参与柿单宁代谢的MYB、bHLH及WD40转录因子基因的克隆及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柿(Diospyros kaki Thunb.)原产于中国,栽培面积和产量均居世界第一,但传统产区多为涩柿,人工脱涩处理耗费大量人力、物力和财力。柿果呈现涩感是因其果肉中单宁细胞的液胞内含有大量的原花青素(Proanthocyanidins, PAs;也称缩合单宁,condensed tannin)之故。单宁作为类黄酮代谢途径的终产物之一,其生成途径有众多结构基因参与,而结构基因的表达又受转录因子调控。已有研究表明,MYB、basic Helix-Loop-Helix (bHLH)和WD40三类转录因子构成MBW复合体,共同调控单宁的代谢途径。但中国原产完全甜柿自然脱涩是否与上述转录因子有关目前尚不清楚。本研究以中国原产完全甜柿‘罗田甜柿’为主要研究试材,分离克隆了MYB、bHLH和WD40三类转录因子,开展了柿单宁代谢调控相关研究工作。具体研究结果如下。
     1.发育期柿果实单宁含量测定。在花后5周,供试材料中单位果重内可溶性与不溶性单宁含量均最高,并随果实发育而逐渐减少,到花后13周,‘前川次郎’(日本原产完全甜柿)和‘西村早生’(日本原产不完全甜柿)果实已完成脱涩,而‘罗田甜柿’(中国原产完全甜柿)果实在花后21周后脱涩,‘磨盘柿’(中国原产完全涩柿)不能在树上完成脱涩。‘前川次郎’和‘西村早生’单果的单宁含量在果实发育早期停止增长,而‘罗田甜柿’和‘磨盘柿’的单宁累积持续到果实发育后期。
     2.‘罗田甜柿’乙醇脱涩处理后单宁含量变化。花后17周,对‘罗田甜柿’进行离体35%乙醇脱涩处理,处理两天后,果实脱涩,可以观察到单宁细胞颜色明显加深,果实中可溶性单宁含量显著减少,同时不溶性单宁含量相应增加,可溶性单宁转变为不溶性单宁,果实通过“凝固效应”而脱涩。
     3.柿MYB基因克隆及分析。以拟南芥和葡萄MYB转录因子序列为信息探针,在柿EST数据库中进行BLAST分析,找到一个候选片段DC587740,随后在‘罗田甜柿’中扩增出其片段,通过3'RACE和5'Hi-TAIL PCR扩增得到其全长序列1152bp,其中ORF长843bp,编码280个氨基酸,将该基因命名为DkPAl,序列已提交GenBank。DkPA1具有MYB转录因子的典型结构域,属于R2R3类MYB转录因子,通过邻接法构建进化树,发现其与已报道的其他物种中参与单宁调控MYB转录因子具有极高的序列相似性。DkPA1在‘罗田甜柿’与‘磨盘柿’中的表达模式与两个材料中单宁的累积模式一致,与结构基因DkDHD、DkSCPL、DkF3'H、DkF3’5’H、DkANR的表达模式也一致。
     4.柿bHLH基因克隆及分析。以拟南芥bHLH转录因子AtTT8为信息探针,检索柿EST数据库,找到一个候选片段DC587220,在‘罗田甜柿’中扩增出其片段,通过3'RACE和5'Hi-TAILPCR扩增得到其全长序列2687bp,ORF长2160bp,编码719个氨基酸,将该基因命名为DkMYC1,序列已提交GenBank。DkMYC1且有bHLH家族典型的碱性螺旋-环-螺旋结构,属于bHLH转录因子Ⅲf家族成员,与葡萄和拟南芥中参与单宁代谢调控的bHLH转录因子具有极高的序列相似性。在‘罗田甜柿’、‘前川次郎’和‘磨盘柿’中,DkMYC1的表达模式与三个材料中单宁的累积模式一致,也与DkANR、DkF3'5'H等结构基因的表达模式一致。在‘罗田甜柿’中分离得到单宁代谢途径两个特异基因DkLAR和DkANR启动子序列,发现在DkANR的启动子区具有多个bHLH转录因子的关键调控元件MYCATERD1及MYCCONSENSUSAT,进一步确定其受DkMYC1调控。
     5.柿WD40基因克隆及分析。通过同源克隆法设计简并引物,在‘罗田甜柿’中扩增出WD40基因片段,通过3'RACE和5'Hi-TAIL PCR扩增到全长序列1640bp,ORF全长1014bp,编码337个氨基酸,将该基因命名为DkWD40,序列已提交GenBank。DkWD40具有4个典型WD40结构域,与葡萄VvWDR1相似性最高。在发育期的果实中,DkWD40的表达与单宁代谢途径中结构基因(DkDHD、DkSCPL、 DkF3'H、DkF3'5'H、DkANR)的表达并不十分相符,而与单宁凝固基因CDkADH1)相符。在乙醇脱涩处理果实中,DkWD40也与单宁凝固基因表达一致。将DkWD40构建超表达载体打入农杆菌,并侵染拟南芥花序,转基因后的拟南芥种皮颜色为黑褐色。
     6.组织特异性表达分析。DkPA1、DkMYC1和DkWD40在四种供试材料茎、叶、花、萼片、果皮、果肉和种子中均有表达,并非果实特异表达基因,在不同品种的不同部位,其丰度不同,在完全涩柿中表达量高于完全甜柿,且在幼嫩的叶和萼片中表达量较高,在果实中的表达量高低与果实中单宁含量成正相关。
     7.‘华柿1号’种质鉴定。通过测定‘华柿1号’果实单宁含量及单宁细胞大小,观察与统计果实及种子情况,结合RAPD和ISSR等多种分子标记鉴定结果,推测‘华柿1号’是一个起源于日本的不完全涩柿种质,其在柿的遗传改良中可能具有重要价值。
     本研究从中国原产完全甜柿‘罗田甜柿’中分离到MYB转录因子基因DkPAl, bHLH转录因子基因DkMYCl以及WD40转录因子基因DkWD40,通过在不同脱涩类型的柿品种果实发育期自然脱涩过程及乙醇脱涩处理前后果实中进行实时定量表达分析,结合单宁含量测定及单宁代谢结构基因表达情况,推测DkPAl和DkMYCl直接参与柿果实发育期单宁代谢调控,而DkWD40参与可溶性单宁向不溶性单宁转化的脱涩过程。
Persimmon(Diospyros kaki Thunb.) originates in China, and China is the largest cultivator and producer worldwide. But an overwhelming amount of persimmons cultivated in China are astringent which take a lot of money and labors to de-astringency and process before eating every year. Persimmon fruit is astringent because it accumulates abundant proanthocyanidins (PAs, also called condensed tannin) in its fruit cells. Tannin, as one of the final products of flavonoid biosynthesis pathway, its biosynthesis pathway was controlled by a series of structural genes, and expressions of these structural genes were controlled by transcription factors (TFs). As it was reported in many researches, regulation of the structural gene expression in the flavonoid pathway was orchestrated by a ternary complex MYB-bHLH-WD40(MBW), composing of transcription factors from R2R3-MYB, MYC Like basic helix-loop-helix (bHLH), and WD40classes. In this research, we have isolated MYB, bHLH and WD40transcription factor genes from sweet persimmon'Luotiantianshi'which originated in China and done some tannin biosynthesis regulation studies.
     1. Tannin content analysis in developing persimmon fruits. The materials used in the research was'Luotiantianshi'(pollination-constant and nonastringent originated in China, C-PCNA),'Maekawa-Jiro'(PCNA originated in Japan, J-PCNA),'Nishimura-wase'(pollination-variant and nonastringent originated in Japan, J-PVNA) and'Mopanshi'(pollination-constant and astringent originated in China, C-PCA). In the four materials included, soluble tannin contents were at the highest level at5weeks after full bloom (WAB), and reduced with fruits development. At13WAB'Maekawa-Jiro'and 'Nishimura-wase'almost lost their astringency.'Luotiantianshi'lost its astringency after21WAB, and'Mopanshi'could not lose astringency naturally on the tree. The tannin stopped accumulation in'Maekawa-Jiro'and 'Nishimura-wase'at early stage of fruits development, but in'Luotiantianshi'and'Mopanshi'tannin accumulation lasted to the late stage of fruits development.
     2. Tannin content analysis in fruits of'Luotiantianshi'treated with ethanol.'Luotiantianshi'fruits were treated with35%ethanol in vitro at17WAB. On the second day after treatment, the fruits lost astringency and the tannin cell color darkened. Soluble tannin content decreased dramatically; meanwhile insoluble tannin content increased correspondingly. The soluble tannin changed to insoluble tannin which was a sign that the fruits lost astringency by "coagulation effect"
     3. Molecular cloning and analysis of persimmon MYB gene. The sequences of Arabidopsis and grape MYB transcription factors were used as query sequences against D. kaki ESTs database using BLAST analysis. One significant match DC587440was found. The sequence was subsequently amplified from'Luotiantianshi'. After3'RACE and5'Hi-TAIL PCR amplification, the full length1152bp was obtained which had an ORF of843bp, encoding280amino acid residues. It was named as DkPA1and the sequence was submitted to GenBank. DkPA1had two conserved MYB domains and belonged to R2R3MYB transcription factors. Phylogenetic analysis showed DkPA1shared high similarity with MYB transcription factors from other species which were reported to be involved in tannin biosynthesis regulation. In quantitative real-time PCR analysis (qRT-PCR), expression pattern of DkPAl was correlated with tannin accumulation in'Luotiantianshi' and'Mopanshi'; also coincided with expression of flavonoid biosynthesis structural genes DkDHD, DkSCPL, DkF3'H, DkF3'5'Hand DkANR.
     4. Molecular cloning and analysis of persimmon bHLH gene. The sequence of Arabidopsis bHLH transcription factor AtTT8was used as a query sequence to probe the D. kaki ESTs database. One significant match DC587220was found. The sequence was subsequently amplified from'Luotiantianshi'. After3'RACE and5'Hi-TAIL PCR amplification, the full length2687bp was obtained which had an ORF of2160bp, encoding719amino acid residues. It was named as DkMYC1and the sequence was submitted to GenBank. DkMYC1had the typical basic Helix-Loop-Helix domain and belonged to the bHLH subgroup Ⅲf. Phylogenetic analysis showed DkMYCl shared high similarity with bHLH transcription factors from Arabidopsis and grape which were reported to be involved in tannin biosynthesis regulation. In qRT-PCR analysis, expression pattern of DkMYC1correlated with tannin accumulation in'Luotiantianshi','Maekawa-Jiro'and'Mopanshi', also coincided with expression of flavonoid biosynthesis structural genes DkANR and DkF3'5'H. Promoters of DkLAR and DkANR were isolated from'Luotiantianshi', and several bHLH-binding cis-motifs (MYCATERD1and MYCCONSENSUSAT) were found in the promoter region of DkANR, which further supported that it was regulated by DkMYC1.
     5. Molecular cloning and analysis of persimmon WD40gene. Based on homology cloning method, we isolated a WD40fragments from'Luotiantianshi'. After3'RACE and5'Hi-TAIL PCR amplification, the full length1640bp was obtained which had an ORF of1014bp, encoding337amino acid residues. It was named as DkWD40and the sequence was submitted to GenBank. DkWD40had four conserved WD40repeat domains. Phylogenetic analysis showed DkWD40shared high similarity with WD40transcription factors from grape which was reported to be involved in tannin biosynthesis regulation. DkWD40showed coincident expression pattern with genes involved in tannin coagulation, but it didnot coincide very well with structural genes (DkDHD, DkSCPL, DkF3'H, DkF3'5'H and DkANR) in tannin biosynthesis during fruits development. In ethanol treatment, DkWD40also showed similar expression pattern with DkADHl which involved in tannin coagulation. When DkWD40overexpressed in Arabidopsis, seed coat where tannin concentrated was black brown.
     6. Tissue specific expression analysis. Expressions of DkPAl、DkMYCl and DkWD40were analysed in stem, leaf, flower, calyx, fruit peel, flesh and seed of four materials included. The results showed the three transcription factor genes expressed in almost all the organs and tissues included, rather than fruits specific expressed.
     7. Identification of'Huashi1'.'Huashi1'has been cultivated as a sweet persimmon. However its origin and astringent type was not clear. In this research, the tannin content, tannin cell size and fruits characters were measured. Combined with molecular markers amplification results, it was confirmed that'Huashi1'was a PVA type persimmon originated in Japan and it had big potential in persimmon breeding.
     In this research, MYB transcription factor gene DkPAl, bHLH gene DkMYC1and WD40gene DkWD40were isolated from'Luotiantianshi'(pollination-constant and nonastringent originated in China, C-PCNA). Expressions of the three genes were analyzed in developing persimmon fruits with different astringent type, and in ethanol treated persimmon fruits. Combined with tannin content analysis and expression of structural genes, it is inferred that DkPA1and DkMYC1were directly involved in tannin metabolism of developing persimmon fruits. However, DkWD40were involved in soluble tannin converting to insoluble tannin.
引文
1. 陈道明.中国原产完全甜柿‘鄂柿1号’自然脱涩特点研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    2. 陈俊,王宗阳.植物MYB类转录因子研究进展.植物生理与分子生物学学报,2002,2:81-88
    3. 杜建明.柿果实的脱涩机理.食品科学,1993,4:17-19
    4. 费学谦,王劲风.甘,涩柿果实主要化学成份的研究.林业科学研究,1994,7:106-110
    5. 费学谦,周立红,龚榜初.不同甘、涩类型柿果实单宁组成的差异及罗田甜柿单宁的特性.林业科学研究,1999,04:369-373
    6. 费学谦,周立红,王劲风.柿自然脱涩能力与单宁细胞发育规律的研究.林业科学研究,1996,9:27-31
    7. 顾海峰,李春美,徐玉娟,张洁,窦宏亮.柿子单宁的制备及其抗氧化活性研究.农业工程学报,2007,23:241-245
    8. 李义龙,肇涛澜,陈立超,赵亚茹,权太勇.花色素苷生物合成及花色的调控.生命科学,2008,20:147-152
    9. 罗正荣,李发芳,蔡礼鸿.部分中国原产甜柿种质的分子系统学研究.园艺学报,1999,26:297-301
    10.石碧,狄莹.植物多酚.北京:科学出版社,2000
    11.孙达旺.化学工业.植物单宁化学.中国林业出版社,1992,1-6
    12.工关林,方宏筠.植物基因工程(第二版).科学出版社,2002,776-777
    13.王仁梓.关于罗田甜柿原产地问题的探讨.中国果树,1983,02:16-19
    14.王燕.中国原产完全甜柿自然脱涩机理研究.[博士学位论文].武汉:华中农业大学图书馆,2010
    15.工勇,陈克平,姚勤.bHLH转录因子家族研究进展.遗传,2008,30:821-830
    16.王勇,邢凯华,邓雷,陈晓明.柿单宁-丙烯酸系纳米级高吸水树脂的合成研究.功能材料,2008,39:1406-1409
    17.张宝善,伍晓红,陈锦屏.柿单宁研究进展.陕西师范大学学报:自然科学版, 2008,36:99-105
    18.张青林.完全甜柿及部分雄性种质间的亲缘关系研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    19.张永卓,张艳芳,罗正荣.部分中国原产甜柿种质果实脱涩类型的鉴定.园艺学报,2006,02:370-373
    20.张永卓.部分中国原产甜柿种质甜涩性状的鉴定及其超低温保存的研究.[硕士学位论文].武汉:华中农业大学图书馆,2004
    21.赵文军,张迪,马丽娟,柴友荣.原花青素的生物合成途径、功能基因和代谢工程.植物生理学通讯,2009,05:509-519
    22. Abrahams S, Lee E, Walker A R, Tanner G J, Larkin P J, Ashton A R. The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. The Plant Journal,2003,35:624-636
    23. Abrahams S, Tanner G J, Larkin P J, Ashton A R. Identification and biochemical characterization of mutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiology,2002,130:561-576
    24. Aharoni Asaph, De Vos C H Ric, Wein M, Sun Z K, Greco R, Kroon A, Mol J N M, O'connell A P. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. The Plant Journal,2001, 28:319-332
    25. Akagi T, Ikegami A, Suzuki Y, Yoshida J, Yamada M, Sato A, Yonemori K. Expression balances of structural genes in shikimate and flavonoid biosynthesis cause a difference in proanthocyanidin accumulation in persimmon (Diospyros kaki Thunb.) fruit. Planta,2009a,230:899-915
    26. Akagi T, Ikegami A, Tsujimoto T, Kobayashi S, Sato A, Kono A, Yonemori K. DkMyb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit. Plant Physiology,2009b,151:2028-2045
    27. Akagi T, Ikegami A, Yonemori K. DkMyb2 wound-induced transcription factor of persimmon(Diospyros kaki Thunb.), contributes to proanthocyanidin regulation. Planta,2010b,232:1045-1059
    28. Akagi T, Katayama-Ikegami A, Kobayashi S, Sato A, Kono A, Yonemori K. Seasonal Aabscisic acid signal and a basic leucine zipper transcription factor, DkbZIP5, regulate proanthocyanidin biosynthesis in persimmon Fruit. Plant physiology,2012,158:1089-1102
    29. Akagi T, Katayama-Ikegami A, Yonemori K. Proanthocyanidin biosynthesis of persimmon(Diospyros kaki Thunb.) fruit. Scientia Horticulturae,2011a, 130:373-380
    30. Akagi T, Suzuki Y, Ikegami A. Condensed tannin composition analysis in persimmon(Diospyros kaki Thunb.) fruit by acid catalysis in the presence of excess phloroglucinol. Journal of the Japanese Society for Horticultural Science,2010a, 79:275-281
    31. Akagi T, Tsujimoto T, Ikegami A, Yonemori K. Effects of seasonal temperature changes on DkMyb4 expression involved in proanthocyanidin regulation in two genotypes of persimmon(Diospyros kaki Thunb.) fruit. Planta,2011b,233:883-894
    32. Alfenito M R, Souer E, Goodman C D, Buell R, Mol J, Koes R, Walbot V. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. The Plant Cell,1998,10:1135-1150
    33. Araki C, Furuta M, Kaneko K, Aketagawa T. Studies on the removal of astringency in Japanese persimmon(Diospyros kaki L.) I. Changes of alcoholdehydrogenase, peroxidase activities and some chemical constituents during the artificial removal of astringency in kaki fruits. Journal of the Japanese Society for Horticultural Science,1975,44:183-191
    34. Bai Y H, Pattanaik S, Patra B, Werkman J R, Xie C H, Yuan L. Flavonoid-related basic helix-loop-helix regulators, NtAnla and NtAnlb, of tobacco have originated from two ancestors and are functionally active. Planta,2011,234:363-375
    35. Bailey P C, Martin C, Toledo-Ortiz G, Quail P H, Huq E, Heim M A, Jakoby M, Werber M, Weisshaar B. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. The Plant Cell,2003,15:2497-2502
    36. Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant and Cell Physiology,2007, 48:958-970
    37. Baudry A, Caboche M, Lepiniec L. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. The Plant Journal,2006,46:768-779
    38. Baudry A, Heim M A, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal,2004, 39:366-380
    39. Baxter I R, Young J C, Armstrong G, Foster N, Bogenschutz N, Cordova T, Peer W A, Hazen S P, Murphy A S, Harper J F. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proceedings of the National Academy of Sciences USA,2005, 102:2649-2654
    40. Ben-Simhon Z, Judeinstein S, Nadler-Hassar T, Trainin T, Bar-Ya'akov I, Borochov-Neori H, Holland D. A pomegranate (Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development. Planta,2011,234:865-881
    41. Bernhardt C, Lee M M, Gonzalez A, Zhang F, Lloyd A, Schiefelbein J. The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development,2003,130:6431-6439
    42. Bogs J, Downey M O, Harvey J S, Ashton A R, Tanner G J, Robinson S P. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiology,2005,139:652-663
    43. Bogs J, JaffeF W, Takos A M, Walker A R, Robinson S P. The grapevine transcription factor VvMYBPAl regulates proanthocyanidin synthesis during fruit development. Plant Physiology,2007,143:1347-1361
    44. Borevitz J O, Xia Y, Blount J, Dixon R A, Lamb C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. The Plant Cell,2000, 12:2383-2394
    45. Brameier M, Krings A, Maccallum R M. NucPred-predicting nuclear localization of proteins. Bioinformatics,2007,23:1159-1160
    46. Broun P. Transcriptional control of flavonoid biosynthesis:a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Current Opinion in Plant Biology,2005,8:272-279
    47. Brueggemann J, Weisshaar B, Sagasser M. A WD40-repeat gene from Malus x domestica is a functional homologue of Arabidopsis thaliana TRANSPARENT TESTA GLABRAl. Plant Cell Reports,2010,29:285-294
    48. Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. The Plant Cell,2012, www.plantcell.org/cgi/doi/10.1105/tpc.111.095232
    49. Butelli E, Titta L, Giorgio M, Mock H P, Matros A, Peterek S, Schijlen E G W M, Hall R D, Bovy A G, Luo J. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology, 2008,26:1301-1308
    50. Carey C C, Strahle J T, Selinger D A, Chandler V L. Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRAl gene in Arabidopsis thaliana. The Plant Cell,2004,16:450-464
    51. Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martinez-Garcia J F, Bilbao-Castro J R, Robertson D L. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiology,2010,153:1398-1412
    52. Castellarin S D, Gaspero G Di, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon A F, Testolin R. Colour variation in red grapevines (Vitis vinifera L.):genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3', 5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics,2006,7:12-29
    53. Cedroni M L, Cronn R C, Adams K L, Wilkins T A, Wendel J F. Evolution and expression of MYB genes in diploid and polyploid cotton. Plant Molecular Biology, 2003,51:313-325
    54. Chen Y H, Yang X Y, He K, L M H, Li J G, Gao Z F, Lin Z Q, Zhang Y F, Wang X X, Qiu X M. The MYB transcription factor superfamily of Arabidopsis:expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology,2006,60:107-124
    55. Chothia C, Hubbard T, Brenner S, Barns H, Murzin A. Protein folds in the all-β and all-a classes. Annual Review of Biophysics and Biomolecular Structure,1997, 26:597-627
    56. Clough S J, Bent A F. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal,1998,16:735-743
    57. De Vetten N, Quattrocchio F, Mol J, Koes R. The anll locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes and Development,1997,11:1422-1434
    58. Debeaujon I, Peeters A J M, Leon-Kloosterziel K M, Koornneef M. The TRANSPARENT TESTA 12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. The Plant Cell,2001,13:853-872
    59. Deluc L, Bogs J, Walker A R, Ferrier T, Decendit A, Merillon J M, Robinson S P, Barrieu F. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiology,2008,147:2041-2053
    60. Deluc L, F Barrieu, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde J P, Merillon J M, Hamdi S. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiology,2006, 140:499-511
    61. Devic M, Guilleminot J, Debeaujon I, Bechtold N, Bensaude E, Koornneef M, Pelletier G, Delseny M. The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. The Plant Journal,1999,19:387-398
    62. Dixon R A, Xie D Y, Sharma S B. Proanthocyanidins-a final frontier in flavonoid research? New Phytologist,2005,165:9-28
    63. Du X Y, Zhang Q L, Luo Z R. Identification of a Chinese PVNA type of Japanese persimmon discovered from dabieshan region in central China. Acta Horticulturae, 2009,833:97-102
    64. Espley R V, Brendolise C, Chagne D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten H J, Gardiner S E, Hellens R P, Allan A C. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. The Plant Cell, 2009,21:168-183
    65. Espley R V, Hellens R P, Putterill J, David E. Stevenson, Kutty-Amma S, Allan A C. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal,2007,49:414-427
    66. Feller A, Hernandez J M, Grotewold E. An ACT-like domain participates in the dimerization of several plant basic-helix-loop-helix transcription factors. Journal of Biological Chemistry,2006,281:28964-28974
    67. Feng S, Wang Y, Yang S, Xu Y, Chen X. Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta,2010, 232:245-255
    68. Ferre-D'amare A R, Prendergast G C, Ziff E B, Burley S K. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature,1993,363:38-45
    69. Gomez C, Conejero G, Torregrosa L, Cheynier V, Terrier N, Ageorges A. In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. The Plant Journal,2011, 67:960-970
    70. Gong Z Z, Yamagishi E, Yamazaki M, Saito K. A constitutively expressed Myc-like gene involved in anthocyanin biosynthesis from Perilla frutescens:molecular characterization, heterologous expression in transgenic plants and transactivation in yeast cells. Plant Molecular Biology,1999,41:33-44
    71. Goodrich J, Carpenter R, Coen E S. A common gene regulates pigmentation pattern in diverse plant species. Cell,1992,68:955-964
    72. Goto-Yamamoto N, Wan G H, Masaki K, Kobayashi S. Structure and transcription of three chalcone synthase genes of grapevine (Vitis vinifera). Plant Science,2002, 162:867-872
    73. Gu H F, Li C M, Xu Y, Hu W, Chen M, Wan Q. Structural features and antioxidant activity of tannin from persimmon pulp. Food Research International,2008, 41:208-217
    74. Guo D L, Luo Z R. Genetic relationships of some PCNA persimmons (Diospyros kaki Thunb.) from China and Japan revealed by SRAP analysis. Genetic Resources and Crop Evolution,2006,53:1597-1603
    75. Heim M A, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey P C. The basic helix-loop-helix transcription factor family in plants:A genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution,2003, 20:735-747
    76. Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany,2011,62:2465-2483
    77. Hichri I, Heppel S C, Pillet J, Leon C, Czemmel S, Delrot S, Lauvergeat V, Bogs J. The Basic Helix-Loop-Helix Transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Molecular Plant, 2010,3:509-523
    78. Hichri I, L Deluc, Barrieu F, Bogs J, Mahjoub A, Regad F, Gallois B, Granier T, Trossat-Magnin C, Gomes E, Lauvergeat V. A single amino acid change within the R2 domain of the VvMYB5b transcription factor modulates affinity for protein partners and target promoters selectivity. BMC Plant Biology,2011,11:117
    79. Holton T, Cornish E. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell,1995,7:1071-1083
    80. Humphries J A, Walker A R, Timmis J N, Orford S J. Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene. Plant Molecular Biology,2005,57:67-81
    81. Ikeda I, Yamada M, Kurihara A. Inheritance of astringency in Japanese persimmon. Journal of the Japanese Society for Horticultural Science,1985,54:39-45
    82. Ikegami A, Akagi T, Potter D, Yamada M, Sato A, Yonemori K, Kitajima A, Inoue K. Molecular identification of 1-Cys peroxiredoxin and anthocyanidin/flavonol 3-O-galactosyltransferase from proanthocyanidin-rich young fruits of persimmon (Diospyros kaki Thunb.). Planta,2009,230:841-855
    83. Ikegami A, Eguchi S, Kitajima A, Inoue K, Yonemori K. Identification of genes involved in proanthocyanidin biosynthesis of persimmon(Diospyros kaki) fruit. Plant Science,2007,172:1037-1047
    84. Ikegami A, Eguchi S, Yonemori K, Yamada M, Sato A, Mitani N, Kitajima A. Segregations of astringent progenies in the F1 populations derived from crosses between a Chinese pollination-constant nonastringent (PCNA)'Luo Tian Tian Shi', and Japanese PCNA and pollination-constant astringent (PCA) cultivars of Japanese origin. HortScience,2006,41:561-563
    85. Ikegami A, Kitajima A, Yonemori K. Inhibition of flavonoid biosynthetic gene expression coincides with loss of astringency in pollination-constant, non-astringent (PCNA)-type persimmonfruit. Journal of Horticultural Science and Biotechnology, 2005a,80:225-228
    86. Ikegami A, Yonemori K, Kitajima A, Sato A, Yamada M. Expression of genes involved in proanthocyanidin biosynthesis during fruit development in a Chinese Pollination-constant, nonastringent (PCNA) persimmon'Luo Tian Tian Shi'. Journal of the American Society for Horticultural Science,2005b,130:830-835
    87. Ikegami A, Yonemori K, Sugiura A, Sato A, Yamada M. Segregation of astringency in F1 progenies derived from crosses between pollination-constant, nonastringent persimmon cultivars. HortScience,2004,39:371-374
    88. Inoue K, Kawakita H, Ohto K, Oshima T. Adsorptive removal of uranium and thorium with a crosslinked persimmon peel gel. Journal of Radioanalytical and Nuclear Chemistry,2006,267:435-442
    89. Ito S, Joslyn M A. Presence of several phenolic components in fruit proanthocyanidins. Nature,1964,204:475-476
    90. Ito S, Oshima Y. Studies on the tannin of Japanese persimmon (Diospyros kaki L.) Part I. Isolation of leucoanthocyanin from kaki fruit. Agricultural and Biological Chemistry,1962,26:156-161
    91. Jaakola L, Poole M, Jones M O, Kamarainen-Karppinen T, Koskimaki J J, Hohtola A, Haggman H, Fraser P D, Manning K, King G J. A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiology,2010,153:1619-1629
    92. Jaillon O, Aury J M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature,2007,449:463-467
    93. Jin H, Martin C. Multifunctionality and diversity within the plant MYB-gene family. Plant Molecular Biology,1999,41:577-585
    94. Joseph R, Tanner G, Larkin P. Proanthocyanidin synthesis in the forage legume Onobrychis viciifolia. A study of chalcone synthase, dihydroflavonol 4-reductase and leucoanthocyanidin 4-reductase in developing leaves. Functional Plant Biology, 1998,25:271-278
    95. Kajiura M. Persimmon cultivars and their improvement 2. Breeding in Horticulture, 1946,1:175-182
    96. Kanzaki S, Yonemori K, Sato A, Yamada M, Sugiura A. Analysis of the genetic relationships among pollination-constant and non-astringent (PCNA) cultivars of persimmon (Diospyros kaki Thunb.) from Japan and China using amplified fragment length polymorphism (AFLP). Journal of the Japanese Society for Horticultural Science,2000,69:665-670
    97. Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. The Plant Journal,2004,37:104-114
    98. Klempnauer K H, Gonda T J, Bishop J M. Nucleotide sequence of the retro viral leukemia gene v-myb and its cellular progenitor c-myb:the architecture of a transduced oncogene. Cell,1982,31:453-463
    99. Kobayashi S, Goto-Yamamoto N, Hirochika H. Retrotransposon-induced mutations in grape skin color. Science,2004,304:982-982
    100. Kobayashi S, Ishimaru M, Hiraoka K, Honda C. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta,2002, 215:924-933
    101. Koes R, Verweij W, Quattrocchio F. Flavonoids:a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science,2005,10:236-242
    102. Koornneef M. Mutations affecting the testa colour in Arabidopsis. Arabidopsis Information Service,1990,27:1-4
    103. Lepiniec L, Debeaujon I, Routaboul J M, Baudry A, Pourcel L, Nesi N, Caboche M, Genetics and biochemistry of seed flavonoids. Annual Review of Plant Biology. 2006,405-430
    104. Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiology,2006,141:1167-1184
    105. Li X, Gao P, Cui D, Wu L, Parkin I, Saberianfar R, Menassa R, Pan H, Westcott N, Gruber M Y. The Arabidopsis tt19-4 mutant differentially accumulates proanthocyanidin and anthocyanin through a 3'amino acid substitution in glutathione S-transferase. Plant, Cell and Environment,2011,34:374-388
    106. Li Y G, Tanner G, Larkin P. The DMACA-HC1 protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. Journal of the Science of Food and Agriculture,1996,70:89-101
    107. Liu Y G, Chen Y L. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. BioTechniques,2007,43:649-656
    108. Lloyd A M, Walbot V, Davis R W. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science,1992,258:1773-1775
    109. Ludwig S R, Habera L F, Dellaporta S L, Wessler S R. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proceedings of the National Academy of Sciences USA,1989,86:7092-7096
    110. Luo Z R, Wang R Z. Persimmon in China:Domestication and traditional utilization of genetic resources. Advances in Horticultural Science,2008,22:239-243
    111. Ma P, Rould M A, Weintraub H, Pabo C O. Crystal structure of MyoD bHLH domain-DNA complex:perspectives on DNA recognition and implications for transcriptional activation. Cell,1994,77:451-459
    112. Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul J M, Debeaujon I, Klein M. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. The Plant Cell,2007,19:2023-2038
    113. Marrs K A, Alfenito M R, Lloyd A M, Walbot V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature.1995, 375:397-400
    114. Martin C, Paz-Ares J. MYB transcription factors in plants. Trends in Genetics, 1997,13:67-73
    115. Matsui K, Umemura Y, Ohme-Takagi M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. The Plant Journal,2008,55:954-967
    116. Matsuo T, Ito S. On mechanisms of removing astringency in persimmon fruits by carbon dioxide treatment I. Some properties of the two processes in the de-astringency. Plant and Cell Physiology,1977,18:17-25
    117. Matsuo T, Ito S. The chemical structure of kaki-tannin from immature fruit of the persimmon (Diospyros kaki L.). Agricultural and Biological Chemistry,1978, 42:1637-1643
    118. Matus J T, Poupin M J, Canon P, Bordeu E, Alcalde J A, Arce-Johnson P. Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine(Vitis vinifera L.). Plant Molecular Biology,2010,72:607-620
    119. Morohashi K, Zhao M, Yang M, Read B, Lloyd A, Lamb R, Grotewold E. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiology,2007,145:736-746
    120. Murre C, Mccaw P S, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell, 1989,56:777-783
    121. Nakagawa T, Nakatsuka A, Yano K, Yasugahira S, Nakamura R, Sun N, Itai A, Suzuki T, Itamura H. Expressed sequence tags from persimmon at different developmental stages. Plant Cell Reports,2008,27:931-938
    122. Neer E J, Schmidt C J, Nambudripad R, Smith T F. The ancient regulatory-protein family of WD-repeat proteins. Nature,1994,371:297-300
    123. Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. The Plant Cell,2000,12:1863-1878
    124. Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. The Plant Cell,2001, 13:2099-2114
    125. Nesi N, Lucas M O, Auger B, Baron C, Lecureuil A, Guerche P, Kronenberger J, Lepiniec L, Debeaujon I, Renard M. The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulating cells of the Brassica napus seed coat. Plant Cell Reports,2009,28:601-617
    126. Niu S S, Xu C J, Zhang W S, Zhang B, Li X, Wang K L, Ferguson I B, Allan A C, Chen K S. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta,2010, 231:887-899
    127. Ogata K, Hojo H, Aimoto S, Nakai T, Nakamura H, Sarai A, Ishii S, Nishimura Y: Solution structure of a DNA-binding unit of Myb:a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. Proceedings of the National Academy of Sciences USA,1992,89:6428-6432
    128. Okonogi T, Hattori Z, Ogiso A, Mitsui S. Detoxification by persimmon tannin of snake venoms and bacterial toxins. Toxicon:Official Journal of the International Society on Toxinology,1979,17:524
    129. Oshida M, Yonemori K, Sugiura A. On the nature of coagulated tannins in astringent-type persimmon fruit after an artificial treatment of astringency removal. Postharvest Biology and Technology,1996,8:317-327
    130. Pang Y Z, Peel G J, Sharma S B, Tang Y H, Dixon R A. A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proceedings of the National Academy of Sciences USA,2008,105:14210-14215
    131. Pang Y Z, Wenger J P, Saathoff K, Peel G J, Wen J Q, Huhman D, Allen S N, Tang Y H, Cheng X F, Tadege M, Ratet P, Mysore K S, Sumner L W, Marks M D, Dixon R A. A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development. Plant Physiology,2009,151:1114-1129
    132. Pang Y, Peel G J, Wright E, Wang Z, Dixon R A. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiology,2007, 145:601-615
    133. Paolocci F, Robbins M P, Madeo L, Arcioni S, Martens S, Damiani F. Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. Structure, expression analysis, and genetic control of leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in Lotus corniculatus. Plant Physiology,2007,143:504-516
    134. Parajuli D, Kawakita H, Inoue K, Ohto K, Kajiyama K. Persimmon peel gel for the selective recovery of gold. Hydrometallurgy,2007,87:133-139
    135. Park K, Ishikawa N, Morita Y, Choi J D, Hoshino A, Iida S. A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. The Plant Journal,2007,49:641-654
    136. Pattanaik S, Xie C H, Yuan L. The interaction domains of the plant Myc-like bHLH transcription factors can regulate the transactivation strength. Planta,2008, 227:707-715
    137. Payne C T, Zhang F, Lloyd A M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics,2000,156:1349-1362
    138. Paz-Ares J, Ghosal D, Wienand U, Peterson P, Saedler H. The regulatory cl locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. The EMBO Journal,1987, 6:3553-3558
    139. Peel G J, Pang Y Z, Modolo L V, Dixon R A. The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. The Plant Journal,2009,59:136-149
    140. Pelletier M K, Shirley B W. Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings (Coordinate regulation with chalcone synthase and chalcone isomerase). Plant Physiology,1996,111:339-345
    141. Pesis E, Ben-Arie R. Involvement of acetaldehyde and ethanol accumulation during induced deastringency of persimmon fruits. Journal of Food Science,1984, 49:896-899
    142. Porter L J, Woodruffe J. Haemanalysis:the relative astringency of proanthocyanidin polymers. Phytochemistry,1984,23:1255-1256
    143. Pourcel L, Routaboul J M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. TRANSPARENT TESTA 10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. The Plant Cell,2005, 17:2966-2980
    144. Poustka F, Irani N G, Feller A, Lu Y H, Pourcel L, Frame K, Grotewold E. A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiology,2007,145:1323-1335
    145. Quattrocchio F, Wing J F, Van Der Woude K, Mol J N, Koes R. Analysis of bHLH and MYB domain proteins:species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. The Plant Journal,1998, 13:475-88
    146. Quattrocchio F, Wing J, Van Der Woude K, Souer E, De Vetten N, Mol J, Koes R. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. The Plant cell,1999,11:1433-44
    147. Ramsay N A, Glover B J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science,2005,10:63-70
    148. Ramsay N A, Walker A R, Mooney M, Gray J C. Two basic-helix-loop-helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white-flowered Matthiola incana mutant. Plant Molecular Biology,2003, 52:679-688
    149. Riechmann J L, Heard J, Martin G, Reuber L, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science,2000, 290:2105-2110
    150. Sharma S B, Dixon R A. Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. The Plant Journal,2005, 44:62-75
    151. Shirley B W, Kubasek W L, Storz G, Bruggemann E, Koornneef M, Ausubel F M, Goodman H M. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. The Plant Journal,1995,8:659-671
    152. Skadhauge B, Gruber M Y, Thomsen K K, von Wettstein D. Leucocyanidin reductase activity and accumulation of proanthocyanidins in developing legume tissues. American Journal of Botany,1997,84:494-502
    153. Smith A P, Nourizadeh S D, Peer W A, Xu J, Bandyopadhyay A, Murphy A S, Goldsbrough P B. Arabidopsis AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione S-transferase that interacts with flavonoids. The Plant Journal, 2003,36:433-442
    154. Smith T F, Gaitatzes C, Saxena K, Neer E J. The WD repeat:a common architecture for diverse functions. Trends in Biochemical Sciences,1999, 24:181-185
    155. Sompornpailin K, Makita Y, Yamazaki M, Saito K. A WD-repeat-containing putative regulatory protein in anthocyanin biosynthesis in Perilla frutescens. Plant Molecular Biology,2002,50:485-495
    156. Spelt C, Quattrocchio F, Mol J N M, Koes R. Anthocyaninl of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. The Plant Cell,2000,12:1619-1631
    157. Spelt C, Quattrocchio F, Mol J, Koes R. ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. The Plant Cell,2002,14:2121-2135
    158. Springob K, Nakajima J, Yamazaki M, Saito K. Recent advances in the biosynthesis and accumulation of anthocyanins. Natural Product Reports,2003,20:288-303
    159. Stafford H A. Pathway to proanthocyanidins (condensed tannins), flavan-3-ols, and unsubstituted flavans. Flavonoid Metabolism. CRC Press, Boca Raton, FL, 1990:63-100
    160. Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology,2001,4:447-456
    161. Sugiura A, Harada H, Tomana T. Studies on the removability of astringency in Japanese persimmon fruits I. "On-tree removal" of astringency by ethanol treatment (Part I). Journal of the Japanese Society for Horticultural Science,1975, 44:265-272
    162. Sugiura A, Harada H, Tomana T. Studies on the removability of astringency in Japanese persimmon fruits II. " On-tree removal" of astringency by ethanol treatment (Part II). Journal of the Japanese Society for Horticultural Science,1977, 46:303-309
    163. Sun Y, Li H, Huang J R. Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Molecular Plant,2012,5:387-400
    164. Taira S, Matsumoto N, Ono M. Accumulation of soluble and insoluble tannins during fruit development in nonastringent and astringent persimmon. Journal of the Japanese Society for Horticultural Science,1998,67:572-576
    165. Taira S, Matsumoto N, Ono M. Differences in solubilities of tannins after six treatments for removal of astringency in persimmon fruit. Journal of the Japanese Society for Horticultural Science,1999,68:83-88
    166. Taira S. Astringency in persimmon. Modern methods of plant analysis,1996, 18:97-110
    167. Takos A M, Jaffe F W, Jacob S R, Bogs J, Robinson S P, Walker A R. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology,2006a,142:1216-1232
    168. Takos A M, Obinson S P, Walker A R. Transcriptional regulation of the flavonoid pathway in the skin of dark-grown'Cripps Red'apples in response to sunlight. Journal of Horticultural Science and Biotechnology,2006b,81:735-744
    169. Takos A M, Ubi B E, Robinson S P, Walker A R. Condensed tannin biosynthesis genes are regulated separately from other flavonoid biosynthesis genes in apple fruit skin. Plant Science,2006c,170:487-499
    170. Tamura K, Dudley J, Nei M, Kumar S. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution,2007, 2:1596-1599
    171. Tanaka T, Takahashi R, Kouno I, Nonaka G. Chemical evidence for the de-astringency (insolubilization of tannins) of persimmon fruit. Journal of the Chemical Society, Perkin Transactions 1,1994:3013-3022
    172. Tanner G J, Francki K T, Abrahams S, Watson J M, Larkin P J, Ashton A R. Proanthocyanidin biosynthesis in plants:Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. Journal of Biological Chemistry, 2003,278:31647-31656
    173. Ter Haar E, Musacchio A, Harrison S C, Kirchhausen T. Atomic structure of clathrin:A β propeller terminal domain joins an a zigzag linker. Cell,1998, 95:563-573
    174. Terrier N, Torregrosa L, Ageorges A, Vialet S, Verries C, Cheynier V, Romieu C. Ectopic Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiology,2009, 149:1028-1041
    175. Toledo-Ortiz G, Huq E, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell,2003,15:1749-1770
    176. Ullah H, Chen J G, Temple B, Boyes D C, Alonso J M, Davis K R, Ecker J R, Jones A M. The P-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. The Plant Cell,2003,15:393-409
    177. Urao T, Yamaguchi-Shinozaki K, Mitsukawa N, Shibata D, Shinozaki K. Molecular cloning and characterization of a gene that encodes a MYC-related protein in Arabidopsis. Plant Molecular Biology,1996,32:571-576
    178. Van Nocker S, Ludwig P. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics,2003,4:50
    179. Verdier J, Zhao J, Torres-Jerez I, Ge S, Liu C, He X, Mysore K S, Dixon R A, Udvardi M K. MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proceedings of the National Academy of Sciences USA,2012,109:1766-1771
    180. Walker A R, Davison P A, Bolognesi-Winfield A C, James C M, Srinivasan N, Blundell T L, Esch J J, Marks M D, Gray J C. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. The Plant cell,1999, 11:1337-1350
    181. Walker A R, Lee E, Bog J s, Mcdavid D A J, Thomas M R, Robinson S P. White grapes arose through the mutation of two similar and adjacent regulatory genes. The Plant Journal,2007,49:772-785
    182. Wan C Y, Wilkins T A. A Modified Hot Borate Method Significantly Enhances the Yield of High-Quality RNA from Cotton (Gossypium hirsutum L.). Analytical Biochemistry,1994,223:7-12
    183. Wang R, Yang Y, Li G Chinese persimmon germplasm resources. Acta Horticulturae,1997:43-50
    184. Wei Y L, Li J N, Lu J, Tang Z L, Pu D C, Chai Y R. Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Molecular Biology Reports,2007, 34:105-120
    185. Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology,2001,126:485-493
    186. Xie D Y, Sharma S B, Paiva N L, Ferreira D, Dixon R A. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science,2003, 299:396-399
    187. Xiong Y, Adhikari C R, Kawakita H, Ohto K, Inoue K, Harada H. Selective recovery of precious metals by persimmon waste chemically modified with dimethylamine. Bioresource Technology,2009,100:4083-4089
    188. Yamada M, Sato A. Segregation for fruit astringency type in progenies derived from crosses of 'Nishimurawase' pollination constant non-astringent genotypes in oriental persimmon(Diospyros kaki Thunb.). Scientia Horticulturae,2002, 92:107-111
    189. Yonemori K, Ikegami A, Kanzaki S, Sugiura A. Unique features of tannin cells in fruit of pollination constant non-astringent persimmons. Acta Horticulturae,2000b. 31-35
    190. Yonemori K, Ikegami A, Kitajima A, Luo Z R, Kanzaki S, Sato A, Yamada M, Yang Y, Wang R Z. Existence of several pollination constant non-astringent type persimmon in China. Acta Horticulturae,2005,685:77-83
    191. Yonemori K, Matsushima J, Sugiura A. Differences in tannins of non-astringent and astringent type fruits of Japanese persimmon(Diospyros kaki Thunb.). Journal of the Japanese Society for Horticultural Science,1983,52:135-144
    192. Yonemori K, Matsushima J. Changes in tannin cell morphology with growth and development of Japanese persimmon fruit. Journal of the American Society for Horticultural Science,1987,112:817-821
    193. Yonemori K, Matsushima J. Development of the tannin cells in non-astringent type fruits of Japanese persimmon(Diospyros kaki) and its relationship to natural deastringency. Journal of the Japanese Society for Horticultural Science,1985, 54:201-208
    194. Yonemori K, Sugiura A, Yamada M. Persimmon genetics and breeding. Plant Breeding Reviews,2000a,19:191-226
    195. Yoshida K, Iwasaka R, Kaneko T, Sato S, Tabata S, Sakuta M. Functional differentiation of Lotus japonicus TT2s, R2R3-MYB transcription factors comprising a multigene family. Plant and Cell Physiology,2008,49:157-169
    196. Zhang F, Gonzalez A, Zhao M Z, Payne C T, Lloyd A. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development,2003,130:4859-4869
    197. Zhao J, Dixon R A. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. The Plant Cell,2009,21:2323-2340
    198. Zhao J, Huhman D, Shadle G, He X Z, Sumner L W, Tang Y, Dixon R A. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. The Plant Cell,2011,23:1536-1555
    199. Zhao J, Pang Y Z, Dixon R A. The mysteries of proanthocyanidin transport and polymerization. Plant Physiology,2010,153:437-443
    200. Zhao M, Morohashi K, Hatlestad G, Grotewold E, Lloyd A. The TTGl-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development,2008,135:1991-1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700