有机溶剂热分解法碳化硅纳米电缆合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅(SiC)半导体材料是继第一代元素半导体材料(Si)和第二代化合物半导体材料(Ge、S、GaP、InP等)之后发展起来的第三代半导体材料,,具有间接宽禁带、大的击穿电场、高的热导率和高的电子饱和漂移速度等特点,使其在高温、高频、高功率和抗辐射等极端环境下工作的光电子器件制备方面有着巨大的应用前景。SiC纳米线除保留其宽带隙半导体性能外,还由于纳米尺寸效应、特定的形貌和内在的特殊结构,在力学性能、发光性能和场发射性能等方面展现出更多特异性,因此研究SiC纳米线合成、结构和性能具有重要意义。
     采用有机溶剂热分解法,我们成功地合成了几种SiC基—维纳米结构,并研究了其一些性质。
     1)用甲醇热分解法合成了SiC-SiO_2纳米电缆;讨论了其合成中出现的纳米电缆分支现象和多种形貌形成的机理;研究了纳米电缆的红外、拉曼光谱和光致发光光谱等光谱性质。
     2)用以醇热分解法合成了具有高质量SiC单晶核部的SiC-SiO_2纳米电缆,并讨论了红外光谱中出现的一些特殊现象的起因。
     3)通过调节气流速度,合成了碳纳米颗粒修饰的SiC-SiO_2纳米电缆、SiC-SiO_2-C三重同轴纳米电缆;研究了其光学及场发射性质。
     4)以四氯化钛为催化剂,生长了SiC-SiO_2狼牙棒核壳纳米结构并讨论了其生长机理。
In connection with discovering of carbon nanotubes in 1991,one-dimensional nanostructures,such as nanowires,nanobelts,nanorods,and nanocables have attracted much attention in the field of material research owing to their unique structural and physical properties different form the traditional bulk materials.Resent research results show that they are valuable for the fundamental research of materials and possess potential application.Among the several materials,SiC has been focused as potential material because their outstanding properties,such as wide band-gap,high breakdown field,high saturation drift velocity,short carrier lifetime,high thermal conductivity,excellent mechanical and chemical properties,etc.Compared to bulk material,SiC nanostructures reveal outstanding optical and field emission properties caused by quantum confinement effects and novel structures.Therefore,the material studies of SiC 1D structure are of great importance for future nanoscale photonic and electronic devices.In spite of its outstanding material properties,the study of SiC-based 1D nanostructure is in primary stage.Now,exploring of several synthesis methods,characteristics of basic optical and field emission properties have become main contents of their study.Up to now,several methods such as thermal reduction of carbon nanotubes,direct heat method and chemical vapor deposition,etc.For industrial application,it needs to develop a simple method to synthesize large-scale SiC nanostructures uniformly and at low-cost.In this work,we present a simple and low-cost method to synthesize SiC nanostructures in large-scale and uniformly.Our synthesis of SiC 1D nanostructure is based on the thermal decomposition of organic solvents,i.e.,methanol and ethanol.The synthesis of SiC 1D nanostructure was carried out on the common Si substrate.The morphology,microstructure,crystal structure and several physical properties of nanostructures have been studied systematically and discussed their growth mechanisms.
     Carbon monoxide is a necessary precursor for synthesis of SiC-SiO_2 core-shell nanocables.We use gaseous carbon monoxide produced by thermal decomposition of organic solvents as a precursor.The use of thermal decomposition of organic solvents in the synthesis of SiC nanostructure makes it convenient and simple.Based on this method,it is possible to synthesize high-quality and large-scale SiC-SiO_2 core-shell nanocables at low-cost.
     In the works for synthesis of SiC-SiO_2 nanocables,we found that the catalyst dispersion on the Si substrate plays key role for uniform distribution of nanocable.For uniform dispersion of catalyst on the whole surface of Si substrate,we explored a noble covering method of catalyst on Si substrate and a new catalyst mixture.The dispersion state of catalyst and the distribution of resultant nanocables on the Si substrate were investigated using scanning electron microscopy and Raman microscopy.Most of nanocables did not exceed 50 nm in diameter and revealed smooth surface morphologies.Some of them were divided into two or four branches. It is found that the dividing of nanocables was due to the simultaneous formation of several crystal seeds in one catalyst droplet.Unordinary carbon-related peaks were appeared in Raman spectra recorded from the surface of Si substrate on which nanocables have been distributed nonuniformly.These unordinary carbon-related peaks were still observed after annealed at 800℃for 30min in the air.Their origins were discussed comparing with the result of SEM observation.
     We also investigated the possibility of the use of ethanol for synthesis of SiC nanocables.Differing from the case of methanol,several species such as carbon,H_2O, and hydrocarbons are produced in thermal decomposition course.These species affect on the several properties of nanocables.The existence of these species gave us the possibility to control of microstructures of nanocables.By using the thermal decomposition of ethanol,we successfully synthesized SiC-SiO_2 core-shell nanocables, SiC-C-SiO_2 ternary coaxial nanocables,SiC-SiO_2 nanocables decorated with carbon nanoparticles,and SiC-SiO_2-C ternary coaxial nanocables.We also successfully controlled the diameter of SiC core and the thickness of SiO_2 shell by adjusting the flow ratio between Ar and Ar/ethanol.The former three kinds of nanostructures revealed good photoluminescence properties and the later showed potential application for field emission display.
     At the end,we synthesized a noble SiO_2 hierarchical nanostructure on SiC nanowires by using a mixture of ethanol and titanium tetrachloride as a precursor.On the basis of SEM and HRTEM observation,the growth mechanism of this noble nanostructure was proposed.
引文
[1]Pritiraj M.Nanotechnology:Nano-oscillators get it together[J].Nature,2005,437:325-326.
    [2]Hamed M,Hassan H A.Small Things and Big Changes in the Developing World[J].Science,2005,309:65-66.
    [3]Gould P.Singapore's focus on applications[J].Mater.today,2004,7:42-46.
    [4]Lin J L,Jang G W.Opportunities for Taiwan's industry[J].Mater.today,2004,7:36-41.
    [5]Dowling A P.Development of nanotechologies[J].Mater.today,2004,7:30-35.
    [6]Bai C L.Ascent of nanoscience in China[J].Science,2005,309:61-66.
    [7]张立德,牟季美,纳米材料和纳米结构[M],北京:科学出版社,2001,5-11.
    [8]张立德,纳米材料[M],北京:化学工业出版社,2000,39-41.
    [9]阎子峰,纳米催化技术[M],北京:化学工艺出版社,2003,9-11.
    [10]Iijima S,Helical microgubules of graphitec carbon[J].Nature,1991,354:56-58.
    [11]Hu J T,Odom T W,Lieber C M.Chemistry and Physics in oune dimension:syntheisis and properties of nanowires and nanotubes[J].Acc.Chem.Res.,1999,32:435-445.
    [12]Colins P G,Avouris A.Nanotubes for electronics[J].Sci.Am.2000,283:62-69.
    [13]Xia Y N,Yang P D,Sun Y G,et al.One-dimensional nanostructures:Synthesis,characterization,and applications,Adv.Mater[J].2003,15:353-389.
    [14]Wagner R S,Ellis W C.Vapor-Liquid-Solid Mechanism of Single Crystal growth,Appl.Phys.Lett.,1964,4:89-98.
    [15]Leu I C,Hon N H.Nucleation behavior of silicon carbide whiskers grown by chemical vapor deposition[J].J.Cryst.Growth,2002,236:171-175.
    [16]Li Y B,Xie S S,Zhou W Y,et al.Cone-shaped hexagonal 6H-SiC nanorods[J]. Chem. Phys. Lett., 2002, 356:325-330.
    [17] Sears G W. Mercury whiskers [J]. Acta Metall., 1953, 1:457-459.
    [18] Fisher J C, Fullman R L, Sears G W. On the origin of Screw dislocation in growing crystals [J]. Acta Metall., 1954, 2:344-346.
    [19] Sears G W. Agrowth mechanism for mercury whiskers, [J]. Acta Metall., 1955, 3:361-366.
    [20] Newkirk J B, Sears G W. Growth of Potassium Halide crystals from aqueous solution [J]. Acta Metall., 1955, 3:110-111.
    [21] Brenner S S, Sears G W. Mechanism of whisker growth-Ill nature of growth sites [J]. Acta Metall., 1956, 4:268-270.
    [21] Frank F C. The influence of dislocations on crystal growth [J]. Dise. Faraday Soc, 1949,5:48-54.
    [23] Blakely J M, Jackson K A. Groth of crystal whiskers [J]. J. Chem. Phys., 1962 37: 428-430.
    [24] Treuting R G. Torsional strain and the screw dislocation in Whisker crystals [J]. Aeta Metall., 1957, 5:173-175.
    [25] Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: Synthesis, characterization, and applications [J]. Adv. Mater., 2003, 15: 353-389.
    [26] Lewis B. The growth of crystals of low supersaturation [J]. J. Cryst. Growth, 1974, 21:29-50.
    [27] Zhang Y, Wang N, Gao S, et al. A simple method to synthesize nanowires [J]. Chem. Mater., 2002, 14(8): 3564-3568.
    [28] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J]. Science, 2001,291:1947-1949.
    [29] Yang P, Lieber C M. Nanorod-superconductor composites: a pathway to materials with high critical current densities [J]. Science, 1996, 273: 1836-1840.
    [30] Wolfe E G, Coskren T D. Growth and Morphology of Magnesium Oxide Whiskers [J]. J. Am. Ceram. Soc, 1965, 48: 279-285.
    [31] Shi W S, Peng H Y, Zheng Y F, et al. Synthesis of large areas of highly oriented, very long silicon nanowires [J]. Adv. Mater., 2000, 12:1343-1345.
    [32] Zhang R Q, Lifshitz Y, Lee S T, Oxide-assisted growth of semiconducting nanowires [J]. Adv. Mater., 2003, 15:635-637.
    [33] Shi W S, Zheng Y F, Wang N, Lee C S, Lee S T. General synthetic route to III-V compound semiconductor nanowires [J]. Adv. Mater., 2001, 13: 591-594.
    [34] Holmes J D, Hohnston K P, Doty R C, et al. Control of thickness and orientation of solution-grown silicon annowires [J]. Science, 2000, 287: 1471-1473.
    [35] Wang J F, Gudiksen M S, Duan X F, et al. Highly polarized Photoluminescence from single indium phosphide nanowires and photodeteetion application [J]. Science, 2001, 293:1455-1457.
    [36] Huang M H, Mao S, Yang P D. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292:1897-1899.
    [37] Duan X F, Huang Y, Lieber C M. Indium phosphide nanowires as building blocks for nanoscale electronic and poto-electronic devices [J]. Natrue, 2001, 409:66-69.
    [38] Wang L L, Sun Z, Chen T, et al. Growth temperature effect on field emission properties of printable carbon nanotubes cathode [J]. Solid-State Eleetronies, 2006, 50:800-804.
    [39] Jo S H, Banerjee D, Ren Z F. Field emission of zinc oxide nanowires grown on carbon cloth [J]. Appl. Phys. Lett., 2006, 89:023118-023120.
    [40] Pan Z W, Lai H L, Au F C K, Duan X F, Zhou W Y , Shi W, Wang N, Lee C S, Wang N B, Lee S T. Oriented silicon carbide nanowires: synthesis and field emission properties [J]. Adv. Mater., 2000, 12:1186-1190.
    [41] Kind H, Yan H, Yang P, Nanowire ultraviolet photodetectors and optical switches[J]. Adv. Mater., 2002, 14: 158.
    [42] Wang X, Song J, Liu J, Wang Z L. Direct-current nanogenerator driven by ultrasonic waves [J]. Sciences, 2007, 316:102-105.
    [43] Law M, Kind H, Kim F, et al. Photochemical sensing of NO_2 with SnO_2 nanoribbon nanosensors at room temperature [J]. Angew. Chem. Int. Ed., 2002, 41:2405-2408.
    [44] Li Y, Qian F., Xiang J., Lieber C. M., Nanowires electronic and optoelectronic devices [J]. Mater, today, 2006, 9: 18-27.
    [45] Morales A.M., Lieber C. M., A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science, 1998, 279:208-211.
    [46] Zhang Y F, Tang Y H, Wang N, et al. Silicon nanowires prepared by laser ablation at high temperature [J]. Appl. Phys. Lett., 1998, 72:1835-1837.
    [47] Trentler T J, Hickman K M, Geol S C, Viano A M, Gibbons P C, Buhro W E. Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth [J]. Science, 1995, 270: 1791-1794.
    [48]Huang Y.,Duan X.F.,Cui Y.,Gallium nitride nanowire nanodeviecs[J].Nano Lett.,2002,2:101-104.
    [49]Wang J F,Gudiksen M S,Duan X F,Cui Y,Liebef C M.Highly Polarized photoluminescence from single indium phosphide nanowires and photodetection application[J].Science,2001,293:1455-1457.
    [50]Schwab K,Henriksen E A,Worlock J M,Roukes M L.Measurement of the quantum of thermal conductance[J].Nature,2000,404(6781):974-977.
    [51]Volz S G,Chen G.Molecular dynamics simulation of thermal conduetivity of silicon nanowires[J].Appl.Phys.Lett.,1999,75:2056-2058.
    [52]Choyke W J,Pensl G.Physical Properties of SiC[J].MRS Bulletin,1997,22(3):25-29.
    [53]Lely J A.Darstellung von Einkristallen von Siliciumearbid und Beherrschung von Art and Nenge der dingebauten Verunremigungen[J].Ber.Deut.Keram.Ges.,1955,32:229-231.
    [54]Halden F A.The growth of silicon carbide from solutions,Proc.Conf.On SilieonCarbide[M],Boston 1959,Pergamon Press,1960,115-123.
    [55]Gillessen K,M(u|¨)nch W V.Growth of silicon carbide from liquid silicon by a traveling heater method[J].J.Cryst.Growth,1973,19:263-265.
    [56]Tairov Y M,Tsvetkov V F.Investigation of growth processes of ingots of silicon carbide single crystals[J].J.Cryst.Growth,1978,43(2):209-212.
    [57]Carter Jr.C H,Tsvetkov V F,Glass R C,Henshall D,Brady M,M(u|¨)ller St G,Kordina O,Irvine K,Edmond J A,Kong H -S,Singh R,allen S T,Palmour J W.Prgress in SiC:From material growth to commerical device development[J].Mater.Sci.Eng.,B 1999,61-62:1-8.
    [58]Ohtani N,Fujimoto T,Katsuno M,Aigo T,Yashiro H.Growth of large high-quality SiC single crystals[J].J.Cryst.Growth,2002,237-239:1180-1186.
    [59]Yasui K,Asada K,Maeda T,Akahane T.Growth of high quality silicon carbide filmes on Si by triode plasma CVD using monomethylsilane[J].Appl.Surf.Sci.,2001,175-176:495-498.
    [60]Hofmann C H,M(u|¨)ller M H,Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals.Mater.Sci.Eng.B[J].1999,61-62:29-39.
    [61]郝跃,彭军,杨银堂.碳化硅宽禁带半导体技术[M].科学出版社,2000
    [62]李凤生,杨毅,马振叶,姜炜等,纳米功能复合材料及应用[M].国防工业出版 社, 2003:195-198
    [63] He X B, Yang H. Preparation of SiC fiber-reinforced SiC composites [J]. J. Mater. Proc. Tech., 2005, 159:135-138.
    [64] Manuel H, Falko H, Ursula K. Cutting of SiC fibers for Ti-MMC applications [J]. Adv. Engin. Mate., 2004:761-767.
    [65] Morseher G N, Pujar V V. Melt-infiltrated SiC composites for gas turbine engine applications, [R]. Proceedings of the ASME Turbo ExPo 2004. Volume 2: Aircraft Engine; Ceramics; Controls, Diagnostics, and Instrumentation, 2(2004):353-359
    [66] Rohatgi P K Thakkar R B, Kim J K, Daoud A, Scatter and statistical analysis of tensile properties of cast SiC reinforced A359 alloys [J]. Mater. Sci. Eng. A, 2005, 398:1-14
    [67] Kotoji A. Lee S K, Takahashi K, Yokouchi M, High temperature fatigue strength of Craek-healed Al_2O_3 toughened by SiC whiskers [J]. Proc SPIE Int Soc Opt Eng, 2005, 5648:29-36.
    [68] Yu J T, Li C Z, Study of the interface structure in SiC fiber reinforced Al matrix composite [J]. J. Mater. Engin., 1995, 4:32-34.
    [69] Ruff M., Mitlehner H., R. Helbig, SiC devices: physics ad numerical simulation [J]. IEEE Trans. Electron Devices, 1994, 41:1040-1054.
    [70] Zhou D, Seraphin S, Production of silicon carbide whiskers from carbon nanoclusters [J]. Chem. Phys. Lett., 1994, 222:223-238.
    [71] Dai H J, Wang E W, Lu Y Z, Fan S, Lieber C M. Synthesis and characterization of carbide nanorods [J]. Nature, 1995, 375:769-772.
    [72] Han W Q, Fan S S, Li Q Q, Lung W J, Gu B L, Yu D P. Continuous synthesis and characterization of silicon carbide nanorods [J]. Chem. Phys. Lett., 1997, 65:374-378.
    [73] Kharlamov A L, Kirillova N V, Kaverina S N, Hollow silicon carbide nanostructures [J]. Theor. Exp. Chem., 2002, 38:237-241.
    [74] Sun X H, Li C P, along W K, Along N B, Lee C S, Lee S T, Teo B K, Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes [J]. J. Am. Chem. Soc, 2002, 124:14464-14471.
    [75] Ye H H, Titchenal N, Gogotsi Y, Ko F. SiC nanowires synthesized from electrospun nanofiber templates [J]. Adv. Mater., 2005, 17:1531-535.
    [76]Li Z J,Zhang J L,Meng A L,Guo J Z.Large-area highly-oriented SiC nanowires arrays:synthesis,Raman,and photoluminescence properties[J].J.Phys.Chem.B,2006,110(45):22382-22386.
    [77]Krishinarao R V,Godokhindi M M,Mukunda P G I,Chakraborty M.Direct Pypolysis of raw rice husks for maximization of silicon carbide whisker formation [J].J.Am.Ceram.Soc.,1991,74:2869-2873.
    [78]Wang Z L,Dai Z R,Gao R P,Bai Z G,Gole J L,Side-by-side silicon carbide-silica biaxial nanowires:synthesis,structure,and mechanical properties[J].Appl.Phys.Lett.,2000,77(21):3349-3351.
    [79]Ryu Y,Tak Y,Yong K,Direct growth of core-shell SiC-SiO_2 nanowires and field emission characteristics[J].Nanotechlnology 2005,16:5370-5374.
    [80]Meng G W,Cui Z,Zhang L D,Phillipp F.Growth and characterization of nanostruetured β-SiC via carbothermal reduction of SiO_2 xerogels containing carbon nanoparticles[J].J.Cryst.Growth,2000,209:801-806.
    [81]Raman V,Bhatia G,Bhardwaj S,Synthesis of silicon carbide nanofibers by sol-gel and polymer blend techniques[J].J.Mater.Sci.,2005,40:1521-152.
    [82]Lia X K,Liua L,Zhang Y X,Shen Sh D,Geb Sh,Ling L Ch.Synthesis of nanometer silicon carbide whiskers from binary carbonaceous silica aerogels,[J].Carbon,2001,39:159-165.
    [83]Yang W,Aiaki H,Hu Q,Ishikawa N,Suzuki H,Noda T,Insitu growth of SiC nanowires on RS-SiC substrate(s)[J].J.Cryst.Growth,2004,264:278-283.
    [84]Lin M,Loh K P,Boothroyd C,Du A.Nanoeantilevers made of bent silicon carbide nanowires-in-silicon oxide nanocones[J].Appl.Phys.Lett.,2004,85(22):5388-5390.
    [85]Zhang H F,Wang C M,Wang L S.Helical crystalline SiC/SiO_2 core-shell nanowires [J].Nano Lett.,2002,2(9):941-944.
    [86]Zhang D,Alkhateeb A,Han H,Mahmood H,Mcllroy D N,Norton M G.Silicon carbide nanosprings,[J].Nano Lett.,2003,3(7):983-987.
    [87]Niu J J,Wang J N.An approach to the synthesis of silicon carbide nanowires by simple thermal evaporation of ferrocene onto silicon wafers,[J].Eur.J.Inorg.Chem.,2007,(25):4006-4010.
    [88]Seeger T,Kohler-Redlich P,Ruhle M.Synthesis of nanometer-sized SiC whiskers in the Are-discharge,[J].Adv.Mater.,2000,12(4):279-282.
    [89]吴旭峰,凌一鸣,电弧放电法制备SIC纳米丝的实验研究[J].,真空科学与技术学,2005,25:30-33.
    [90]Liu X M,Yao K F.Large-scale synihesis and photoluminescence properties of SiC/SiO_2 nanocables[J].Nanotechnolog,2005,16:2932-2935.
    [91]Liu X M,Yao K F.Large-scale synihesis and photoluminescence properties of SiC/SiO_2 nanocables[J].Nanotechnology,2005,16:2932-2935.
    [92]Shi W S,Zheng Y F,Wang N,Lee CS,Lee S T.General synthetic route to Ⅲ-Ⅴcompound semiconductor nanowires,[J].Adv.Mater.,2001,13:591-594.
    [93]Deng S Z,Li Z B,Wang W L,Xu N S,Zhou J,Zheng X G,Xu H T,Chen J,She J C.Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic substrate[J].Appl.Phys.Lett.,2006,89:023118-023120.
    [94]Lu Q,Hu J,Tang K,Qian Y,Zhou G,Liu X,Zhu J.Growth of SiC nanorods at low temperature[J].Appl.Phys.Lett.,1999,75(4):507-509.
    [95]Bao X,Nangrejo M R,Edirisinghe M J.Preparation of silicon carbide foams using polymeric precursor solutions,[J].J.Mater.Sci.,2000,35(17):4365-4372.
    [96]Gares J M,KuPerman A,Millar D M,Olken M M,Pyzik A J,Rafaniello W.Synthetic inorganic materials,Adv.Mater.[J].2000,12(23):1725-1735.
    [97]Moon J,Caballero A C,Hozer L,Chiang Y M,Cima M J.Fabrication of functionally graded reaction infiltrated SiC-C composite by three-dimensional Printing(3DP~(TM)) process,[J].Mater.Sci.Engin.A,2001,298:110-119.
    [98]Zhan G D,Kuntz J D,Duan R G,Mukherjee A K.Spark-plasma sintering of silicon carbide whiskers(SiCw) reinforced nanocrystalline alumina,[J].J.Am.Ceram.Soc.,2004,87(12):2297-2300.
    [99]Ryu Z Y,Zheng J T,Wang M Z,Zhang B J.Synthesis and characterization of silicon carbide whiskers,[J].Carbon,2001,39(12):1929-1930.
    [100]Fissel A,Sehloter B,Richter W,Low-temperature growth of SiC thin films on Si and 6H-SiC by solid-source molecular beam epitaxy[J].Appl.Phys.Lett.,1995,66(23):3182-3184.
    [101]Takahiro M,Jun T,Taruki T.Blue-green luminescence from porous silicon carbide [J].Appl.Phys.Lett.,1994,64(2):226-228.
    [102]Hidenori M,Takahiro M.Blue electroluminescence from porous silicon carbide[J].Appl.Phys.Lett.,1994,65(26):3350-3352.
    [103]Koch V P,Sreseli O,Polisski G,Lumineseenee enhancement by electrochemical etehing of SiC(6H) [J]. Thin Solid Film, 1995,255:107-110.
    [104] Fan J Y, Wu X L, Chu Paul K. Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties [J]. Prog. Mater. Sci., 2006, 51(8):983-1031.
    [105] Gundiah G, Madhav G V, Govindaraj A, Seikh M M, Rao C N R. Synthesis and characterization of silicon carbide. Silicon oxynitride and silicon nitride nanowires [J]. J. Mater. Chem., 2002,12:1606-1611.
    [106] Zhang L, Yang W, Jin H, Zheng Z, Xie Z, Miao H, An L, Ultraviolet Photoluminescence from 3C- SiC nanorods, [J]. Appl. Phys. Lett., 2006, 89:143101.
    [107] Li K Z, Wei J, Li H J, Li Z J, Hou D S, Zhang Y L. Photoluminescence of hexagonal-shaped SiC nanowires prepared by sol-gel process, [J]. Mater. Sci. Eng. A, 2007, 460-461:233-237.
    [108] Seong H K, Choi H J, Lee S K, Lee J, Choi D J, Optical and electrical transport properties in Silicon carbide nanowires [J]. Appl. Phys. Lett., 2004, 85(7):1256-1258.
    [109] Zhou W M, Liu X, Zhang Y F, Simple approach to β-SiC nanowires: Synthesis, optical, and electrical properties [J].Appl. Phys. Lett., 2006, 89, 223-24.
    [110] Li Y, Dorozhkin P S, Bando Y, Golberg D. Controllable modification of SiC nanowires encapsulated in BN nanotubes [J].Adv. Mater., 2005, 17(5), 545-549.
    [111] Wu Z S, Deng S Z, Xu N S, Chen J, Zhou J, Chen J, Needle-shaped silicon carbide nanowires: synthesis and field electron emission properties [J]. Appl. Phys. Lett., 2002, 80(20):3829-3831.
    [112] Zhou W M, Wu Y J, Kong E S, Zhu F, Hou Z Y, Zhang Y F. Field emission from nonaligned SiC nanowires [J]. Appl. Surf. Sci., 2006, 253: 2056-2058.
    [113] Shen G, Bando Y, Ye C, Liu B, Golberg D. Synthesis, characterization and field-emission ProPerties of bamboo-like β-SiCnanowires, [J]. Nanotechnology, 2006, 17:3468-3472.
    [114] Zhou W M, Yan L, Wang Y, Zhang Y F. SiC nanowires: A photocatalytic nanomaterials [J]. Appl. Phys. Lett., 2006, 89:013105-013107.
    [115] Pham-Huu C, Keller N, Ehlet G, Ledoux M J, The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic Potential [J]. J.Catal., 2001, 200:400-410.
    [116] Zhang Y, Han X, Zheng K, Zhang Z, Zhang X, Fu J, Ji Y, Hao Y, Guo X, Wang Z L. Direct observation of super-plasticity of Beta-SiC nanowires at low temperature [J]. Adv. Funct. Mater., 2007, 17(17):3435.
    [117] Yang W, Araki H, Tang C, Thaveethavorn S, Kohyama A, Suzuki H, Noda T, Single-crystals SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites [J]. Adv. Mater., 2005, 17:1519-1523.
    [118] Mpourmpakis G P, Froudakis G E, Lithoxoos G P, Samios J. SiC nanotubes: a novel materials for hydrogen storage [J]. Nano Lett., 2006, 6:1581-1583.
    [119] Pol V G, Pol S V, Gedanken A, Lim S H, Zhong Z, Lin J. Thermal decomposition of commercial silicon oil to produce high yield high surface area SiC nanorods [J]. J. Phys. Chem. B, 2006, 110:11237-11240.
    [1]Xia Y N,Yang P D,Sun Y G,Wu Y Y,et al.One-dimensional nanostructures:synthesis,characterization,and application.[J].Adv.Mater.2003,15:353-389.
    [2]Wang Z L,Handbook of nanophase and nanostructured materials[M].Tsinghua University Press and Kluwer Aeademic/Plenum Publishers
    [3]Stone N J,Ahmed H.Silicon single eleetron memory cell[J].Appl.Phys.Lett 73(1998):2134-2136.
    [4]Cui Y,Wei Q,Park H,Liber C M.Nanowire nanosensors for highly Sensitive and Seleetive Deteetion of Biological and Chemical Species[J].Science,293(2001):1289-1292.
    [5]Huang M H,Mao S,Feiek H,et al.Room-Temperature Ultraviolet Nanowire Nanolasers[J].Science 2001,292:1897-1899.
    [6]Yang W,Araki H,Kohyama A,et al.Process and Mechanical Properties of in Situ Silicon Carbide-Nanowire-Reinforced Chemical Vapor Infiltrated Silicon Carbide/Silicon Carbide Composite[J].J.Am.Ceram.Soc.,2004,87:1720-1725.
    [7]Wolfgang B,Claus E,Mimoza G..Thermal decomposition of nickel nitrate hexahydrate,Ni(NO_3)_2·6H_2O,in comparison to Co(NO_3)_2·6H_2O and Ca(NO_3)_2·4H_2O [J].Thermochimica Acta,2007,456:64
    [8]Du Y,Schuster J C.Experimental Investigations and Thermodynamic Descriptions of the Ni-Si and C-Ni-Si Systems[J].Metal.Mater.Trans.,1999,30A:2409-2418.
    [9]Liang C H,Meng G W,Zhang L D,et al.Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanparticles[J].Chem.Phys.Lett.,2000,329:323-328.
    [10]Yang W Y,Miao H Z,Xie Z P,et al.Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor[J].Chem.Phys.Lett.,2004,383:441-444.
    [11]Liu D F,Xie S S,Yan X Q,et al.A simple large-scale synthesis of coaxial nanocables: silicon carbide sheathed with silicon oxide [J]. Chem. Phys. Lett. 2003, 375:269.
    [12] Perkins B R, Wang D P, Soltman D, et al. Differential current amplification in three-terminal Y-junction carbon nanotubes deviees [J]. Appl. Phys. Lett., 2005, 87:123504-123506.
    [13] Nakashima S, Harima H. Raman investigation of SiC polytype [J]. Phys. Stat. Sol. (a) 1997,162:39-64.
    [14] Cardona M. Light Scattering in Solids II: Basic Concepts and Instrumentation [M]; Cardona, M., Guntherodt G.., Eds.; Topics in Applied Physics, Vol. 50; Springier-Verlag: Berlin, 1982; pp 19.
    [15] Colomban Ph, Gouadec G, Mazerlles L.Raman analysis of materials corrosion: the example of SiC fibers [J]. Materials and Corrosion, 2002, 53:306.
    [16] Kim J G, Tlali S, Jackson Howard E, et al. A micro-Raman investigation of the SCS-6 SiC fiber [J]. J. Appl. Phys., 1997, 82:407-412.
    [17] Ward Y L, Young R J. A microstructural study of silicon carbide fibres through the use of Raman microscopy [J]. J. of Mater. Sci., 2001, 36:55-66.
    [18] Ward Y, Young R J, Shatwell R A. Application of Raman microscopy to the analysis of silicon carbide monofilaments [J] J. of Mater. Sci., 2004, 39:6781-6790.
    [19] Ward Y, Young R J, Shatwell R A. Characterization of carbon coatings on SiC monofilaments using Raman spectroscopy [J]. J. Mater. Sci., 2007, 42:5135-5141.
    [20] Tuinstra F, Koenig J L. Raman Spectrum of Graphite [J] J. Chem. Phys 1970, 53:1126.
    [21] Knight D S, White W B. Characterization of diamond films by Raman spectroscopy [J]. J. Mater. Res. 1989, 4:385.
    [22] Kurimoto E, Harima H, Toda T, et al.. Raman study on the Ni/SiC interface reaction [J]. J. Appl. Phys., 2002, 91:10215.
    [23] Robbie K, Jemander S T, Lin N, et al. Formation of Ni-graphite intercalation compounds on SiC [J]. Phys. Rev. B, 2001, 64:155401(11p).
    
    [24] Frechette J, Carraro C. Resolving Radial Composition Gradients in Polarized Confocal Raman Spectra of Individual 3C-SiC Nanowires [J]. J. Am. Chem. Soc. 2006, 128:14774-14775.
    
    [25] Zheleva T, Lelis A, Duscher G, et al.. Transition layers at the SiO_2/SiC interface [J]. Appl. Phys. Lett., 2008, 93:022108.
    [26]Wang S W,Ventra M Di,Kim S G;et al..Atomic-Scale Dynamics of the Formation and Dissolution of Carbon Clusters in SiO_2[J].Phys.Rev.Lett.,2001,86:5946.
    [27]Han W Q,Fan S S,Li Q Q,et al..Continuous synthesis and characterization of silicon carbide nanorods[J].Chem.Phys.Lett.,1997,265:374-378.
    [28]Vix-Guterl C,Alix I,Gibot P,Ehrburger P.Formation oftublar silicon carbide from a carbon-silica material by using a reactive replica technique:infra-red characterization[J].Appl.Surf.Sci.,2003,210:329-337.
    [29]Borowiak-PalenE H,Ruemmeli M,Gemming T.Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution[J].J.Appl.Phys.,2005,97:056102.
    [30]Meng G W,Zhang L D,Mo C M,et al..Preparation of β-SiC nanorods with and without amorphous SiO_2 wrapping layers[J].J.Mater.Res.,1998,13:2533-2538.
    [31]Seong H K,Choi H J,Lee S K,et al..Optical and electrical transport properties in silicon carbide nanowires[J]Appl.Phys.Lett.,2004,85:1256-1258.
    [32]Choi H J et al.,Self-Organized GaN Quantum Wire UV Lasers[J].J.Phys.Chem.B,2003,107:8721-8725.
    [1]Peg M.,Ruiz M.P.,Callejas A.,et al..Pyrolysis ethanol under flow reactor conditions[R].3rd European Combustion Meeting ECM 2007,published by Greek Section of the Combustion institute.
    [2]Ruiz M.P.,Callejas A.,Millera A.,et al..Soot formation from C_2H_2 and C_2H_4pyrolysis at different temperatures[J].Anal.Appl.Pyrolysis,2007,79:244.
    [3]Liang C.H.,Meng G.W.,Zhang L.D.,et al..Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles[J].Chem.Phys.Lett.,2000,329:323-328.
    [4]Yang W.Y.,Miao H.Z.,Xie Z.P.,et al..Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric Precursor[J].Chem.Phys.Lett.,2004,383:441-444.
    [5]Nakashima S.,Harima H.,Raman Investigation of SiC Polytypes[J].Phys.Star.Sol.(a),1997,162:39-64.
    [6]Harima H.,Nakashima S.,Uemura T.,Raman scattering from anisotropic LO-Phonon-Plasmon-coupled mode in n-type 4H-and 6H-SiC[J].J.Appl.Phys.,1995,78(3):1996-2005.
    [7]Rohmfeld S.,Hundhansen M.,Ley L.,Influence of stacking disorder on the Raman spectrum of 3 C-SiC Phys.Stat.Sol.(b),1999,215:115-119.
    [8]Li B.,Yu D.P.,Zhang S.L.,Raman spectral study of silicon nanowires Phys.Rev.B,1999,59:1645-1648
    [9]Kim J.Y.,Tlali S.,Jackson H.E.,A micro-Raman investigation of the SCS-6 SiC fiber [J].J.Appl.Phys.,1997,82:407-412.
    [10]Ward Y.,Young R.J.,Shatwell R.A.,Microstructural study of silicon carbide fibres through the use of Raman microscopy[J].J.Mater.Sci.,2001,36:55-66.
    [11]Ward Y.,Young R.J.,Shatwell R.A.,Application of Raman microscopy to the analysis of silicon carbide monofilaments[J].J.Mater.Sci.,2004,39:6781-6790.
    [12]Ward Y.,Young R.J.,Shatwell R.A.,Characterization of carbon coatings on SiC monofilaments using Raman spectroscopy[J].J.Mater.Sci.,2007,42:5135-5141.
    [13]Mitev D.,Dimitrova R.,Spassova M.,et al..Surface eculiarities of detonation nanodiamonds in dependence of fabrication and purification methods[J].Diamond & Related Materials,2007,16:776.
    [14]Spitzer W.G.,Kleinman D.A.,Frosch C.J.,Infrared properties of cubic silicon carbiede films[J].Phys.Rev.,1959,113:133-136.
    [15]Saleh R.,Munisa L.,Beyer W.,Infrared absorption in a-SiC:H alloy prepared by d.c.sputtering[J].Thin Solid Films,2003,426:117-123.
    [16]Serre C.,Romano-Rodiguez A.,Perez-Rodriguez A.,et al..β-SiC on SiO_2 formed by ion implantation and bonding for micromechanics applications[J].Sensors and Actuators,1999,74:169-173.
    [17] Chang H. J., Chen Y. F., Strong visible Photoluminescence from SiO_2 nanotubes at room temperature [J]. Appl. Phys. Lett., 2001, 78:3791-3793.
    [18] He L., Inokuma T., Kurata Y., Hasegawa S., Vibrational properties of SiO and Sill in amorphous SiOx:H films (0= x =2.0) prepared by plasma-enhanced chemical vapor deposition [J]. J. Non-Crystalline Sol., 1995, 185:249-261.
    [19] Uchino T., Aboshi A., Kohara S., et al.. Microscopic structure of nanometer-sized silica particles [J]. Phys. Rev. B, 2004, 69:155409.
    [20] Lin L. W., Tang Y. H., et al. Water-assisted synthesis of silicon oxide nanowires under supercritically hydrothermal conditions [J]. J. Appl. Phys. 2007, 101:014314-1-5.
    [21] Hu Q.L., Suzuki H., Gao H., et al. High-frequency FTIR absorption of SiO_2/Si nanowires [J]. Chem. Phys. Lett., 2003, 378:299-304.
    [22] Gaskell P.H., Johnson D.W., The optical constants of quartz, vitreous silica and neutron-irradiated vitreous silica: (II) Analysis of the infrared spectrum of vitreous silica [J]. J. Non-Cryst. Solids, 1976, 20:171.
    [23] Lin S. Y, Vibrational local modes of a-SiO_2:H and variation of local modes in different local environments [J]. J. Appl. Phys., 1997, 82:5976-5982.
    [24] Kanekoa T., Nemotoa D., Horiguchi A., Miyakawab N., FTIR analysis of a-SiC:H films grown by plasma enhanced CVD [J]. J. Crys. Growth, 2005, 275:e1097-e1101.
    [25] Iijima S., Helical microtublules of graphitic carbon [J]. Nature, 1991, 354:56-58.
    [26] Zhang Y, Wang N., Gao S., et al. A simple method to synthesize nanowires [J]. Chem., 2002, 14(8):3564-3568.
    [27] Pan S.W., Dai S.R., Wang Z.L., Nanobelts of semiconducting oxides [J]. Science, 2001,291:1947-1949.
    [28] Yang P., Lieber C.M., Nanorod-superconductor composites: a pathway to materials with high criticale current densities [J]. Science, 1996, 273(5283):1836-1840.
    [29] Wolfe E.G., Coskren T.D., Growth and Morphology of Magnesium Oxide Whiskers [J]. J. Am. Ceram. Soc., 1965, 48(60):279-285.
    [30] Shi W.S., Peng H.Y., Zheng Y.F., et al. Synthesis of large areas of highly oriented, very long silicon nanowires [J]. Adv. Mater., 2000, 12, 1343-1345.
    [31] Zhang R.Q., Lifshitz Y., Lee S.T., Oxide-assisted growth of semiconducting nanowires [J]. Adv. Mater., 2003, 15:635-637.
    [32] Shi W.S., Zheng Y.F., Wang N., et al. General synthetic route to III-V compound semiconductor nanowires [J]. Adv. Mater., 2001, 13:591-594.
    [33] Wu Y. Y., Yang P. D., Direct observation of vapor-liquid-solid nanowires growth [J]. J. Am. Chem. Soc.,2001, 123:3165-3166.
    [34] Zhang Y.F., Tang Y.H., N. Wang, et al. Silicon nanowires prepared by laser ablation at hight emperature [J]. Appl. phys. Lett., 1998, 72(15):1835-1837.
    [35] Shi W.S., Zheng Y.F., Peng H.Y., et al. Laser ablation synthesis and optical characterization of silicon carbide nanowires [J]. J. Am. Ceram. Soc, 2000, 83(12):3228-3230.
    [36] Morales A.M., Lieber C.M., A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science, 1998, 279:208-211.
    [37] Yu D.P., Bai Z.G., Ding T., et al. Nanoscale silicon wires synthesized using simple physical evaporation [J]. Appl. phys. Lett., 1998, 72:3458-3460.
    [38] Seeger T., Kohler-Redlieh P., Ruhle M., Synthesis of nanometer-sized SiC whiskers in the Arc-discharge [J]. Adv. Mater., 2000, 12(4):279-282.
    [39] Xi G.E., Liu Y.K., Liu X.Y., et al. Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures [J]. J. Phys. Chem. B, 2006, 110(29):14172-14178,
    [40] Yang Z.X., Zhou W.M., Zhu F., et al.SiC/SiO_2 core-shell nanocables formed on the carbon fiber felt [J]. Mater. Chem. Phys., 2006, 96:439-441.
    [41] Li Z.Z., Zhang J.L, Meng A., et al. Large-Area Highly-Oriented SiC Nanowire Arrays: Synthesis, Raman, and Photoluminescence Properties [J]. J. Phys. Chem. B, 2006, 110:22382-22386.
    [42] Cai K.F., Zhang A.X., Yin J.L., Ultra thin and ultra long SiC/SiO_2 nanocables from catalytic pyrolysis of poly(dimethyl siloxane) [J]. Nanotechnology, 2007, 18:485601 (6p).
    [43] Meng A., Li Z.J., Zhang J.L., et al. Synthesis and Raman scattering of b-SiC/SiO2 core-shell nanowires [J]. J. Cryst. Growth, 2007, 308:263-268.
    [44] Wang W., Jin Z.H., Xue T., et al. Preparation and characterization of SiC nanowires and nanoparticles from filter paper by sol-gel and carbothermal reduction processing [J]. J Mater Sci, 2007, 42:6439-6445.
    [45] Shim H.W., Huang H.C., Nanowebs and nanocables of silicon carbide [J]. Nanotechnology, 2007, 18:335607 (5pp).
    [46] Bechelany M., Brioude A., Cornu D., et al. A Raman Spectroscopy Study of Individual SiC Nanowires [J]. Adv. Funct. Mater., 2007, 17:939-943.
    [47] Ward Y.L., Young Robert J., Sharwell Robert A., Effect of excitation wavelength on the Raman scattering from optical phonons in silicon carbide monofilaments [J]. J. Appl. Phys., 2007, 102:023512-1-7.
    [48] Yan Y, Zhang S.L., Fan S.S., et al. Effect of changing incident wavelength on Raman features of optical phonons in SiC nanorods and TaC nanowires [J]. Solid State Commun., 2003, 126:649-651.
    [49] Sasaki Y, Nishina T., Sato M., et al. Optical-phonon states of SiC small particles studied by Ramman scattering and infrared absorption [J]. Phys. Rev. B, 1989, 40:1762-1772.
    [50] Zhang S.L., Shao J., Hoi L.S., et al. Amorphousness-like nature of nano-crystalline polar semiconductors [J]. phys. stat. sol. (c), 2005, 2:3090-3095.
    [51] Feng D.H., Jia T.Q., Li X.X., et al. Catalytic synthesis and Photoluminescence of needle-shaped 3C-SiC nanowires [J]. Solid State Communications, 2003, 128:295-297.
    [52] Nishikawa H., Shiroyama T., Nakamura R., et al. Photoluminesscence from defect centeres in high-purity silica glasses observed under 7.9eV excitation [J]. Phys. Rev. B, 1992,45:586-591.
    [53] Wu X. L., Fan J.Y, Qiu T., et al. Experimental Evidence for the Quantum Confinement Effect in 3C-SiC Nanocrystallites [J]. Phys. Rev. Lett., 2005, 94:026102-1-4.
    [54] de Sousa J. S., Wang H., Farias G. A., et al. Blue light emission from confined excitons in SiC/SiO_2 quanturm wells and wires [J]. J. Korean Phy. Soc, 2001, 39:443-446.
    [55] Iwataa H.P., Lindefelt U., Oberg S., et al. Stacking faults in silicon carbide [J]. Physica B, 2003, 340-342:165-170.
    [56] Iwataa H.P., Lindefelt U., Oberg S., Briddon P.R., Ab initio study of 3C inclusions and stacking fault-stacking fault interactions in 6H-SiC [J]. J. Appl. Phys., 2003, 94:4972-4979.
    [57] Tit N., Dharama-wardana M.W.C., Quantum confinement and direct-bandgap character of Si/SiO_2 superlattices [J]. Solid State Commun., 1998, 106:121-126.
    [58] Liu D.F., Xie S.S., Yan X.Q., et al. A simple large-scale synthesis of coaxial nanocables: silicon carbide sheathed with silicon oxide [J]. Chem. Phys. Lett., 2003, 375:269-272.
    [1]Ishikawa Y.,Vasin A.V.,Salonen J,et al.Color control of white photoluminescence from carbon-incorporated silicon oxide[J].J.Appl.Phys.2008,104:083522.
    [2]Liu D.F.,Xie S.S.,Yan X.Q.,et al.A simple large-scale synthesis of coaxial nanocables: silicon carbide sheathed with silicon oxide [J] Chem. Phys. Lett. 2003, 375:269.
    [3] Wolfgang B., Claus E., Mimoza G, Thermal decomposition of nickel nitrate hexahydrate, Ni(NO_3)_2·6H_2O, in comparison to Co(NO_3)_2·6H_2O and Ca(NO_3)_2·4H_2O [J]. Thermochimica Acta, 2007, 456:64.
    [4] Tuinstra F., Koenig J. L., Raman Spectrum of Graphite [J]. J. Chem. Phys, 1970, 53:1126.
    [5] Knight D. S., White W. B., Characterization of diamond films by Raman spectroscopy [J]. J. Mater. Res., 1989, 43:85.
    [6] Cai K.F., Zhang A.X., Yin J.L., et al. Preparation, characterization and Photoluminescence properties of ultra long SiC/SiOx nanocables [J]. Appl. Phys. A, 2008,91:579-584.
    [7] Xu Y.J., Cao C.B., Zhang B., et al. Preparation of Aligned Amorphous Silica Nanowires [J]. Chem. Lett., 2005, 34: 414-415.
    [8] Yu D. P., Hang Q. L., Ding Y, et al. Amorphous silica nanowires: Intensive blue light emitters [J]. Appl. Phys. Lett., 1998, 73:3076-3078.
    [9] Meng GW., Peng X.S., Wang Y.W., et al. Synthesis and Photoluminescence of aligned SiOx nanowire arrays [J]. Appl. Phys. A, 2003, 76:119-121.
    [10] Seo S. Y, Cho K. S., et al. Intense blue-white luminescence from carbon-doped silicon-rich silicon oxide [J]. Appl. Phys. Lett. 2004, 84:717.
    [11] Choi S.H., Wang D., Williams J.R., et al. Nitridation of the SiO2/4H-SiC interface studied by surface-enhanced Raman spectroscopy [J]. Applied Surface Science, 2007,253:5411-5414
    [12] Seong H. K., Choi H. J., Lee S. K., et al. Optical and electrical transport properties in silicon carbide nanowires [J]. Appl. Phys. Lett. 2004, 85:1256.
    [13] Harima H., Nakashima S., Uemura T., Raman scattering from anisotropic LO-Phonon-Plasmon-coupled mode in n- type 4H- and 6H-SiC [J]. J. Appl. Phys., 1995, 78(3): 1996-2005.
    [14] Rohmfeld S., Hundhansen M., Ley L., Influence of stacking disorder on the Raman spectrum of 3C-SiC [J]. Phys. Stat. Sol. (b), 1999, 215:115-119.
    [15] Zhang S.L., Zhu B.F., Huang R, et al. Effect of defects an optical phonon Raman speetra in SiC nanorods [J]. Solid State Commun., 1999, 111:647-651.
    [16] Beehelany L.M., Brioude A., Comu, D., et al. A Raman Spectroscopy Study of Individual SiC Nanowires [J]. Adv. Funct. Mater., 2007, 17:939-943.
    [17] Feld R., Cowe P., Organic Chemistry of Titanium [M]. Plenum Press (1965).
    [18] Xu P., Wang H.T., Lv R., et al. Synthesis of TiO_2-SiO_2/Polymer Core-Shell Microspheres with a Microphase-Inversion Method [J]. J. Polymer Sci.: Part A: Polymer Chemistry, 2006, 44:3911.
    [19] Jung K.Y., Park S.B., Matsuoka M., et al. In-situ investigations of the Photoluminescence properties of SiO2/TiO2 binary and Boron-SiO2/TiO2 ternary oxides prepared by the sol-gel method and their photocatalytic reactivity for the oxidative decomposition of trichloroethylene [J]. Inter. J. Photoenergy, 2003, 05:31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700