水稻氮代谢相关基因OsARG的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是我国最重要的粮食作物之一,其产量的提高对确保我国农业可持续发展具有重要的战略意义。氮素是植物生长发育的主要营养元素,适当增加氮肥的施用量是水稻获得高产的重要措施,但是氮肥的过量施用也造成了作物种植效益降低和环境污染等负面影响。因此,研究如何提高作物的氮素利用效率对农业的可持续发展具有重要的意义。本研究利用一个水稻氮营养缺陷型突变体,通过图位克隆的方法分离了水稻中与氮代谢相关的一个重要基因,并进行了功能分析,为阐明水稻高效吸收利用氮素的遗传机理,从分子生物学途径改良作物的氮素利用率提供了重要的分子基础。本文主要研究结果如下:
     1.水稻突变体abp1来源于四倍体间杂种H3774的花药培养后代,是经过多代自交形成的稳定株系。主要特征是株高偏矮、穗长降低、穗上部坏死、干尖、籽粒窄细、千粒重低,最明显的差异是结实率低,只有10.26%,而野生型的结实率高达92.82%。虽然突变体的颖花发育正常,但花粉育性降低。氮肥梯度实验表明,突变体对外源氮素较敏感,随着氮肥施用量的增加,突变表型得到部分恢复。在相同的氮素供应条件下,突变体茎叶等营养器官中的氮含量与野生型相比增加显著,说明氮素向贮藏器官籽粒转运的效率比较低,是一个氮营养缺陷型突变体。
     2.之前的研究已经将水稻abp1突变基因定位在第4染色体的标记In10和AL1-1之间,物理距离为76Kb,含有13个完整的开放阅读框。测序比较发现,在ORF8的编码区有一个单碱基的突变,形成终止密码子(TGA),造成蛋白翻译的提前终止,因此将该基因确定为候选基因。将ORF8的全长cDNA和包含自身启动子的基因组片段分别转入突变体中,其转基因植株的表型得到恢复。另外,我们还分析了一个ORF8的T-DNA插入突变体abp1-2,它与abp1表型完全一致,表明ORF8就是目标基因,将其命名为OsARG。
     3.OsARG编码精氨酸酶,在水稻基因组中只有1个拷贝。定量RT-PCR和GUS组织染色的分析结果表明,该基因在水稻的根、茎、叶、叶鞘和穗中都有表达。突变体abp1中OsARG的表达水平与野生型相比显著降低,OsARG碱基突变还影响了氮代谢途径中的基因OsGS1;1的表达,与野生型相比,该基因的表达水平增加显著。亚细胞定位的结果初步表明,OsARG蛋白在水稻原生质体中呈点状分布,符合用软件分析得出的OsARG蛋白N端有一个线粒体定位序列的推测。
     4.在突变体abp1中,OsARG基因编码区的单碱基突变使得该蛋白翻译提前终止,造成了突变体中精氨酸酶的催化活性丧失,其作用底物精氨酸的含量过量累积,使abp1中氮素循环出现异常,从而导致了突变体株高偏矮、穗长缩短、穗上部坏死、籽粒窄细、结实率和千粒重降低等不良表型。
     5.在过表达OsARG的转基因植株中,单株产量、单株实粒数和结实率与对照相比都增加显著,而且产量的增加主要归因于单株实粒数的增加,表明利用OsARG基因的过量表达可以调控和改善植株体内的氮素代谢,提高水稻的氮素利用效率,实现增加产量的可能性。
Rice is an important food crop and any genetic improvement on agronomic traits would playbeneficial roles on its yield increment. Nitrogen is considered as an essential major element forplant growth and development, and its reasonable application could bring the increase of grainyield. However, excessively applied nitrogen would decrease nitrogen use efficiency (NUE) andcause serious environmental pollution. From both view points of economic and environmentprotection, any measure on improving NUE at lower level of fertilizer supplement should beadopted. Through the study to an aberrant panicle mutant abp1, we detected out a mutationoccurred at the gene OsARG that responsible for nitrogen use efficiency, a single base pairmutation from G to T caused the abolishment of OsARG’s functions and excessive argnineaccumulation in such organs as stem, leaf and panicle, and finally resulted in the abnormalphenotype of abp1. Results from our experiment are summarized as follows:
     1. Compared with wild type plant, the mutant abp1exhibited shorter plant height and paniclelength, thinner grains and lightened1000-grain weight, as well as degenerated upper part ofpanicles, lower pollen fertility and seed-setting rate. By the exogenous nitrogen supplementexperiments, the abp1phenotypic defects could nearly be recovered to be normal along with theconcentration increment of applied nitrogen. At ripen stage, the nitrogen remained in stem andleaf were significantly higher than those in wild type. It suggested that certain amount of nitrogenhad not be transported out of stems and leaves. All results mentioned above suggested that abp1was a nitrogen nutrition related mutant.
     2. The abp1locus was previously mapped to the rice chromosome4between markers In10and AL1-1, spanning76kb physical distance in which13predicted open reading frames werefound. Sequence comparison between the mutant and wild type revealed a single base substitutionof G to T, introducing a new stop codon (TGA) at ORF8of abp1mutant. ORF8was subsequentlyconsidered as the likely candidate gene of abp1. The complement test transformed either cDNAor genomic fragment of ORF8into the abp1could recover abp1phenotype to be normal,especially, the panicle development fully restored. In addition, one T-DNA insertion to ORF8producing a similar phenotype as abp1provided an extra evidence that ORF8was responsible forthe mutant phenotype.
     3. ORF8was annotated as arginase encoding the gene OsARG which had only one copy inrice genome. Analysis of quantitative real-time PCR revealed that OsARG expressedconstitutively in various organs including root, stem, leaf blade, leaf sheath and panicle, whichwas further verified by GUS-staining analysis. In abp1, the OsARG expression level wasdecreased significantly. In addition, the expression level of OsGS1;1was increased, indicatingthat the mutation in OsARG had affected the transcript of other genes involved in the nitrogenmetabolism pathway. According to the result of GFP expression positions visualized by confocal microcope, OsARG exhibited spottedly distribution in protoplasts, which was corresponding tothe subcellular localization of mitochondria.
     4. In abp1, the mutation in OsARG caused the abolishment of OsARG’s functions andexcessive argnine accumulation in such organs as stem, leaf and panicle, which resulted in theabnormality of nitrogen metabolism, and finally resulted in the abnormal phenotype of abp1.
     5. In transgenic plants overexpressing OsARG, significant increases were observed in filledgrain number, seed-setting rate and the grain yield, and grain number was the yield componentthat was mostly responsible for the increase in grain yield with a strong relationship. Theseresults display a potential value for this gene utilization on improvement of nitrogen useefficiency.
引文
[1]. Alabadi, D., Aguero, M.S., Perez-Amador, M.A.,Carbonell, J.(1996). Arginase, argininedecarboxylase, ornithine decarboxylase, and polyamines in tomato ovaries (changes inunpollinated ovaries and parthenocarpic fruits induced by auxin or gibberellin). Plantphysiology,112,1237.
    [2]. Alburquerque, N., Egea, J., Burgos, L., Martínez Romero, D., Valero, D.,Serrano, M.(2006).The influence of polyamines on apricot ovary development and fruit set. Annals of AppliedBiology,149,27-33.
    [3]. Amarante, L., Lima, J.D.,Sodek, L.(2006). Growth and stress conditions cause similarchanges in xylem amino acids for different legume species. Environmental and ExperimentalBotany,58,123-129.
    [4]. Andraski, T.W., Bundy, L.G.,Brye, K.R.(2000). Crop management and corn nitrogen rateeffects on nitrate leaching. Journal of environmental quality,29,1095-1103.
    [5]. Araki, R.&Hasegawa, H.(2006). Expression of rice (Oryza sativa L.) genes involved inhigh-affinity nitrate transport during the period of nitrate induction. Breeding Science,56,295-302.
    [6]. Bellucci, M., Ederli, L., De Marchis, F., Pasqualini, S.,Arcioni, S.(2004). Transformation ofLotus corniculatus plants with Escherichia coli asparagine synthetase A: effect on nitrogenassimilation and plant development. Plant Cell, Tissue and Organ Culture,78,139-150.
    [7]. Brears, T., Liu, C., Knight, T.J.,Coruzzi, G.M.(1993). Ectopic overexpression of asparaginesynthetase in transgenic tobacco. Plant Physiology,103,1285.
    [8]. Broadbent, F.E., De Datta, S.K.,Laureles, E.V.(1987). Measurement of Nitrogen UtilizationEfficiency in Rice Genotypes1. Agronomy Journal,79,786-791.
    [9]. Brownfield, D.L., Todd, C.D.,Deyholos, M.K.(2008). Analysis of Arabidopsis arginase genetranscription patterns indicates specific biological functions for recently diverged paralogs.Plant Molecular Biology,67,429-440.
    [10].Bufogle, A., Bollich, P.K., Kovar, J.L., Macchiavelli, R.E.,Lindau, C.W.(1997). Rice varietydifferences in dry matter and nitrogen accumulation as related to plant stature and maturitygroup. Journal of Plant Nutrition,20,1203-1224.
    [11].Cai, H., Zhou, Y., Xiao, J., Li, X., Zhang, Q.,Lian, X.(2009). Overexpressed glutaminesynthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant cellreports,28,527-537.
    [12].Cao, F.Q., Werner, A.K., Dahncke, K., Romeis, T., Liu, L.H.,Witte, C.P.(2010).Identification and Characterization of Proteins Involved in Rice Urea and ArginineCatabolism. Plant Physiology,154,98.
    [13].Carter, E.L., Flugga, N., Boer, J.L., Mulrooney, S.B.,Hausinger, R.P.(2009). Interplay ofmetal ions and urease. Metallomics,1,207-221.
    [14].Chang, Z., Kuchar, J.,Hausinger, R.P.(2004). Chemical cross-linking and mass spectrometricidentification of sites of interaction for UreD, UreF, and urease. Journal of BiologicalChemistry,279,15305.
    [15].Chen, H., McCaig, B.C., Melotto, M., He, S.Y.,Howe, G.A.(2004). Regulation of plantarginase by wounding, jasmonate, and the phytotoxin coronatine. Journal of BiologicalChemistry,279,45998-46007.
    [16].Cookson, S.J., Williams, L.E.,Miller, A.J.(2005). Light-dark changes in cytosolic nitratepools depend on nitrate reductase activity in Arabidopsis leaf cells. Plant Physiology,138,1097.
    [17].Couturier, J., de Fay, E., Fitz, M., Wipf, D., Blaudez, D.,Chalot, M.(2010). PtAAP11, a highaffinity amino acid transporter specifically expressed in differentiating xylem cells of poplar.Journal of Experimental Botany,61,1671-1682.
    [18].Cren, M.&Hirel, B.(1999). Glutamine synthetase in higher plants regulation of gene andprotein expression from the organ to the cell. Plant and Cell Physiology,40,1187.
    [19].Crété, P., Caboche, M.,Meyer, C.(1997). Nitrite reductase expression is regulated at thepost‐transcriptional level by the nitrogen source in Nicotiana plumbaginifolia andArabidopsis thaliana. The Plant Journal,11,625-634.
    [20].De Angeli, A., Monachello, D., Ephritikhine, G., Frachisse, J.M., Thomine, S.,Gambale, F.,et al.(2006). The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plantvacuoles. Nature,442,939-942.
    [21].De Datta, S.K.&Broadbent, F.E.(1990). Nitrogen-use efficiency of24rice genotypes on anN-deficient soil. Field Crops Research,23,81-92.
    [22].De Datta, S.K.&Broadbent, F.E.(1993). Development changes related to nitrogen-useefficiency in rice. Field Crops Research,34,47-56.
    [23].Engineer, C.B.&Kranz, R.G.(2007). Reciprocal leaf and root expression of AtAmt1.1androot architectural changes in response to nitrogen starvation. Plant physiology,143,236.
    [24].Fageria, N.K.&Baligar, V.C.(2005). Enhancing nitrogen use efficiency in crop plants.Advances in Agronomy,88,97-185.
    [25].Fei, H., Chaillou, S., Hirel, B., Mahon, J.D.,Vessey, K.J.(2003). Overexpression of asoybean cytosolic glutamine synthetase gene linked to organ-specific promoters in pea plantsgrown in different concentrations of nitrate. Planta,216,467-474.
    [26].Fei, H., Chaillou, S., Hirel, B., Polowick, P., Mahon, J.D.,Vessey, J.K.(2006). Effects of theoverexpression of a soybean cytosolic glutamine synthetase gene (GS15) linked toorgan-specific promoters on growth and nitrogen accumulation of pea plants supplied withammonium. Plant physiology and biochemistry,44,543-550.
    [27]. Ferrario-Méry, S., Masclaux, C., Suzuki, A., Valadier, M.H., Hirel, B.,Foyer, C.H.(2001).Glutamine and a-ketoglutarate are metabolite signals involved in nitrate reductase genetranscription in untransformed and transformed tobacco plants deficient inferredoxin-glutamine-a-ketoglutarate aminotransferase. Planta,213,265-271.
    [28]. Flores, T., Todd, C.D., Tovar-Mendez, A., Dhanoa, P.K., Correa-Aragunde, N.,Hoyos, M.E.,et al.(2008). Arginase-negative mutants of Arabidopsis exhibit increased nitric oxidesignaling in root development. Plant physiology,147,1936.
    [29]. Forde, B.G.(2000). Nitrate transporters in plants: structure, function and regulation.Biochimica et Biophysica Acta (BBA)-Biomembranes,1465,219-235.
    [30]. Forde, B.G.&Lea, P.J.(2007). Glutamate in plants: metabolism, regulation, and signalling.Journal of Experimental Botany,58,2339.
    [31]. Freyermuth, S.K., Bacanamwo, M.,Polacco, J.C.(2000). The soybean Eu3gene encodes anNi‐binding protein necessary for urease activity. The Plant Journal,21,53-60.
    [32]. Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M.,Kirby, E.G.(1999).Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta,210,19-26.
    [33]. Gerendás, J., Zhu, Z.,Sattelmacher, B.(1998). Influence of N and Ni supply on nitrogenmetabolism and urease activity in rice (Oryza sativa L.). Journal of Experimental Botany,49,1545.
    [34]. Glass, A.D.M.(2003). Nitrogen use efficiency of crop plants: physiological constraints uponnitrogen absorption. Critical Reviews in Plant Sciences,22,453-470.
    [35]. Glass, A.D.M., Britto, D.T., Kaiser, B.N., Kinghorn, J.R., Kronzucker, H.J.,Kumar, A., et al.(2002). The regulation of nitrate and ammonium transport systems in plants. Journal ofExperimental Botany,53,855.
    [36]. Goldraij, A.&Polacco, J.C.(1999). Arginase is inoperative in developing soybean embryos.Plant physiology,119,297.
    [37]. Good, A.G.&Muench, D.G.(1993). Long-term anaerobic metabolism in root tissue(metabolic products of pyruvate metabolism). Plant Physiology,101,1163.
    [38]. Good, A.G., Johnson, S.J., De Pauw, M., Carroll, R.T., Savidov, N.,Vidmar, J., et al.(2007).Engineering nitrogen use efficiency with alanine aminotransferase. Canadian Journal ofBotany,85,252-262.
    [39]. Good, A.G., Shrawat, A.K.,Muench, D.G.(2004). Can less yield more? Is reducing nutrientinput into the environment compatible with maintaining crop production?. Trends in plantscience,9,597-605.
    [40]. Goto, S., Akagawa, T., Kojima, S., Hayakawa, T.,Yamaya, T.(1998). Organization andstructure of NADH-dependent glutamate synthase gene from rice plants. Biochimica etBiophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1387,298-308.
    [41]. Habash, D.Z., Massiah, A.J., Rong, H.L., Wallsgrove, R.M.,Leigh, R.A.(2001). The role ofcytosolic glutamine synthetase in wheat. Annals of Applied Biology,138,83-89.
    [42]. Hirel, B.&Gadal, P.(1980). Glutamine synthetase in rice: a comparative study of theenzymes from roots and leaves. Plant Physiology,66,619.
    [43]. Ho, C.H., Lin, S.H., Hu, H.C.,Tsay, Y.F.(2009). CHL1functions as a nitrate sensor in plants.Cell,138,1184-1194.
    [44]. Inthapanya, P.(2000). Genotypic performance under fertilised and non-fertilised conditions inrainfed lowland rice. Field Crops Research,65,1-14.
    [45]. Jenkinson, C.P., Grody, W.W.,Cederbaum, S.D.(1996). Comparative properties of arginases.Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,114,107-132.
    [46]. Jonassen, E.M., Sévin, D.C.,Lillo, C.(2009). The bZIP transcription factors HY5and HYHare positive regulators of the main nitrate reductase gene in Arabidopsis leaves, NIA2, butnegative regulators of the nitrate uptake gene NRT1.1. Journal of plant physiology,166,2071-2076.
    [47]. Kaiser, B.N., Rawat, S.R., Siddiqi, M.Y., Masle, J.,Glass, A.D.M.(2002). Functional analysisof an Arabidopsis T-DNA" knockout" of the high-affinity NH4+transporter AtAMT1;1. PlantPhysiology,130,1263.
    [48]. Krumpelman, P.M., Freyermuth, S.K., Cannon, J.F., Fink, G.R.,Polacco, J.C.(1995).Nucleotide sequence of Arabidopsis thaliana arginase expressed in yeast. Plant physiology,107,1479.
    [49]. Kumar, A., Silim, S.N., Okamoto, M., Siddiqi, M.Y.,Glass, A.(2003). Differential expressionof three members of the AMT1gene family encoding putative high‐affinity NH4+transportersin roots of Oryza sativa subspecies indica. Plant, Cell&Environment,26,907-914.
    [50]. Ladha, J.K., Kirk, G., Bennett, J., Peng, S., Reddy, C.K.,Reddy, P.M., et al.(1998).Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm.Field Crops Research,56,41-71.
    [51]. Lafitte, H.R.(1998). Research opportunities to improve nutrient-use efficiency in ricecropping systems. Field Crops Research,56,223-236.
    [52]. Larsson, C.M., Larsson, M., Purves, J.V.,Clarkson, D.T.(1991). Translocation and cyclingthrough roots of recently absorbed nitrogen and sulphur in wheat (Triticum aestivum) duringvegetative and generative growth. Physiologia Plantarum,82,345-352.
    [53]. Lea, P.J.&Azevedo, R.A.(2006). Nitrogen use efficiency.1. Uptake of nitrogen from the soil.Annals of Applied Biology,149,243-247.
    [54]. Lea, P.J.&Azevedo, R.A.(2007). Nitrogen use efficiency.2. Amino acid metabolism. Annalsof Applied Biology,151,269-275.
    [55]. Lea, P.J.&Miflin, B.J.(2003). Glutamate synthase and the synthesis of glutamate in plants.Plant Physiology and Biochemistry,41,555-564.
    [56]. Lee, Y.H., Foster, J., Chen, J., Voll, L.M., Weber, A.P.M.,Tegeder, M.(2007). AAP1transports uncharged amino acids into roots of Arabidopsis. The Plant Journal,50,305-319.
    [57]. Li, W., Wang, Y., Okamoto, M., Crawford, N.M., Siddiqi, M.Y.,Glass, A.D.M.(2007).Dissection of the AtNRT2.1: AtNRT2.2inducible high-affinity nitrate transporter gene cluster.Plant physiology,143,425.
    [58]. Liepman, A.H.&Olsen, L.J.(2004). Genomic analysis of aminotransferases in Arabidopsisthaliana. Critical Reviews in Plant Sciences,23,73-89.
    [59]. Lillo, C., Meyer, C., Lea, U.S., Provan, F.,Oltedal, S.(2004). Mechanism and importance ofpost‐translational regulation of nitrate reductase. Journal of Experimental Botany,55,1275.
    [60]. Limami, A., Phillipson, B., Ameziane, R., Pernollet, N., Jiang, Q.,Roy, R., et al.(1999). Doesroot glutamine synthetase control plant biomass production in Lotus japonicus L.?. Planta,209,495-502.
    [61]. Lin, C.M., Koh, S., Stacey, G., Yu, S.M., Lin, T.Y.,Tsay, Y.F.(2000). Cloning and functionalcharacterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice.Plant Physiology,122,379.
    [62]. Liu, J., Hara, C., Umeda, M., Zhao, Y., Okita, T.W.,Uchimiya, H.(1995). Analysis ofrandomly isolated cDNAs from developing endosperm of rice (Oryza sativa L.): evaluation ofexpressed sequence tags, and expression levels of mRNAs. Plant molecular biology,29,685-689.
    [63]. Liu, K.H., Huang, C.Y.,Tsay, Y.F.(1999). CHL1is a dual-affinity nitrate transporter ofArabidopsis involved in multiple phases of nitrate uptake. The Plant Cell Online,11,865.
    [64]. Loque, D.&Von Wirén, N.(2004). Regulatory levels for the transport of ammonium in plantroots. Journal of Experimental Botany,55,1293.
    [65]. Loqué, D., Yuan, L., Kojima, S., Gojon, A., Wirth, J.,Gazzarrini, S., et al.(2006). Additivecontribution of AMT1;1and AMT1;3to high‐affinity ammonium uptake across the plasmamembrane of nitrogen‐deficient Arabidopsis roots. The Plant Journal,48,522-534.
    [66]. Ludewig, U., Wilken, S., Wu, B., Jost, W., Obrdlik, P.,El Bakkoury, M., et al.(2003).Homo-and hetero-oligomerization of ammonium transporter-1uniporters. Journal ofBiological Chemistry,278,45603.
    [67]. Mae, T.&Ohira, K.(1981). The remobilization of nitrogen related to leaf growth andsenescence in rice plants (Oryza sativa L.). Plant and Cell Physiology,22,1067.
    [68]. Makino, A., Mae, T.,Ohira, K.(1984). Relation between nitrogen and ribulose-1,5-bisphosphate carboxylase in rice leaves from emergence through senescence. Plant and CellPhysiology,25,429.
    [69]. Mantelin, S.&Touraine, B.(2004). Plant growth-promoting bacteria and nitrate availability:impacts on root development and nitrate uptake. Journal of experimental Botany,55,27.
    [70]. Martin, A., Lee, J., Kichey, T., Gerentes, D., Zivy, M.,Tatout, C., et al.(2006). Two cytosolicglutamine synthetase isoforms of maize are specifically involved in the control of grainproduction. The Plant Cell Online,18,3252.
    [71]. Masclaux-Daubresse, C., Reisdorf-Cren, M., Pageau, K., Lelandais, M., Grandjean,O.,Kronenberger, J., et al.(2006). Glutamine synthetase-glutamate synthase pathway andglutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. PlantPhysiology,140,444.
    [72]. Meyer, C.&Stitt, M.(2001). Nitrate reduction and signalling. Plant Nitrogen,37-59.
    [73]. Micallef, B.J.&Shelp, B.J.(1989a). Arginine metabolism in developing soybean cotyledons:I. Relationship to nitrogen nutrition. Plant physiology,90,624.
    [74]. Micallef, B.J.&Shelp, B.J.(1989b). Arginine metabolism in developing soybean cotyledons:III. Utilization. Plant physiology,91,170.
    [75]. Miesak, B.H.&Coruzzi, G.M.(2002). Molecular and physiological analysis of Arabidopsismutants defective in cytosolic or chloroplastic aspartate aminotransferase. Plant physiology,129,650.
    [76]. Moll, R.H.&Jackson, E.J.(1982). Analysis and Interpretation of Factors Which Contribute toEfficiency of Nitrogen Utilization1. Agronomy Journal,74,562.
    [77]. Muench, D.G.&Good, A.G.(1994). Hypoxically inducible barley alanine aminotransferase:cDNA cloning and expression analysis. Plant molecular biology,24,417-427.
    [78]. Murooka, Y., Mori, Y.,Hayashi, M.(2002). Variation of the amino acid content ofArabidopsisseeds by expressing soybean aspartate aminotransferase gene. Journal of bioscience andbioengineering,94,225-230.
    [79]. Nasholm, T.&Persson, J.(2001). Plant acquisition of organic nitrogen in boreal forests.Physiologia Plantarum,111,419-426.
    [80]. Nazoa, P., Vidmar, J.J., Tranbarger, T.J., Mouline, K., Damiani, I.,Tillard, P., et al.(2003).Regulation of the nitrate transporter gene AtNRT2.1in Arabidopsis thaliana: responses tonitrate, amino acids and developmental stage. Plant Molecular Biology,52,689-703.
    [81]. Okamoto, M., Kumar, A., Li, W., Wang, Y., Siddiqi, M.Y.,Crawford, N.M., et al.(2006).High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-likegene AtNRT3.1. Plant Physiology,140,1036.
    [82]. Okamoto, M., Vidmar, J.J.,Glass, A.D.M.(2003). Regulation of NRT1and NRT2genefamilies of Arabidopsis thaliana: responses to nitrate provision. Plant and Cell Physiology,44,304.
    [83]. Okumoto, S., Koch, W., Tegeder, M., Fischer, W.N., Biehl, A.,Leister, D., et al.(2004). Rootphloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3.Journal of Experimental Botany,55,2155-2168.
    [84]. Okumoto, S., Schmidt, R., Tegeder, M., Fischer, W.N., Rentsch, D.,Frommer, W.B., et al.(2002). High affinity amino acid transporters specifically expressed in xylem parenchymaand developing seeds of Arabidopsis. Jouranl of Biological Chemistry,277,45338-45346.
    [85]. Oliveira, I.C., Brears, T., Knight, T.J., Clark, A.,Coruzzi, G.M.(2002). Overexpression ofcytosolic glutamine synthetase. Relation to nitrogen, light, and photorespiration. PlantPhysiology,129,1170.
    [86]. Peng, S., Huang, J., Zhong, X., Yang, J., Wang, G.,Zou, Y., et al.(2002). Challenge andopportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China.中国农业科学:英文版,776-785.
    [87]. Piao, Z.Z., Cho, Y.I.,Koh, H.J.(2001). Inheritance of physiological nitrogen-use efficiencyand relationship among its associated characters in rice. Korean J Breeding,33,332-337.
    [88]. Plett, D., Toubia, J., Garnett, T., Tester, M., Kaiser, B.N.,Baumann, U.(2010). Dichotomy inthe NRT gene families of dicots and grass species. PLoS One,5,15289.
    [89]. Polacco, J.C.&Holland, M.A.(1993). Roles of urease in plant cells. International review ofcytology,65.
    [90]. Quilleré, I., Dufossé, C., Roux, Y., Foyer, C.H.F., Caboche, M.,Morot-Gaudry, J.F.(1994).The effects of deregulation of NR gene expression on growth and nitrogen metabolism ofNicotiana plumbaginifolia plants. Journal of Experimental Botany,45,1205.
    [91]. Ricoult, C., Echeverria, L.O., Cliquet, J.B.,Limami, A.M.(2006). Characterization of alanineaminotransferase (AlaAT) multigene family and hypoxic response in young seedlings of themodel legume Medicago truncatula. Journal of experimental botany,57,3079.
    [92]. Sakata, K., Nagamura, Y., Numa, H., Antonio, B.A., Nagasaki, H.,Idonuma, A., et al.(2002).RiceGAAS: an automated annotation system and database for rice genome sequence. NucleicAcids Research,30,98.
    [93]. Sanguinetti, C.J., Dias, N.E.,Simpson, A.J.(1994). Rapid silver staining and recovery of PCRproducts separated on polyacrylamide gels. Biotechniques,17,914.
    [94]. Seiffert, B., Zhou, Z., Wallbraun, M., Lohaus, G.,M llers, C.(2004). Expression of a bacterialasparagine synthetase gene in oilseed rape (Brassica napus) and its effect on traits related tonitrogen efficiency. Physiologia Plantarum,121,656-665.
    [95]. Shen, B., Carneiro, N., Torres-Jerez, I., Stevenson, B., McCreery, T.,Helentjaris, T., et al.(1994). Partial sequencing and mapping of clones from two maize cDNA libraries. Plantmolecular biology,26,1085-1101.
    [96]. Shiratsuchi, H.&Yamagishiand Ryuichi, T.(2006). Leaf nitrogen distribution to maximizethe canopy photosynthesis in rice. Field Crops Research,95,291-304.
    [97]. Shrawat, A.K.&Good, A.G.(2008). Genetic engineering approaches to improving nitrogenuse efficiency. ISB News Report,1-5.
    [98]. Shrawat, A.K., Carroll, R.T., DePauw, M., Taylor, G.J.,Good, A.G.(2008). Geneticengineering of improved nitrogen use efficiency in rice by the tissue‐specific expression ofalanine aminotransferase. Plant biotechnology journal,6,722-732.
    [99]. Singh, U., Ladha, J.K., Castillo, E.G., Punzalan, G., Tirol-Padre, A.,Duqueza, M.(1998).Genotypic variation in nitrogen use efficiency in medium-and long-duration rice. Field CropsResearch,58,35-53.
    [100]. Sirko, A.&Brodzik, R.(2000). Plant ureases: roles and regulation. Acta BiochimicaPolonica,47,1189.
    [101]. Son, D.&Sugiyama, T.(1992). Molecular cloning of an alanine aminotransferase fromNAD-malic enzyme type C4plant Panicum miliaceum. Plant molecular biology,20,705-713.
    [102]. Song, J., Yamamoto, K., Shomura, A., Yano, M., Minobe, Y.,Sasaki, T.(1996).Characterization and Mapping of cDNA Encoding Aspartate Aminotransferase in Rice, Oryzasativa L. DNA Research,3,303.
    [103]. Sonoda, Y., Ikeda, A., Saiki, S., Wiren, N., Yamaya, T.,Yamaguchi, J.(2003). Distinctexpression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plantand Cell Physiology,44,726.
    [104]. Sonoda, Y., Ikeda, A., Saiki, S., Yamaya, T.,Yamaguchi, J.(2003). Feedback regulation of theammonium transporter gene family AMT1by glutamine in rice. Plant and Cell Physiology,44,1396.
    [105]. Stitt, M.(1999). Nitrate regulation of metabolism and growth. Current Opinion in PlantBiology,2,178-186.
    [106]. Tabuchi, M., Abiko, T.,Yamaya, T.(2007). Assimilation of ammonium ions and reutilizationof nitrogen in rice (Oryza sativa L.). Journal of experimental botany,58,2319.
    [107]. Tabuchi, M., Sugiyama, K., Ishiyama, K., Inoue, E., Sato, T.,Takahashi, H., et al.(2005).Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolicglutamine synthetase1;1. The Plant Journal,42,641-651.
    [108]. Takahashi, M., Sasaki, Y., Ida, S.,Morikawa, H.(2001). Nitrite reductase gene enrichmentimproves assimilation of NO2in Arabidopsis. Plant physiology,126,731.
    [109]. Tamura, K., Dudley, J., Nei, M.,Kumar, S.(2007). MEGA4: molecular evolutionary geneticsanalysis (MEGA) software version4.0. Molecular biology and evolution,24,1596.
    [110]. Tirol-Padre, A., Ladha, J.K., Singh, U., Laureles, E., Punzalan, G.,Akita, S.(1996). Grainyield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake andutilization efficiency. Field Crops Research,46,127-143.
    [111]. Todd, C.D.&Gifford, D.J.(2002). The role of the megagametophyte in maintaining loblollypine (Pinus taeda L.) seedling arginase gene expression in vitro. Planta,215,110-118.
    [112]. Todd, C.D., Cooke, J.E.K., Mullen, R.T.,Gifford, D.J.(2001). Regulation of loblolly pine(Pinus taeda L.) arginase in developing seedling tissue during germination andpost-germinative growth. Plant Molecular Biology,45,555-565.
    [113]. Tsay, Y.F., Schroeder, J.I., Feldmann, K.A.,Crawford, N.M.(1993). The herbicide sensitivitygene CHL1of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell,72,705-713.
    [114]. Walch Liu, P.&Forde, B.G.(2008). Nitrate signalling mediated by the NRT1.1nitratetransporter antagonises l‐glutamate‐induced changes in root architecture. The PlantJournal,54,820-828.
    [115]. Wallsgrove, R.M., Turner, J.C., Hall, N.P., Kendall, A.C.,Bright, S.W.J.(1987). Barleymutants lacking chloroplast glutamine synthetase--Biochemical and genetic analysis. PlantPhysiology,83,155.
    [116]. Wang, X.B., Wu, P., Hu, B.,Chen, Q.S.(2002). Effects of Nitrate on the Growth of LateralRoot and Nitrogen Absorption in Rice.植物学报(英文版),44,678-683.
    [117]. William, R.R.&Gordon, V.J.(1999). Improving nitrogen use efficiency for cereal production.Agronomy Journal,91,357-363.
    [118]. Williams, L.E., Nelson, S.J.,Hall, J.L.(1992). Characterization of solute/proton cotransport inplasma membrane vesicles from Ricinus cotyledons, and a comparison with other tissues.Planta,186,541-550.
    [119]. Wipf, D., Ludewig, U., Tegeder, M., Rentsch, D., Koch, W.,Frommer, W.B.(2002).Conservation of amino acid transporters in fungi, plants and animals. Trends in biochemicalsciences,27,139-147.
    [120]. Wirén, N.V., Gazzarrini, S., Gojont, A.,Frommer, W.B.(2000). The molecular physiology ofammonium uptake and retrieval. Current Opinion in Plant Biology,3,254-261.
    [121]. Witte, C.P., Rosso, M.G.,Romeis, T.(2005). Identification of three urease accessory proteinsthat are required for urease activation in Arabidopsis. Plant physiology,139,1155.
    [122]. Wu, P.&Tao, Q.N.(1995). Genotypic response and selection pressure on nitrogen-useefficiency in rice under different nitrogen regimes. Journal of Plant nutrition,18,487-500.
    [123]. Yamaya, T., Obara, M., Nakajima, H., Sasaki, S., Hayakawa, T.,Sato, T.(2002). Geneticmanipulation and quantitative‐trait loci mapping for nitrogen recycling in rice. Journal ofexperimental botany,53,917.
    [124]. Yoshida, H., Horie, T.,Shiraiwa, T.(2006). A model explaining genotypic and environmentalvariation of rice spikelet number per unit area measured by cross-locational experiments inAsia. Field Crops Research,97,337-343.
    [125]. Zhou, Y., Cai, H., Xiao, J., Li, X., Zhang, Q.,Lian, X.(2009). Over-expression of aspartateaminotransferase genes in rice resulted in altered nitrogen metabolism and increased aminoacid content in seeds. TAG Theoretical and Applied Genetics,118,1381-1390.
    [126]. Zhu, Z.L.&Chen, D.L.(2002). Nitrogen fertilizer use in China–Contributions to foodproduction, impacts on the environment and best management strategies. Nutrient Cycling inAgroecosystems,63,117-127.
    [127]. Zonia, L.E., Stebbins, N.E.,Polacco, J.C.(1995). Essential role of urease in germination ofnitrogen-limited Arabidopsis thaliana seeds. Plant physiology,107,1097.
    [128].曹翠玲,李生秀.(2004).氮素形态对作物生理特性及生长的影响.华中农业大学学报,23,581-586.
    [129].程存旺,石嫣,温铁军.(2010).氮肥的真实成本.
    [130].程建峰.(2005).水稻高效氮素营养的种质鉴定及生理基础.博士学位论文.南京农业大学.
    [131].程建峰,戴廷波,荆奇,姜东,潘晓云,曹卫星.(2007).不同水稻基因型的根系形态生理特性与高效氮素吸收.土壤学报,44,266-272.
    [132].崔玉亭,李荣刚.(2000).苏南太湖流域水稻经济生态适宜施氮量研究.生态学报,20,658-662.
    [133].单玉华,安藤丰.(2000).中后期追施^15N对水稻氮素积累与分配的影响.江苏农业研究,21,18-21.
    [134].单玉华,山本由德.(2001a).不同类型水稻在氮素吸收及利用上的差异.扬州大学学报:自然科学版,4,42-45.
    [135].单玉华,山本由德.(2001b).常规籼稻与杂交籼稻氮素利用效率的差异.江苏农业研究,22,12-15.
    [136].董桂春.(2007).不同氮素籽粒生产效率类型籼稻品种的基本特点.博士学位论文.扬州大学.
    [137].樊剑波,张亚丽,王东升,段英华,叶利庭,沈其荣.(2008).水稻氮素高效吸收利用机理研究进展.南京农业大学学报,31,129-134.
    [138].胡钧铭,江立庚,丁成泉,张玉,谭秦亮,韦登文.(2010).水稻花后物质流转研究进展.作物杂志,1-6.
    [139].胡忠孝.(2009).中国水稻生产形势分析.杂交水稻,24.
    [140].贾宏汝,黄群策.(2007).禾本科作物遗传改良的研究现状及发展趋势.安徽农业科学,35,8837-8839.
    [141].江立庚,曹卫星.(2002).水稻高效利用氮素的生理机制及有效途径.中国水稻科学,16,261-264.
    [142].江立庚,戴廷波,韦善清,甘秀芹,徐建云,曹卫星.(2003).南方水稻氮素吸收与利用效率的基因型差异及评价.植物生态学报,27,466-471.
    [143].邱杨.(2007).水稻显性矮杆和随退化基因的精细定位.博士学位论文.中国农业科学院.
    [144].瞿礼嘉,顾红雅,白书农.植物生物化学与分子生物学[Z]. Beijing: Science Press,2004.
    [145].李宝珍,范晓荣,徐国华.(2009).植物吸收利用铵态氮和硝态氮的分子调控.植物生理学通讯,45,80-88.
    [146].李伟波,吴留松.(1997).太湖地区高产稻田氮肥施用与作物吸收利用的研究.土壤学报,34,67-73.
    [147].刘立军.(2005).水稻氮肥利用效率及其调控途径.博士学位论文.扬州大学.
    [148].刘立军,桑大志,刘翠莲,王志琴,杨建昌,朱庆森.(2003).实时实地氮肥管理对水稻产量和氮素利用率的影响.中国农业科学,36,1456-1461.
    [149].刘立军,徐伟,唐成,王志琴,杨建昌.(2005).土壤背景氮供应对水稻产量和氮肥利用率的影响.中国水稻科学(Chinese J Rice Sci),19,343-349.
    [150].马均,朱庆森,马文波,田彦华,杨建昌,周开达.(2003).重穗型水稻光合作用,物质积累与运转的研究.中国农业科学,36,375-381.
    [151].彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,等.(2002).提高中国稻田氮肥利用率的研究策略.中国农业科学,35,1095-1103.
    [152].朴钟泽,韩龙植,高熙宗.(2003).水稻不同基因型氮素利用效率差异.中国水稻科学,17,233-238.
    [153].朴钟泽,韩龙植,高熙宗,陆家安,张建明.(2004).水稻氮素利用效率的选择效果.作物学报,30,651-656.
    [154].沈善敏.(2001).氮肥在中国农业发展中的贡献和农业中氮的损失.氮素循环与农业和环境学术研讨会论文(摘要)集.
    [155].史瑞和.(1989).植物营养原理.江苏科学技术出版社.
    [156].孙羲.植物营养原理[Z].北京:中国农业出版社,1997.
    [157].魏海燕,张洪程,杭杰,戴其根,霍中洋,许轲,等.(2008).不同氮素利用效率基因型水稻氮素积累与转移的特性.作物学报,34,119-125.
    [158].魏海燕,张洪程,马群,戴其根,霍中洋,许轲,等.(2009).不同氮肥利用效率水稻基因型剑叶光合特性.作物学报,35,12.
    [159].魏兴华,汤圣祥,余汉勇,王一平,袁筱萍,徐群.(2010).中国水稻国外引种概况及效益分析.中国水稻科学,24,5-11.
    [160].吴平,印莉萍,张立平.(2001).植物营养分子生理学.科学出版社.
    [161].席承藩.中国土壤[Z].北京:中国农业出版社,1998.
    [162].肖军,秦志伟,赵景波.(2005).农田土壤化肥污染及对策.环境保护科学,31,32-34.
    [163].许仁良,戴其根,王秀芹,黄银忠,吕修涛.(2005).氮肥施用量,施用时期及运筹对水稻氮素利用率影响研究.江苏农业科学,19-22.
    [164].杨冬赓.(2010).从我国水稻事业发展的现实需要出发.中国农业信息,1.
    [165].杨肖娥,孙羲.(1992).不同水稻品种对低氮反应的差异及其机制的研究.土壤学报,29,73-79.
    [166].张福锁,崔振岭,王激清,李春俭,陈新平.(2007).中国土壤和植物养分管理现状与改进策略.植物学通报,24,687-694.
    [167].张福锁,王激清,张卫峰,崔振岭,马文奇,陈新平,等.(2008).中国主要粮食作物肥料利用率现状与提高途径3. ACTA PEDOLOGICA SINICA.
    [168].张维理,徐爱国,冀宏杰,, K.H.(2004).中国农业面源污染形势估计及控制对策.中国农业科学,37,7.
    [169].张亚丽.(2006).水稻氮效率基因型差异评价与氮高效机理研究.博士学位论文.南京农业大学.
    [170].张耀鸿,张亚丽,黄启为,徐阳春,沈其荣.(2006).不同氮肥水平下水稻产量以及氮素吸收,利用的基因型差异比较.植物营养与肥料学报,12,616-621.
    [171].张岳芳,陈留根,周炜,王子臣,薛新红.(2009).施氮量对南粳44氮素吸收运转及氮肥利用效率的影响. ACTA AGRICULTURAE JIANGXI,21.
    [172].张云桥,吴荣生,蒋宁,刘桂华.(1989).水稻的氮素利用效率与品种类型的关系.植物生理学通讯,2,45-47.
    [173].章力建,朱立志.(2007).农业立体污染防治是当前环境保护工作的战略需求.环境保护,36-43.
    [174].朱兆良.(2004).中国农业面源污染问题迫在眉睫.生态健康与科学发展观——首届中国生态健康论坛文集.
    [175].朱兆良.(2008).中国土壤氮素研究.土壤学报,45,778-783.
    [176].朱兆良,张绍林,尹斌,颜晓元.(2010).太湖地区单季晚稻产量-氮肥施用量反应曲线的历史比较. PLANT NUTRITION AND FERTILIZER SCIENCE,16.
    [177].朱桢.(2010).转基因水稻研发进展.中国农业科技导报,9-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700