徐正进,陈温福,张步龙,等.水稻高产生理研究的现状与展望[J].沈阳农业大学学报,1991,22(S1):115-123
    岳兵,薛为亚,罗利军,等.水稻剑叶部分形态生理特性QTL分析以及它们与产量、产量性状的关系[J].遗传学报,2006,33:824—832
    严长杰,陈峰,严松,等.利用DH群体分析水稻产量与蒸煮品质的遗传相关性[J].作物学报,2007,33:363-369
    严长杰,严松,张正球,等.一个新的水稻卷叶突变体rl9(t)的遗传分析和基因定位[J].科学通报,2005,50:2757-2762.
    杨小红,严建兵,郑艳萍,等.植物数量性状关联分析研究进展[J].作物学报,2007,33(4):523-530
    杨振玉,陈秋柏,陈荣芳,等.水稻粳型恢复系C57的选育[J].作物学报,1981,7(8):153-156
    杨振玉,陈秋柏,陈荣芳,等.水稻粳型恢复系“黎优57”的选育[J].中国农业科学,1982,1:38-42
    杨振玉.北方杂交粳稻发展的回顾与展望[A].杨振玉.北方杂交粳稻育种研究[C].北京,中国农业科技出版社,1999,3-11
    杨振玉.中国杂交粳稻的发展及其技术策略[A].邓华凤.杂交粳稻理论与实践[C].北京, 中国农业出版社,2006,12-15
    余东,吴海滨,杨文韬,等.水稻单侧卷叶突变体B157遗传分析及基因初步定位分子[J].植物育种,2008,6:220-226
    袁隆平.杂交水稻育种栽培学[M].长沙,湖南科学技术出版社,1996,2-3
    袁隆平.杂交水稻育种学[M].北京,中国农业出版社,2002,40
    张学勇,庞斌双,游光霞,等.中国小麦品种资源Chu 1位点组成概况及遗传多样性分析[J].中国农业科学,2002,35:1302-1310
    章元明,盖钧镒,王永军.利用P1、P2和DH或RIL群体联合分离分析的拓展[J].遗传,2001,23(5):467-470
    章志宏,陈明明,唐俊,等.水稻穗颈维管束及穗部性状的遗传分析[J].作物学报,2002a,28(1):86-89
    章志宏,李平,王灵霞,等.与水稻籼粳分化有关的穗颈维管束性状基因的分子标记定位[J].遗传学报,2002b,29(11):995-1000
    Agrama HA, Eizenga GC, Yan W. Association mapping of yield and its components in rice cultivars[J]. Mol Breed,2007,19:341-356
    Alwala S, Kimbeng CA, Veremis JC, et al. Identifcation of molecular markers associated with sugar-related traits in a Saccharum interspecific cross[J]. Euphytica,2009,167:127-142
    Andetsm JR, Schrag T, Melchinger AE, et al. Validation of Dwarf8 polymorphisms associated with flowering time in elite european inbred line of maize (Zee mays L) [J]. Theor Appl Genet,2005,111:206-217
    Ando T, Toshio Y, Shimizu T, et al. Genetic dissection and pyramiding of quantitative traitsfor panicle architecture by using chromosomal segment substitution lines in rice[J]. Theor Appl Genet,2008,116:881-890
    Arnir F, Coppieters W, Arranz J, et al. Extensive genome-wide linkage disequilibrium in cattle[J]. Genome Res,2000,10:220-277
    Ashikari M, Sakakibara H, Lin SY, et al. Cytokinin oxidase regulates rice grain production[J]. Science,2005,309:741-745
    Brondani C, Rangel N, Brondani V, et al, QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers[J]. Theor Appl Genet,2002,104:1192-1203
    Breseghello F, Mark ES. Association mapping of kernel size and milling quality in wheat (Triticum aestuvim L.) cultivars[J]. Genetics,2006,172:1165-1177
    Cai W, Morishima H. QTL clusters reflect character associations in wild and cultivated rice[J]. Theor Appl Genet,2002,104:1217-1228
    Camus-Kulandaivelu L, Veyrierae JB, Madur D, et al. Maize adaptation to temperate climate: relationship with population structure and polymorphism is the Dwarf8 gene[J]. Genetics, 2006,172:2449-2463
    Causse MA, Fulton TM, Cho YG, et al. Saturated molecular map of rice genome based on a interspecific backcross population[J]. Genetics,1994,138:1251-1274
    Charlesworth B. Driving genes and chromosomes[J]. Nature,1998,332:394-395
    Chen X, Temnykh S, McCouch SR, et al. Development of a microsatellite framework mapproviding genome-wide coverage in rice (Oryza sativa L) [J]. Theor Appl Genet,1997, 95:553-567
    Cloutier S, Cappadocia M, Landry BS. Analysis of RFLP mapping inaccuracy in Brassica napus L[J]. Theor Appl Genet,1997,95:83-91
    Cui KH, Peng SB, Xing YZ, et al. Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice[J]. Theor Appl Genet,2003,106:649-658
    Cui TH, Zhu J, Wu RL. Functional mapping for genetic control of programmed cell death[J]. Physiol Genome,2006,25:458-469
    Dellaporta SL, Wood J, Hicks JB, et al. A plant DNA miniprepration:Version II [J]. Plant Mol Biol Rep,1983,1:19-21
    Dong F, Xiong Z, Qian Q, et al. Breeding near-isogenic lines of morphological markers in indica rice[J]. Chin J Rice Sci,1994,8:135-139
    Edward Bucker lad. Maize Diversity Research, http://www.maizegenetics.Net/bioinformatics (2007-01-30).
    Eizenga GC, Agrama HA, Lee FN, et al. Exploring genetic diversity and potential novel disease resistance genes in a collection of rice (Oryza spp.) wild relatives [J]. Genet Resour Crop Evol,2009,56:65-76
    Eizenga GC, Agrama HA, Lee FN, et al. Identifying novel resistance genes in newly introduced blast resistant rice germplasm[J]. Crop Sci,2006,46:1870-1878
    Elston RC, Steward J. The analysis of quantitative traits for simple genetic models from parental, fland backcross data[J]. Genetics,1973,73:695-711
    Fan CC, X YZ, Mao HL, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theor Appl Genet,2006,112:1164-1171
    Flavio B, Mark E. Association Mapping of Kernel Size and Milling Quality in Wheat [J]. Genetics,2006,105:1165-1177
    Flint-Garcia SA, Thornsberry JM, Buckler ES, et al. Structure of linkage disequilibrium in plants[J]. Annu Rev Plant Biol,2003,54:357-374
    Flint-Garcia SA, Thuillet A, Yu J, et al. Maize association population:Ahign resolution platform for QTL dissection[J]. Plant Journal,2005,44:1054-1064
    Fujino K, Sekiguchi H, Sato T, et al. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.) [J]. Theor Appl Genet,2004,108:794-799
    Fujino K, Matsuda Y, Ozawa K, et al. NARROW LEAF 7 controls leaf shape mediated by auxin in rice[J]. Mol Genet Genomics,2008,279:499-507
    Gai JY, Wang JK. Identification and estimation of a QTL model and its effects[J]. Theor Appl Genet,1998,97:1162-1168
    Garris A J, Tai T H, Coburn J, et al. Genetic structure and diversity in Oryza sativa L[J]. Genetics, 2005,169:1631-1638
    Gaut BS, Long AD. The lowdown on linkage disequilibrium[J]. The plant cell,2003,15: 1502-1506
    Gebhardt C, Ballvora A, Walkemeier B et al. Assessing genetic potential in germplasm collections of crop plants by marker-trait association:a case study for potatoes with quantitative variation of resistance to late blight and maturity type[J]. Mol Breed,2004,13:93-102
    Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in higher plants: Present status and future prospects[J]. Plant Mol Biol,2005,57:461-485
    Harushima Y, Kurate N, Yano M, et al. Detection of segregation in an indica-japonica rice cross using a high resolution molecular map[J]. Theor Appl Genet,1996,92:145-150
    He P, Li JZ, Zheng XW, et al. Comparison of molecular linkage maps and agronomic trait loci between DH and RIL populations derived from the same rice cross[J]. Crop sci,2001,41(4): 1240-1246
    Hill AP. Quantitative linkage:A statistical procedure forits detection and estimation[J]. Ann Hum Genet Lond,1975,38:439-449
    Hittalmani S, Huang N, Courtois B, et al. Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia[J]. Theor Appl Genet,2002,107:679-690
    Hong DL, Leng Y. Genetic analysis of heterosis for number of spikelets per panicle and panicle length of F1 hybrids in japonica rice hybrids [J]. Rice Sci,2004,11(5-6):255-260
    Huang XZ, Qian Q, Liu ZB, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nat genet,2009,41:494-497
    Igartua E, Casas AM, Ciudad F, et al. RFLP markers associated with major genes controlling heading date evaluated in a barley germ plasm pool[J]. Heredity,1999,83:551-559
    International Rice Genome Sequencing Project. The map-based sequence of the rice genome[J]. Nature,2005,436:793-800
    Ivandic V, Hackett CA, Nevo E, et al. Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent:associations with ecology, geography and flowering time[J]. Plant Mole Bio,2002,48:511-527
    Iwata H, Uga Y, Yoshioka Y, et al. Bayesian association mapping of multiple quantitative trait loci and its application to the analysis of genetic variation among Oryza sativa L. germplasms[J]. Theor Appl Genet,2007,114:1437-1449
    Jiang GH, He YQ, Xu CG, et al. The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross[J]. Theor Appl Genet,1997, 95:799-808
    Katswo K, Mizushima U. Studies on the cytoplasmic difference among rice varies, Oryza sativa L. I. On the fertility of hybrids obtained reciprocally between cultivated and wild varieties[J]. Jpn J Breed,1958,8:1-5 (in Japanese)
    Keurentjes JJB, Fu JY, Terpstra IR, et al. Regulatory network construction in Arabidopsis by using genome-wide gene expressionquantitative trait loci[J]. Proc Natl Acad Sci,2007,104: 1708-1713
    Kobayashi A, Genliang B, Shenghai Y, et al. Detection of quantitative loci for white-back and basal-white kernels under high temperature stress in japonica rice varieties[J]. Breed Sci, 2007,57:107-116
    Kobayashi S, Fukuta Y, Sato T, et al. Molecular maker dissection of rice (Oryza sativa L) plant architecture under temperate and tropical climates[J]. Theor Appl Genet,2003,107: 1350-1356
    Kobayashi S, Fukuta Y, Morita S, et al. Quantitative trait loci affecting flag leaf development in rice (Oryza sativa L.) [J]. Breed Sci,2003,53:255-262
    Komatsu K, Maekawa M, Ujiie S, et al. LAX and SPA:Major regulators of shoot branching in rice[J]. Proc Natl Acad Sci,2003a,100:11765-11770.
    Komatsu K, Chujo A, Nagato Y, et al. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development, 2003b,130:3841-3850
    Konishi S, Izawa T, Lin SY. et al. A SNP caused loss of seed shattering during rice domestication[J]. Science,2006,312:1392-1396
    Kraakman ATW, Niks RE, Berg PMMMV, et al. Linkage disequilibrium mapping of yield and yield stability in modern Spring barley cultivars[J]. Genetics,2004,168:435-446
    Kurata N, Nagamura Y, Yamamoto K, et al. A 300 kilobase interval genetic map of rice including 883 expressed sequences[J]. Nuture Genet,1994,8:365-372
    Lanceras JC, Pantuwan G, Jongdee B. Quantitative trait Loci associated with drought tolerance at reproductive stage in rice. Plant physiology,2004,135:384-399
    Lander ES, Green P, Abraham SJ, et al. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations[J]. Genomics,1987,1:174-181
    Lander ES, Botstein S. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics,1989,121:185-199
    Li C, Zhou A. Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara[J]. The New Phytologist,2006,170:185-193
    Liao CY, Wu P, Hu B, et al. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number[J]. Theor Appl Genet,2001,103:104-111
    Li ZC, Mu P, Li CP, et al. QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments[J]. Theor Appl Genet, 2005,110:1244-1252
    Li Z K, Pinson SRM, Park WD, et al. Epistasis for three grain yield components in rice Oryza sativa L[J]. Genetics,1997,145:453-465
    Li ZK, Pinson SRM, Stansel JW, et al. Genetic dissection of the source-sink relationship affecting fecundity and yield in rice(Oryza sativa L.) [J]. Mol Breed,1998,4:419-426
    Li ZK, Luo LJ, Mei HW. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield[J]. Genetics,2001,158: 1737-1753
    Lincoln SE, Daly MJ, Lander ES. Constructing genetic linkage maps with MAPMAKER/EXP VER.3.0:a tutorial and reference manual,3rd edn. Technical Report, Whitehead Institute for Biomedical Research, Cambridge,1993, Mass.
    Lin HX, Qian HR, Zhuang JY. RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.) [J]. Theor Appl Genet,1996,92:920-927
    Liu T, Mao DH, Zhang SP, et al. Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa) [J]. Theor Appl Genet,2009,118: 1509-1517
    Lu C, Shen L, Tan Z, et al. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population[J]. Theor Appl Genet,1996,93: 1211-1217
    Liu K, Muse SV. PowerMarker:an integrated analysis environment for genetic marker analysis[J]. Bioinformatics,2005,21:2128-2129.
    Luo Z K, Yang Z L, Zhong B Q, et al. Genetic analysis and fine mapping of a dynamic rolled leaf gene, RL 10(t), in rice(Oryza sativa L.) [J]. Genome,2007,50:811-817
    Lynch M, Walsh B. Genetics and analysis of quantitative traits[M]. Sunderland,1998, MA: Sinauer
    Lyttle TW. Segregation distorers[J]. Annu Rev Gennt,1991,25:511-557
    Ma JF, Shen F, Zhao Z, et al. Response of rice to A1 stress and identification of quantitative trait Loci for A1 tolerance[J]. Plant cell physiology,2002,43:652-659
    Maccaferri M, Sanguineti MC, Enrico N, et al. Population struction and long-range linkage disequilibrium in a durum wheat elite collection[J]. Mol Breed,2005,15:271-289
    Mackay I, Powel W. Methods for linkage disequilibrium mapping in crops[J]. Trends plant sci, 2007,12:57-63
    March R E. Gene mapping by linkage and association analysisifJ]. Mol Biotechnol,1999,13: 113-122
    Matsubara K, Kono I, Hori K, et al. Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars[J]. Theor Appl Genet,2008,117:935-945
    McCouch SR, Cho YG, Yano M, et al. Report on QTL nomenclature[J]. Rice Genet Newslett, 1997,14:11-13
    McCouch SR, Kochert G, Yu ZH, et al. Molecular mapping of rice chromosomes[J]. Theor Appl Genet,1988,76:815-829
    McCouch SR, Teytelman L, Xu Y et al. Development and Mapping of 2,240 New SSR Markers for Rice (Oryza sativa L.) [J]. DNA Res,2002,9:199-207
    Mcmillan I, Robertson A. The power of methods for the detection of major genes effecting quantitative traits[J]. Heredity,1974,32:349-356
    Mei HW, Luo LJ, Ying CS, et al. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross population [J]. Theor Appl Genet, 2003,107:89-101
    Mei H W, Li ZK, Shu Q Y, et al. Gene actions of QTLs affecting several agronomic traits resolved n a recombinant inbred rice population and two backcross populations[J]. Theor Appl Genet,2005,110(4):649-659
    Mei HW, Xu JL, Li ZK, et al. QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations rice (Oryza sative L)[J]. Theor Appl Genet,2006,112: 648-656
    Nagata K, Fukuta Y, Shimizu H, et al. Quantitative trait loci or sink size and ripening traits in rice (Oryza sativa L) [J]. Breed Sci,2002,52:259-276
    Nakagahru M. Genetic mechanism on the distorted segregation of maker gene belonging to the eleventh linkage group in cultivated rice [J]. Japan J Breed,1972,22:232-238
    Perfectti F, Pascuai L. Segregation distortion of isozyme loci in cherimoya(Annona cherimola Mill) [J]. Theor Appl Genet,1996,93:440-446
    Peter B. Trait Analysis by association, evolution and Linkage (TASSEL):General linear model[M]. 2007, http://sourceforge.net/projects/tassel
    Pritchard JK, Stephen M, Donnelly P. Inference of population structure using multilocus genotype data[J]. Genetics,2000,155:945-959
    Qi J, Qian Q, Bu Q, et al. Mutation of the rice Narrow leafl gene, which encodes a novel protein, affects vein patterning and polar auxin transport[J]. Plant Physiol,2008,147:1947-1959
    Ramalingam J, Kukreju K, Chittoor JM, et al. Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice[J]. Mol plant-microbe interaction.2003,16:14-24
    Redona ED, Mackill DJ. Quantitative trait locus analysis for rice panicle and grain characteristics[J]. Theor Appl Genet,1998,96:957-963
    Remington DL, Thornsberry J M, Matsuoka Y, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome[J]. Proc Natl Acad Sci,2001,98:11479-11484
    Risch, NJ. Searching for genetic determinants in the new millennium[J]. Nature,2000,405: 847-856
    Rostoks N, Ramsay L, MacKenzie K, et al. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties[J]. Proc Natl Acad Sci, 2006,103:18656-18661
    Sandier L, Novitkki E. Meiotic drive as an evolutionary force[J]. Amer Naturalist,1957, 41:105-110
    Sandier L, Golic K. Segregation distortion in drosophila[J]. Trends Genet,1985,1:181-185
    Sangnietti CJ, Dias Neto E, Simpson AJG, et al. Rapid silver staining and recover of PCR products separated on polyacrylamide gel[J]. Biotechniques,1994,17:915-919
    Sasahara H, FukutuY, Fukuyuma T. Mapping of QTLs for vascular bundle system and spike morphology in rice, Oryza sativa L[J]. Breed Sci,1999,49:75-81
    Senanayake N, Naylor REL, de Datta SK, et al. Variation in development of contrasting rice cultivars[J]. J Agr Sci,1994,123 (1):35-39
    Shi Z Y, Wang J, Wan X S, et al. Over-expression of rice OsAG07 gene induces upward curling of the leaf blade that enhanced erect-leaf habit[J]. Planta,2007,226:99-108
    Shinjyo C. Cytoplasmic-genetic male sterility in cultivated rice. Oryza sativa L.Ⅱ. The inheritance of male sterility[J]. Jpn J Breed,1969,44:149-156
    Shirasawa K, Maeda H, Monna L, et al. The number of genes having different alleles between rice cultivars estimated by SNP analysis[J]. Theor Appl Genet,2007,115:1067—1074
    Sibov ST, de Souza JCL, Garcia AAF, et al. Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers.1. Map construction and localization of loci showing distorted segregation[J]. Hereditas,2003,139:96-106.
    Sohei K, Yoshimichi F, Satoshi M, et al. Quantitative trait loci affecting flag leaf development in rice(Oryza sativa L.). Breed sci,2003,53:255-262
    Soller M, BRODY T, Genizi A. In the power of experimental designs for detection of linkage between maker loci and quantitative loci in crosses between inbred lines[J]. Theor Appl Genet,1976,47:35-39
    Stuber CW. Mapping and manipulating quantitative traits in maize[J]. Trends Genet,1995,11: 477-481
    Tabata M, Hirabayashi H, Takeuchi Y, et al. Mapping of quantitative trait loci for the occurrence of white-back kernels associated with high temperatures during the ripening period of rice (Oryza sativa L.) [J]. Breed Sci,2007,57:47-52
    Takeuchi Y, Hayasaka H, Chiba B, et al. Mapping quantitative loci controlling cool- temperature tolerance at booting stage in temperate japonica rice[J]. Breed Sci,2001,51:191-197
    Tankslay SD. Mapping polygenes [J]. Annu REV Genet,1993,27:205-233
    Tanksley SD, Nelson JC. Advanced backcross QTL analysis method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplam into elite breeding lines[J]. Theor Appl Genet,1996,92:191-203
    Temnykh S, Park W D, Ayres N, et al. Mapping and genome organization of microsatellite sequence in rice (Oryza sativa L.) [J]. Theor Appl Genet,2000,100:697-712.
    Thoday JM. Location of polygenes[J]. Nature,1961,191:368-370
    Thornsberry JM, Goodman MM, Doebley J, et al. Dwarf8 polymorphisms associate with variation in flowering time[J]. Nat Genet,2001,28:286-289
    Tian F, Zhu ZF, Zhang BS, et al. Fine mapping of a quantitative trait locus for grain number per panicle from wild rice(Oryza rufipogon Griff) [J]. Theor Appl Genet,2006,113:619-629
    Virk PS, Ford-Lloyd BV, Jackson MT, et al. Predicting quantitative variation within rice germplasm using molecular markers[J]. Heredity,1996,76:296-304
    Virmani SS, Chaudhary RC, Khush GS. Current outlook on hybrid rice [J]. Oryza,1981,18: 67-84
    Virmani SS, Aquino RC, Khush GS. Heterosis breeding in rice(Oryza sativa L.)[J]. Theor Appl Genet,1982,63 (4):373-380
    Virmani SS. Heterosis and Hybrid Rice Breeding[M]. Berlin/Heidelberg:Springer-Verlag,1994a: 2-7
    Virmani SS. Prospects of hybrid rice in the tropics and subtropics[C]//Virmani S S.Hybrid Rice Technology:new developments and future prospects. Manila,Philippines:International Rice Research Institute,1994b:7-19
    Wada T, Uchimura Y, Ogata T, et al. Mapping of QTLs for physicochemical properties in japonica rice[J]. Breed Sci,2006,56:253-260
    Wang DL, Zhu J, Li ZK, et al. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches [J]. Theor Appl Genet,1999,99:1255-1264
    Wang J, Podlich DW, Cooper M, et al. Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits[J]. Theor Appl Genet,2001,103:804-816
    Wen WW, Mei HW, Feng FJ, et al. Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm of rice(Oryza sativa L.) [J]. Theor Appl Genet,2009, published on line
    Wu RL, Ma CX, Zhao W, et al. Functional mapping of quantitative trait loci underlying growth rates:A parametric model[J]. Physiol Genomics,2003a,14:241-249
    Wu RL, Ma CX, Lou YX, et al. Molecular dissection of allometry, ontogeny and plasticity:A genomic view of developmental biology[J]. BioSci,2003b,53:1041-1047
    Wu RL, Lin M. Functional mapping-how to map and study the genetic architecture of dynamic complex traits[J]. Nature Rev Genet,2006,7:229-237
    Xiao J, Li J, Yuan L, et al. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross[J]. Theor Appl Genet, 1995,92:230-244
    Xiao J, Grandillo S, Ahn SN, et al. Genes from wild rice improve yield[J]. Nature,1996,384: 223-224
    Xing YZ, Tan YF, Xu CG, et al. Mapping and isolation of quantitative trait loci controlling plant height and heading date in rice[J]. Acta Bot Sin,2001,43:840-845
    Xing YZ, Tan YF, Hua JP, et al. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice[J]. Theor Appl Genet,2002,105:248-257
    Xing Y Z, Tang W J, Xue W Y, et al. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice[J]. Theor Appl Genet,2008,116:789-796
    Xu Y, Zhu L, Xiao J, et al. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice(Oryza sativa L.) [J]. Mol Gen Genet,1997,253:535-545
    Xu Y, Shen Z, Xu J, et al. Interval mapping of quantitative trait loci by molecular markers in rice (Oryza sativa L.) [J]. Sci in China,1995,38(4):422-428
    Xue B, Xue WY, Luo LJ, et al. QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice[J]. Acta genetica Sinica,2006,33:824-832
    Xue WY, Xing YZ, Weng XU, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nat genet,2008,40:761-767
    Yagi T, Nagata K, Fukuta Y, et al. QTL mapping of spikelet number in rice (Oryza sativa L.) [J]. Breed Sci,2001,51:53-56
    Yamagishi M, Takeuchi Y, Kono I, et al. QTL analysis for panicle characteristics in temperate japonica rice[J]. Euphytica,2002,128:219-224
    Yamagishi J, Miyamoto N, Hirotsu S, et al. QTLs for branching, floret formation, and pre-flowering floret abortion of rice panicle in a temperate japonica×tropical japonica cross[J]. Theor Appl Genet,2004,109:1555-1561
    Yamagishi J, Nemoto K, Mu CS. Diversity of the rachis-branching system in a panicle in japonica rice[J]. Plant Prod Sci,2003,6 (1):59-64
    Yan CJ, Zhou JH, Yan S, et al. Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice(Oryza sativa L.) [J]. Theor Appl Genet,2007,115: 1093-1100
    Yan S, Yan CJ, Zeng HX, et al. ROLLED LEAF 9, encoding a GARP protein, regulates the leaf abaxial cell fate in rice[J]. Plant Mol Biol,2008,68:239-250
    Yan WG, Li Y, Agrama HA. Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.) [J]. Mol Breed,2009, published on line.
    Yang J, Zhu J, Williams RW. Mapping the genetic architecture of complex traits in experimental populations[J]. Bioinformatics,23:1527-1536.
    Yang J, Hu CC, Hu H, et al(2008). QTLNetwork:mapping and visualizing genetic architecture of complex traits in experimental populations[J]. Bio informatics,2007,24:721-723
    Yang RQ, Tian Q, Xu S. Mapping quantitative trait loci for longitudinal traits in line crosses[J]. Genetics,2006,173:2339-2356
    Yu J, Buckler. Genetic association mapping and genome organization of maize[J]. Current opinion in Biotechnology,2006,17:155-160
    Yu SB, Li JX, Xu CG, et al. Importance of epistansis as the genetic basis of heterosis in an elite rice hybrid[J]. Proc Natl Acad Sci,1997,94:9226-9231
    Yu SB, Li JX, X CG, et al. Epistasis play an important role as genetic basis of heterosis in rice[J]. Science in China (Series C).1998,41:293-302
    Yu SB, Li JX, X CG, et al. Identifiction of quantitative trait loci and epistatic interactions for plant height and heading date in rice[J]. Theor Appl Genet,2002,104:619-625
    Yuan LP. Increasing yield potential in rice by exploitation of heterosis[C]//Virmani S S.Hybrid Rice Technology:new developments and future prospects. Manila Philippines:International Rice Research Institute,1994:1-6
    Zeng D, Qian Q, Dong G, et al (2003). Development of isogenic lines of morphological markersin indica ricefJ]. Acta Bot Sin,2002,45:1116-1120
    Zeng ZB. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci[J]. Proc Natl Acad Sci,1993,90:10972-10976
    Zeng ZB. Precision mapping of quantitative traits loci[J]. Genetics,1994,136:1457-1468
    Zeng ZB. QTL mapping and the genetic basis of adaptation:recent developmen[J]. Genetica, 2005,123:25-37
    Zhang GH, Qian X, Xu D Z, et al. SHALLOT-LIKE1 is a KANADI Transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development[J]. The Plant Cell, 2009,21:719-735
    Zhang QF, Maroof MAS, Lu TY, et al. Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis[J]. Theor Appl Genet,1992,83(4):495—499
    Zhang N, Xu Y, Akash Met al. Identification of candidate markers associated with agronomic traits in rice using discriminant analysis[J]. Theor Appl Genet,2005,110:721-729
    Zhu J. Analysis of conditional effects and variance components in developmental genetics[J]. Genetics,1995,141:1633-1639.
    Zhu J, Weir BS. Mixed model approaches for genetic analysis of quantitative traits. In Advanced Topics in Biomathematics:Procceedings of International Conference on Mathematical Biology[C].1998, Singapore:World Scientific Publishing, pp:321-330.
    Zhu Q, Zheng X, Luo J, et al. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives:severe bottleneck during domestication of rice[J]. Mol Biol Evol,2007,24: 875—888
    Zhuang JY, Lin HX, Lu J, Analysis of QTL x environment interaction for yield components and plant height in rice[J].Theor Appl Genet,1997,95:799-808
    Zhuang JY, Fan YY, Rao ZM, et al. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in recombinant inbred line population of rice[J]. Theor Appl Genet,2002,105:1137-1145
    Zondervan KT, Cardon LR. The complex interplay among factors that influence allelic association[J]. Nat Rev Genet,2004,5:89-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700