超声波活化碱木质素及多效碱木质素水处理剂合成与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是国家自然科学基金资助项目“钯/炭-Pb/C催化碱木质素还原反应的研究”(课题编号:30471363)的部分内容。麦草碱木质素是我国造纸工业重要的剩余物,由于麦草碱木质素结构决定了其反应活性比较低,其应用受到较大的限制。本论文以提高麦草碱木质素的反应活性为目标,首次采用超声波法活化麦草碱木质素,研究了超声波处理时间、作用功率和作用液料比等因素对麦草碱木质素总羟基含量的影响,并采用官能团分析、凝胶色谱(GPC)、傅立叶红外光谱(FTIR)、核磁共振~1H-NMR等研究手段,探讨了超声波作用于麦草碱木质素的作用机制。根据麦草碱木质素具有多种官能团的结构特点,国内首次合成了麦草碱木质素季胺盐、磺化麦草碱木质素季胺盐、麦草碱木质素膦酸季胺盐和麦草碱木质素膦基盐等四种多效水处理剂,根据其所接官能团结构特点,分别检测其絮凝、分散、络合和阻垢等性能,并阐述了麦草碱木质素季胺盐的絮凝机理和麦草碱木质素膦酸季胺盐的阻垢机理。论文还将麦草碱木质素与超声波处理麦草碱木质素合成的多效水处理剂性能进行比较。结果表明:
     超声波可以显著提高碱木质素酚羟基和醇羟基含量。当作用时间为20min,作用功率为200W,液料比为100:1时,碱木质素的醇羟基含量从2.28mmol/g变为8.34mmol/g,酚羟基含量从1.80mmol/g变为2.02mmol/g。均匀设计法研究表明对碱木质素总羟基含量变化的影响因素依次为超声波处理时间,超声波功率,液料比,其中液料比对总羟基含量几乎没有影响。
     采用官能团分析、凝胶色谱(GPC)、傅立叶红外光谱(FTIR)、核磁共振~1H-NMR等研究手段结果表明,超声波加速了溶液分子与碱木质素分子之间的的摩擦,从而引起C-C键或C-O-C键的裂解,超声波的空化效应所产生的高温高压环境也会导致了苯环上侧链的断裂,这一作用会使碱木质素酚羟基和总羟基含量增加,增加部分的总羟基可能是由羧基部分还原得到,也可能是由甲氧基(-OCH_3)断键,或其它芳基烷基醚断键而产生的。另外,超声波处理麦草碱木质素后数均分子量(M_n)和重均分子量(M_w)分别从1179和10250变为5031和11605,重均分子量(M_w)与数均分子量(M_n)的比值(M_w/M_n)从8.69变为2.31,超声波作用下木质素的C-C键或C-O-O键的裂解和苯环上侧链的断裂有可能产生一定量的自由基,由于声空化效应产生的局部高温高压又会引发这些自由基发生聚合反应,使得碱木质素的分子量增加。超声波处理后麦草碱木质素酚羟基和醇羟基含量提高,反应活性得到提高,木质素发生聚合,分散性得到改善,这对麦草碱木质素的充分利用是有利的。
     根据麦草碱木质素具有多种官能团的结构特点,国内首次合成了麦草碱木质素季胺盐、磺化麦草碱木质素季胺盐、麦草碱木质素膦酸季胺盐和麦草碱木质素膦基盐等四种效水处理剂,分别检测其絮凝、分散、络合和阻垢等性能。
     对于麦草碱木质素季胺盐,实验表明:木质素季胺盐对酸性黑ATT染料溶液的絮凝效果较好。当处理后木质素季胺盐为1184.5mg/L时,酸性黑ATT染料溶液脱色率为78%。当投加量低于2500mg/L时,超声波处理后木质素季胺盐对酸性黑AFT染料的脱色效果要好于木质素季胺盐。木质素季胺盐中的季铵离子与酸性黑ATT染料中的磺酸
The research is the part of the Study on Pd/C Catalyzing and Deoxidizing Wheat-straw Alkli Lignin and Developing the Hosphono-alkali-lignin Salt,supported by the National Natural Science Foundation of China.Wheat-straw alkli lignin from black liquor is the important by-product in papermaking industry of China. It is less reaction activation centre because of the lignin's structure and its applications are limited.Then the alkali lignin of wheat-straw is processed by the ultrasonic and the activation of the ultrasonic on the alkali lignin is discussed. Three factors, the ultrasonic processing's power, the ultrasonic processing's time and the ratio of liquor to matrial are discussed on the change of the functional group's content of the alkali lignin . The functional group of alkali lignin is measured by the chemical methods ,the molecule weight measured by GPC and the chemical structure analysed by the spectrum of 1~H NMR and FTIR, these indicated that the ultrasonic how to activate the alkali lignin and make it activity.When the ultrasomc processing's time is 20 minutes, the ultrasomc processing's power is 200W, the ratio (0.2N NaOH solution: lignin , w/w ) is 100: 1, the content of phenolic hydroxyl of the alkali lignin is from 1.80mmol/g to 2.02mmol/g, the content of aliphatic hydroxyl of the alkali lignin is from 2.28mmol/g to 8.34mmol/g. The data of the ultrasonic processing under different conditions are analyzed by computer software using Uniformity Design Method. Three factors, the ultrasonic processing's power, the ultrasonic processing's time and the ratio are discussed on the change of the functional group's content of the alkali lignin . As a result, in the three factors, the ultrasonic processing's time is considered to be a primary factor on the change of content of the total hydroxyl . The ultrasonic processing's power is the second factor. The ratio is the third factor and has little effect on the change of content of the total hydroxyl.From the spectrum of 1~H NMR, FTIR, GPC and chemical methods, the increased phenolic hydroxyl and aliphatic hydroxyl is from the -OCH_3 of G-lignin,such as the -OCH_3 ruptured from the G-lignin,or carboxyl deoxidized.The numerical-average molecule weight (M_n) is from 1179 to 5031, the weight-average molecule weight (M_w) is from 5031 to 11605.The value of M_w/M_n is from 8.69 to 2.31.The alkli lignin polymerizated under the ultrasonic process.It is better to use of alkaili lignin after the ultrasonic procees because of the alkli lignin polymerization and the increased content of the total hydroxyl.Four water treatment agents were first synthesized at home basis on that alkali lignin has many functional groups. They were quaternary ammonium salt of alkali lignin, salt of sulfonation-alkali-lignin, quaternary ammonium salt of phosphono-alkali-lignin and hosphono-alkali-lignin salt. Their performance of flocculation, dispersion, chelation and scale inhibition was investigated respectively.It showed that the capability of flocculation of quaternary ammonium salt of alkali lignin
    to black acid ATT was good. The decolorization rate of black acid ATT was 78% when the dosage of quaternary ammonium salt of alkali lignin was 1184.5mg/L. when the dosage lower than 2500mg/L the effect of quaternary ammonium salt of alkali lignin by activation of ultrasonic was better than that of not treated. Quaternary ammonium iron reacted with sulfonate groups of black acid ATT and an insoluble substance was produced. After that the purpose of decolorization was achieved. The decolorization rate of acid-red-orange dye and acid red dye increased as the dosage increased. Low pH was favorable to the flocculation, because at low pH the carboxyl was not dissociated and H4 was beside the suspending particles of acid red dye to give a high pH. It was easy to form hydrogen bond and carboxyl offered proton. At the same time quaternary ammonium iron was adsorbed to the surface of suspending particles to neutralize the electric charge. Because particles collided to each other and adsorbed each other the performance of flocculation to acid-red-orange dye and acid red dye was good. The quaternary ammonium salt of alkali lignin had some flocculent effect to kaolin which had better be used at low pH. In addition its quaternary ammonium salt of alkali lignin had some surface activity and could disperse particles of calcium carbonate which induced that it had weak chelation to the solution with calcium and magnesium.Better flocculation effect of quaternary ammonium salt of sulfonation-alkali-lignin to black acid, acid-red-orange dye and acid red dye was achieved. Its combined with amino of dye molecule while the cation combined with sulfonate groups of dye molecule which induced the decrease of hydrophilic groups of dye solution such as sulfonate groups, amino and hydroxyl. The hydrophobic of dye solution increased. The assembles of dye molecule were removed because of the bridge-span. The bleaching efficiency and demand for adsorbent was different for different reactive dyes. It depended on the structure of the molecule. Alumina with a concentration of 500mg/L could produce synergic effect in flocculation effect compared with only agent. The removal rate of COD of monosodium glutamate solution increased with increasing of concentration of quaternary ammonium salt of sulfonation-alkali-lignin. Quaternary ammonium salt of sulfonation-alkali-lignin had some surface activity and could disperse particles of calcium carbonate and kaolin which induced that it had weak chelation to the solution with calcium and magnesium. Though the synthesis of quaternary ammonium salt of sulfonation-alkali-lignin from alkali lignin had not been reported yet, it had favorable flocculation effect, especially to the acid dye waste water.Quaternary ammonium salt of phosphono-alkali-lignin was a multi-effect water treatment agent. It had better effect of scale inhibition to calcium carbonate and calcium sulphate, had some flocculation effect to acid dye solution and had some chelation to calcium and magnesium. For calcium carbonate, the scale prohibition rate was 78.8% when the dosage was 12mg/L. Quaternary ammonium salt of phosphono-alkali-lignin didn't suit high Ca2+ of waste water,it didn't suit iddle and lower Ca2+ of waste water. The scale inhibition rate decreased with decreasing of pH especially when pH>9.0. That was because high pH could result in high concentration of CO32" and high producing rate of CaCO3. Quaternary ammonium salt of
    phosphono-alkali-lignin had good dispersion effect to crystal of calcium carbonate. Because of adsorbing to the surface of CaCO3, electrostatic repellent force and dimensional resistance between particles increased and crystals dispersed highly in the solution which could avoid crystalloid to separate out. The effect of scale inhibition and applying condition to CaSO4 was almost the same.The synthesis and research of these water treatment agents by activation of ultrasonic provided a scientific basis for the use of lignin which was still not made full use of and was an abundant, nontoxic, cheap and natural resource. It indicated that a new way of improving the reaction activity of lignin was found.
引文
[1] 蒋挺大.木质素.北京:化学工业出版社,2003:1~3 13~16
    [2] 中野准三等著.鲍禾,李忠正译.木质素的化学.北京:中国林业出版社,1989:1~2 20~23 252~253
    [3] 刘一星,赵广杰.木质资源材料学.北京:中国林业出版社,2004:308~309
    [4] 刘全校.碱法制浆黑液中木质素综合利用的研究.天津轻工学院博士论文.2001:1~3
    [5] Sun R. C, Fang J. M, Goodwin A. Physical Chemical and Structural Charaterization of Alkali Lignin from Abca Fiber. Wood chemistry and technology,1998,18(3):313~331
    [6] Funabiki M, Yamada T, Kayano K. Catal Today,1991,(10):33
    [7] 方桂珍,李丽英,任世学.甲醛还原法制备钯/炭-Pd/C催化剂及对碱木质素的活化作用.中国造纸,2004,29(2):129~133
    [8] 任世学,方桂珍.超声波对麦草碱木质素的活化作用.林产化学与工业,2005,(9):12~14
    [9] 周霞萍,严六明.噻吩及衍生物的微波反应机理研究.燃料化学学报,1998(12):506~509
    [10] 纪水亮.高举可持续发展的旗帜,促进水处理行业的发展.工业水处理,1998,18(1):1
    [11] 熊蓉春,董春雪,魏刚.绿色化学与21世纪水处理发展战略.环境工程,2000,4(18):22~26
    [12] 王东生等.含硅酸盐水解Fe(Ⅲ)溶液的形态分析方法.环境化学,1998.(3):163~1685
    [13] 马伟.天然高分子水处理剂研究进展与磁场效应作用下强化絮凝的探讨.水处理技术,1998,24(3):171~174
    [14] Shannon, Thomas Gerard, Clarahan, Daniel Arthur, Goulet, Mike Thomas, Schroeder, Wen Zyo. Modified Polysaccharides Containing Amphiphilic Hydrocarbon Moieties, US.Patent6,620,295, 2003
    [15] Doughty, Joseph B., Klem, Robert E.. Process for Making Quaternary Amines of Epichlorohydrin,US.Patent 4,066,673, 1978
    [16] Gammill, Ben. Method and System for Bisphenol a Production Using Water, US.Patent5,959,158,1999
    [17] 严瑞萱.水溶性高分子.北京:化学工业出版社,1998:386~387
    [18] 杨波.阳离子型改性天然高分子絮凝剂对活性污泥脱水处理.工业水处理,1999,19(5):26~27
    [19] 陈元彩.天然有机高分子絮凝剂研究与应用.工业水处理,1999,19(4):11~13.
    [20] 潘碌亭.天然高分子改性多功能水处理剂FIQ-C的制备及应用.工业水处理,2001,21(1):13~16.
    [21] 李淑红.FsM-c絮凝剂的制备及其性能评价.工业水处理,2000(增刊):70~72.
    [22] 王杰.两性高分子絮凝剂在污泥脱水上的应用研究.工业水处理,2000,20(8):28~30.
    [23] 孙海梅.一种天然阻垢剂阻垢及缓蚀性能的研究.工业水处理,2000,20(5):21~24.
    [24] Vincent F, Felicetta, Robert O. Peacok. Recovery of Proteinaceous Material from Waste Effluent, US.Patent 3,622,510
    [25] Striker Joerg, Arnold Manfred, Jost Renate et al. Salt-Free Coagulation of Polymer Latexes. Chem. Abstr. 1985;103:106075P
    [26] Ludwig, Charles H., Fiske, Larry B. Cationic Bituminous Emulsions.US.Patent4,017,419, 1977
    [27] Hoftiezer, Henry W., Watts, Daniel J., Takahashi, Akio. Cationic Reaction Product of Kraft Lignin with Aldehyde and Polyamine, US.Patent4,455,257, 1984
    [28] Schilling,Peter, Brown, Patti E..Cationic and Anionic Lignin Amines.1988,US.Patent, 4,775,744
    [29] 吴冰艳,余刚.新型脱色絮凝剂木质素季胺盐的研制及其絮凝性能与机理的研究.化工环保,1997(17):268~272
    [30] 方桂珍,何伟华,宋湛谦.阳离子絮凝剂木质素季胺盐的合成与脱色性能研究.林产化学与工业,2003(2):37~41
    [31] 方桂珍,吴陈亮,宋湛谦.阳离子型絮凝剂木质素季胺盐的合成条件优选.中国造纸2003(11):24~27
    [32] 朱建华,黄小雪,黄如棣,宋清.球形木质素磺酸阳离子交换树脂的合成及应用.中国造纸,1992,11(3):45
    [33] Schilling, Peter, Brown, Patti E.. Cationic and Anionic Lignin Amines as Flocculants US.Patent 4,781,840,1988
    [34] Briggs,William Scott. Clarification Process.US.Patent3,935,101,1976
    [35] Wolfgang GG lasser, Sino Sarkanen. Lignin Properties and Materials. 195th National Meeting of the American Chenical Society,1988:284~293
    [36] El-Taraboulsi M A, Nassar M M, AbdElRehim EA. A Modified of Nitric Acid Pulping of Bagasse Cellulo. Chem Technol, 1980,14(1):29~36
    [37] 陈俊平.碱木质素阴离子型高分子絮凝剂的合成与应用.北工学院学报,1994(6):90~93
    [38] 吴冰艳,余刚.新型脱色絮凝剂木质素季胺盐的研制及其絮凝性能与机理的研究.化工环保,1997(17):268~272
    [39] 薛菁雯,李忠正,邵瓞生.木质素磺酸盐缩合反应的研究.维素科学与技术,1997,5(1):41~47
    [40] 张致发,邓国华,叶跃华,卢卓敏,韦汉道.木质素磺酸盐和丙烯酸电化学接枝共聚反应的研究.维素科学与技术,1998.(6),1:55~62
    [41] 杨东杰,邱学青,陈焕钦.木质素磺酸钙的氧化.改性研究.精细化工,2001(18),3:128~134
    [42] Lin,Stephen Y..Binder Composed of a Graft Copolymer of High Molecular Weight Lignin Material and an Acrylic Monomer.US.PATENT 4871825,1989
    [43] Lin,Stephen Y.,Bushar, Lori L..Process for Grafting Lignin with Vinylic Monomers Using Separate Streams of Initiator and Monomer.US.Patent.4891415,1990
    [44] 谌凡更,李忠正.麦草碱木质素与环氧乙烷共聚的研究.纤维素科学与技术,998(6),1:48~54
    [45] Naae,Douglas G,DcBons,Francis E..Recovering Hydrocarbons with Water Soluble Alkylphenol Lignin Surfactants.US.Patent.4781251,1988
    [46] Schilling. Peter Sulfomethylated Lignin Amines US.Patent.4786720, 1988
    [47] Morrow, Lawrence R.,DaGue,Michael G,Whittington, Lawrence E..Alkylated Oxidized Lignins as Surfactants.US.Patent4739041,1988
    [48] 卢孔燎,韦汉道.类碱木质素制备表面活性剂.江化工,1996(27)3:31~33
    [49] 李焱,陈文瑾,谢燕,曾祥钦.改性木质素的缓蚀性能研究.贵州工业大学学报,1999(3):66~68
    [50] 陈文瑾,谢燕,曾祥钦.改性木质素的阻垢性能研究.贵州工业大学学报,2001(1):11~15
    [51] 邓玲,梁镰奕.木质素磺酸离子交换树脂的改性.离子交换与吸附,1995,11(6):481~485
    [52] 朱建华,黄小雪,黄如棣,宋清.球形木质素磺酸阳离子交换树脂的合成及应用.中国造纸,1992,11(3):7,45
    [53] 林耀瑞,钟香驹.木质素及其应用.中国造纸,1990:9(2):45~53
    [54] 周强,陈中豪.麦草碱木质素级分的官能团研究.中国造纸学报,1998(13):1~4
    [55] 张珂等.造纸工业蒸煮废液的综合利用与污染防治技术.北京:中国轻工业出版社,1992:180
    [56] 何伟等.麦草碱木质素和松木硫酸盐木质素硫化反应的比较研究.中国造纸,1991;6:10~15
    [57] 张芝兰,陆雍森.木质素混凝剂的性质及其应用研究.处理技术,1997(23),1:38~44
    [58] 夏晓明.天然高分子改性阳离子絮凝剂SFC的制备及其絮凝性能研究.环境化学,1990,9(5):14
    [59] 高宝玉,刘宝东,王淑仁.一种染料废水脱色絮凝剂(PSAM)的制备的效果实验.环境化学,1992,13(1):54
    [60] 王果庭.胶体稳定性.北京:科学出版社,1990
    [61] 崔蕴霞,肖锦.铝盐絮凝剂及其环境效应.工业水处理,998.18(3):6~9
    [62] Salamone J C, Rice W C.POLYAMpHOLYTES.in:Encyclopedia of Polymer Science and Engineering,Vol 11:514~529
    [63] Tasai J J Method for thickening or stabilizing aqueous media with polyamphoteric polysaccharides.US.Patent 5 132 285,1992
    [64] Linscott M B, van Biervliet R.Application of cationic and amphoteric wet end starches[A].Papermakers Conference proceedings of the Technical Association of the pulp and paper Industry 1985Atlanta, GA,USA:33~77
    [65] 邹新禧.两性淀粉螯合剂吸附性能的研究.功能高分子学报,1996,9(3):468
    [66] 胡勇有,肖锦.絮凝缓蚀剂CG-A3应用性能研究.油田化学,1988,5(2):113
    [67] HiroakiS, Shiochij G.. Dehydration of organic sludge. JP 2 157 100, 1990
    [68] 林芸,李万捷.两性聚丙烯酰胺的絮凝性能研究.高分子材料科学与工程,1996,12(4):136
    [69] 王锦堂.曼尼奇反应在有机合成中的应用.精细石油化工,1988,2:31
    [70] 冉千平,黄荣华,马俊涛.两性高分子絮凝剂阴、阳离子基团含量对絮凝性能的影响.重庆环境科学,2001,23(1):53
    [71] Ryan MS, Mayeda DK,Proverb R J,et al. Ampholytic Polymers,Polymeric Microemulsions, Methods of Producing Same and Use of Same as Flocculant. Ep 669 349A,995
    [72] Hisao T. An aqucous dispersion of an amphoteric watersoluble polymers,a method of manufacturing the same, anda treating agent comprising the same. EP 717 056,1995
    [73] Dizhbite T, Telyshera G et al. Multifunctional Activity of Lignin Derivatives in Pulp/filler Compositions. Adv. Lignocellulose Chem. Ecol. Friendly pulping Bleaching Technol. Eur. Work-shop lignocellul.Pulp,5th 1998, 97~100
    [74] Schilling, Peter, Brown, Patti E. Cationic and Anionic Lignin Amines. US.Patent 4,775,744, 1988
    [75] Briggs, William Scott. Clarification Process. US.Patent.Patent 3,935,101, 1976
    [76] Hoftiezer, Henry W., Watts, Daniel J., Takahashi, Akio. Cationic Reaction Product of Kraft Lignin with Aldehyde and Polyamine. US.Patent.4,455,257,1984
    [77] Bolto B A. Amphoteric Polyelectrolytes. Progress in polym Sci,1995,20(6): 1012
    [78] McCormick C L, Johnson C B.. Watersoluble Polymers:28 ampholytic copolymers of sodium 2-acrylamido-2-methylpro-anesulfonate with(2-acrylamido-2-methylpropyl)dimethylammonium chloride. Macromolecules,1988,21(3):686
    [79] Reiffer DG, Lundberg R D. Synthesis and Viscometric Properties of Low Charge Density Ampholytic Ionomers. Polymer, 1985,26 (7): 1058.
    [80] Mc Cormick C L, Blackmon Kp. Watersoluble Polymers:21 Copolymers of Acrylamide with 2-Acrylamido-2-Methylpane-Dimethylammonium Chloride Synthesis and Characterization. Polymer,1986,27(12):1971
    [81] McCormiak C L, Salazar L C. Watersoluble copolymerS:43.ampholytic copolymers of sodium 2-acrylamido-2-methylpro-panesulfonate with(2-acrylamido-2-methylpropyl)-trimethylammonium chloride. Macromolecules,1992,25(7):1896
    [82] Salamone J C, Rive W C. Flocculation. Encyclopedia of Polymer Science and Engineering, Vol7: 211
    [83] 陶圣如.季胺盐有机化合物.杭州化工,1992,2:14
    [84] 冉千平,黄荣华,马俊涛.两性聚合物的合成及在水处理中的应用.油田化学,2001,18(2):188
    [85] 谢彩锋.两性絮凝剂性能及其在蔗汁提纯分离中的应用研究.广西大学硕士论文,2002.5:19
    [86] 彭晓宏,沈家瑞.DMC/AM/AA三元共聚物的合成及表征.高分子材料科学与工程, 1999.15(4):63~65
    [87] [美]Paul C. Hiemenz.胶体与表面化学原理(中译本).北京:北京大学出版社,1986
    [88] 马青山,贾瑟,孙丽珉.絮凝化学和絮凝剂.北京:中国环境科学出版社,1988
    [89] 常青.絮凝原理.兰州:兰州大学出版社,1993:125
    [90] 胶体与界面化学实验.北京:北京大学出版社,1993:226~231
    [91] 马喜平,龚保强.几种聚电解质的合成及絮凝性能研究.重庆环境科学,1997,19(4):43~47
    [92] 曹文仲,顾松青.合成高分子絮凝剂物理化学性质和应用技术研究.轻金属,1996,5:8~13
    [93] W.James, Mccop.The Chemical Treatment of Cooling Water. Chemical Publishing ComPany, New York, 1974
    [94] Arthur, J.Freedman. Materials Performance, 1974, 13(12):114~118
    [95] G. Bohnsack. Mechanisms of Organic Inhibitors Used in Cooling Water corrosion control. Materials Performance,1986,25(5), 277~280
    [96] T.Imai, T.Uchida. A newly Developed Polymer to Inhibit Scale in Cooling Water Systems. Materials performance, 1992,49(5):203~1208
    [97] 徐北妮.我国水处理剂现状与发展.化学工程师,1998,6(3):43~45
    [98] 汪祖模,蔡兰坤.有机膦羧酸型水质稳定剂的研究.华东化工学院学报,1989,15(6):699~704
    [99] 李裕芳.我国冷却水处理技术的现状与展望.工业水处理,1988,4:25~29
    [100] 尚通明,王琪.新型水处理剂EDDAP中总磷的分析.化学世界,2004,1:11~13
    [101] Wilken G.. Morphology of Inhibitor Treated CaCO_3 Precipitate.Desalination, 1980,33(2):201
    [102] Mccarineye R, Aiexander A E. The Effect of Additives upon the Process of Crystallization: (Ⅰ)Crystallization of Calcium Sulfate. J of Colloid Science,1958,13:383.
    [103] Gill J S, Anderson C D, Varsanik R G..Mechanism of Scale Inhibition by Phosphonates. Process 44th Int. Water Conf.Pittsburgh:Pa(USA),1983, 4:26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700