固体荧光致冷效应及掺Yb激光介质辐射冷却研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用波长较长的泵浦光在材料中激发出波长较短的荧光,利用该反斯托克斯荧光(Anti-Stokes Fluorescence)使材料降温,这一过程称为荧光致冷(FluorescenceCooling)。
     本文分为两部分,第一部分研究掺镱固体荧光致冷原理与实验方法,第二部分研究掺镱激光增益介质辐射冷却理论。主要内容如下:
     一、掺镱介质荧光致冷原理与实验研究
     分别从光谱和熵的角度对荧光致冷的机理进行了阐述,推导了荧光致冷效率的表达式及其热力学上限。
     对掺镱介质荧光致冷性能进行分析,对泵浦光波长进行优化。测量了Yb~(3+)∶KGW和Yb~(3+)∶KLuW晶体的偏振吸收光谱和偏振发射光谱,以及掺镱磷酸盐玻璃的吸收光谱和发射光谱。利用倒易法和F-L(Fuchtbauer-Ladenburg)公式相互补充、校验,分别计算吸收截面和发射截面。结果表明:两种掺镱晶体的吸收截面及发射截面比掺镱磷酸盐玻璃的截面约高一个量级。利用测得的吸收和发射光谱数据,以绝对致冷效率(Absolute Cooling Efficiency)为判据,对泵浦光波长进行了优化,计算结果为:两种国产掺镱晶体的最佳泵浦波长在1022nm附近,最佳偏振方向为E//m(致冷效率计算值为1.68%),在1W泵浦功率下,两种国产掺镱晶体的致冷功率计算值约为24~26mW(E//m偏振),掺镱磷酸盐玻璃的致冷功率计算值约为1.9mW。
     对荧光自吸收效应进行分析与计算。介质中的荧光自吸收(荧光捕获)效应使出射的平均荧光波长变长、外量子效率降低,导致致冷效率降低。本文利用蒙特卡罗方法分析了掺镱磷酸盐玻璃的荧光自吸收效应。利用Fluorolog Tan 3-21型荧光光谱仪测量了厚1mm和3mm的样品(直径10mm)的侧向荧光和后向荧光,结果表明:蒙特卡罗计算得到的荧光谱线轮廓与实验曲线基本一致。
     设计掺镱晶体的荧光致冷验证性实验。以10ns级脉冲可调谐OPO激光为泵浦源,采用傅立叶变换光谱步进扫描(Step-scan)技术测量了厚度为1~2mm样品的热辐射光谱,得到了国产Yb~(3+)∶KGW和Yb~(3+)∶KLuW晶体的半定量荧光致冷测量结果。利用上述光谱测量方法,得到了固体荧光冷却过程的时域演变曲线。而文献报道的荧光致冷测量方法(光热偏转法、荧光法等)受原理上的限制,得不到热辐射光谱随时间演变的测量结果。
     二、掺镱激光介质辐射冷却理论
     泵浦源向固体激光增益介质提供产生激光所需能量的同时,在介质中产生无用热,限制激光器的输出平均功率,同时导致激光光束质量下降。为了持续发光,并改善光束质量,必须及时从激光增益介质中去除无用热。以荧光辐射的方式直接从增益介质内部移出热量,是激光器热管理的一条新的技术途径。
     提出了一种激光发光与荧光冷却交替运行的调Q激光器模型。该激光器的基本原理是:利用Q开关关闭时的荧光致冷效应,抵消产生Q开关激光脉冲时所沉积的热量,以间歇式冷却方式使增益介质中的热沉积趋近于零。利用准二能级速率方程,对Yb~(3+)∶KGW调Q激光器进行了模拟计算,得出了实现间歇式辐射冷却所需的介质参数和泵浦条件。这种冷却方式迄今未见国内外有相关报道。
     对辐射平衡激光器(Radiation-Balanced Laser)的原理与单元技术进行研究。推导了实现辐射平衡运转时泵浦光、激光强度与增益介质以及谐振腔参数之间满足的关系式。利用速率方程理论及材料的吸收、发射截面数据,以小信号增益系数和转换效率为目标函数,对辐射平衡激光器的泵浦光、激光波长及偏振态进行了优化计算。结果表明:对于5%掺杂Yb~(3+)∶KGW晶体,辐射平衡运转时的最佳泵浦光波长为1001nm、偏振态为E//m,最佳激光波长为1039nm、偏振态为E//p(b),该晶体发射的反斯托克斯荧光(平均波长995nm)起辐射致冷作用。
     根据辐射平衡激光器低热泵浦的需要,建立了二极管巴条—空心导管—增益介质一体化耦合计算模型,计算了增益介质内部泵浦光功率密度的三维分布。以传输效率为目标函数,对空心导管进行设计和优化。
     角谱传播法和速率方程结合,计算了Yb~(3+)∶KGW激光器中自再现模的形成过程。分析了激光起振时的弛豫振荡现象,得出了激光光斑分布的时变过程。
     本文关于荧光致冷机理和掺镱激光介质辐射冷却技术的研究结果,对研制低内热固体激光器具有指导作用。
Some materials emitted light at shorter wavelengths than that with which the material was illuminated due to thermal (phonon) interactions with the excited atoms. This process is termed anti-Stokes fluorescence cooling.
     This thesis consists of two parts: the first part focuses on the mechanism and experiments of solid fluorescence cooling, and the second parts focuses on the radiation cooling of Yb-doped laser mediums. The main contents are as follows:
     Ⅰ. Principles and experiment of fluorescence cooling of Yb-doped medium
     The mechanism of fluorescence cooling is discussed from the points of view of spectroscopy and entropy, and the expression and thermodynamics limitation of cooling efficiency are achieved.
     Fluorescence cooling capabilities of Yb-doped medium are analyzed and pump wavelength are optimized. The absorption and emission spectrums of Yb~(3+):KGW crystal, Yb~(3+):KLuW crystal, and Yb-doped phosphate glass are measured, and the absorption and emission cross sections are calculated with reciprocity methods and F-L equation. The results show that both crystals' absorption cross sections are about ten times over those of the Yb-doped phosphate glass. By use of the absorption and emission spectrums, the pump wavelengths are optimized with the optimization function of absolute cooling efficiency. The results show that the optimal pump wavelength for Yb-doped phosphate glass is near 1025nm (cooling efficiency is 0.18%), and the optimal pump wavelentgh for both crystal is near 1022nm, and the polarizaiton is E//m (cooling efficiency is 1.68%).
     The influences of fluorescence reaborption are calculated and analyzed. Because of a spectral overlap between absorption and fluorescence, reaborption-reemission events cause a redshift in the observed fluorescence spectrums, so as to decrease the cooling efficiency. The effects on fluorescence cooling of fluorescence reaborption are analyzed with Monte Carlo method. The side and back emission spectrums of the samples with 1mm and 2mm thickness (diameter 10mm) are measured with Fluorolog Tan 3-21 fluorescence spectrometer. The fluorescence shape calculated by Monte Carlo method is agreed with the measured data.
     Validation experiments of fluorescence cooling of Yb-doped crystals are carried out. The thermal radiation spectrums of 1~2mm thickness samples are measured by use of the step-scan technology of Fourier transform spectrometer with the pump source of tunable OPO laser whose pulse duration is about 10 ns. The fluorescence cooling of the Yb~(3+):KGW and Yb~(3+):KLuW crystals are observed. The time resolved process of the solid fluorescence cooling is acquired, which is very difficult to get by the reportorial methods in literature (such as photothermal deflection method, fluorescence method, and etc) because of their principle limitations.
     Ⅱ. Radiation cooling of Yb-doped laser medium
     The processes of excitation and stimulated emission always results in heat generation within the lasing medium. This produces increased temperatures and stresses in the lasing medium which limit beam quality and average power. The fluorescence cooling removes heat from the medium directly, which can be used in solid-state laser cooling.
     A new approach to the design of Q-switched solid-state lasers is proposed which offsets heating loads by anti-Stokes fluorescence. In this ideal system, the pump will cool the gain media when the Q switch is off and removes the thermal loads that generated by the laser pulse when the Q switch is on. The operation of this model with Yb~(3+) :KGW crystal is simulated and the parameters and requirements is educed.
     Principles and cell technology of radiation-balanced lasers are researched. The relations among pump intensity, laser intensity, gain medium parameters and resonance cavity parameters are derived, and the output performances are discussed for radiation-balanced laser.
     The output laser wavelength and polarization are derived by use of rate equations. Pump wavelength, laser wavelength and polarization optimized based on small signal gain coefficiency and optics - optics efficiency function. The results show that the optimal pump and laser wavelenthes are 1001nm and 1039 nm, and the optimal pump and laser polarizations are E//m and E//p(b) for Yb~(3+):KGW crystal radiation-balanced laser.
     The LD bar-hollow duct-gain medium coupling calcalation model is proposed for the requirements of radiation-balanced laser. The 3D pump intensity is calculated and the initial gain distribution is achieved in the gain medium. The duct parameters are optimized based on the transmission efficiency.
     The forming process of self-reproductive mode is calculated with combining the rate equations and angular spectrum propagation theory. Thespatio-temporal dynamics of the mode formation are analyzed, and output laser characteristics are achieved for the Yb~(3+):KGW gain medium.
     The mechanism and application in Yb-doped laser mediums cooling by anti-Stokes fluorescence in this thesis have references to low-heat solid-state lasers.
引文
[1]周寿桓.固体激光器中的热管理.量子电子学报,2005,22(4):497-509.
    [2]M.E.Innocenzi,H.T.Yura,C.L.Fincher,and R.A.Fields.Thermal modeling of continuous-wave end-pumped solid-state lasers.Applied Physics Letters,1990,56(19):1831-1833.
    [3]R.F.Hotz.Thermal transient effects in repetitively pulsed flashlamp-pumped YAG:Nd and YAG:Nd,Lu laser material.Applied Optics,1973,12(8):1834-1838.
    [4]N.W.Rimington,S.L.Schieffer,W.A.Schroeder,and B.K.Bricheen.Thermal lens shapping in Brewster gain media:A high-power,diode-pumped Nd:GdVO4laser.Optics Express,2004,12(7):1426-1436.
    [5]B.Neuenschwander,R.Weber,and H.P.Weber.Determination of the thermal lens in solid-state lasers with stable cavities.IEEE Journal of Quantum Electron,1995,31(6):1082-1087.
    [6]Y.Jin,M.Hongxiang,and J.Tianfeng.Modeling of thermal lensign in CW end-pumped solid-state lasers.Proceedings of SPIE,1996,2889:171-176.
    [7]S.Cgebaus,D.F,F.Balembois,G.Lucas-Leclin,etal.Thermal lensing measurements in diode-pumped Yb-doped GdCOB,YBCO,YSO,YAG and KGW.Optical Materials,2003,22:129-137.
    [8]B.CHEN,Y.CHEN,J.SIMMONS,T.Y.CHUNG,and M.BASS.Thermal lensing of edge-pumped slab lasers-I.Applied Physics B,2006,82:413-418.
    [9]B.Chen,Y.Chen,J.Simmons,T.-Y.Chung,and M.Bass.Thermal lensing of high power edge-pumped YAG slab lasers with undoped edges and Breswster ends.Proceedings of SPIE,2005,5707:99-104.
    [10]H.Glur and T.Graf.Avoiding thermal lenses in Nd:YAG with cryogenic cooling.Proceedings of SPIE,2003,4969:70-78.
    [11]M.Sato,S.Naito,N.Iehisa,and N.Karube.Thermal analysis of high power LD pumped slab Nd:YAG laser.Proceedings of SPIE,2000,3889:182-189
    [12]I.Moshe and S.Jachel.Correction of thermally induced birefringence in double-rod laser resonators comparison of various methods.Optics Communications,2002,214:315-325.
    [13]Y.CHEN,B.CHEN,and M.BASS.Calculation of three-demensional thermal-gradient-induced stress birefringence in slab lasers.Applied Physics B,2005,81:75-82.
    [14]I.Moshe,S.Jackel,and R.Lallouz.Dynamic correction of thermal focusing in Nd:YAG confocal unstable resonators by use of a variable radius mirror.Applied Optics,1998,37(30):7044-7048.
    [15]Y.F.Chen,C.F.Kao,T.M.Huang,C.L.Wang,and S.C.Wang.Inflrence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers.IEEE Jurnal of Selected Topics in Quantum Electron,1997,3(1):29-34.
    [16]Y.F.Chen,C.F.Kao,C.L.Wang,and S.C.Wang.Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power:Influence of thermal effect.IEEE Journal of Quantum Electron,1997,33(8):1424-1429.
    [17]M.Tsunekane,N.Taguchi,and H.Inaba.Reduction of thermal efects in a diode-end-pumped,composite Nd:YAG rod with a sapphire end.Applied Optics,1998,37(15):3290-3294.
    [18]R.Paschotta,J.A.d.Au,and U.Keller.Strongly enhanced negative dispersion from thermal lensing or other focusing efficts in remtosencond laser cavities.Journal of the Optical Societyof America B,2000,17(4):646-651.
    [19]W.A.Clarkson.Thermal effects and their mitigation in end-pumped solid-state lasers.Journal of Physics D:Applied Physics,2001,34:2381-2395.
    [20]D.Welford,D.M.Rines,B.J.Dinerman,and R.Martinsen.Observation of enhanced thermal lensing due to near-Gaussian pump energy deposition in a laser-diode side-pumped Nd:YAG laser.IEEE Journal of Quantum Electron,1992,28(4):1075-1080.
    [21]W.Xie,S.-C.Tam,Y.-L.Lam,J.Liu,N.Yang,J.Gu,and W.Tan.Inflrence of the thermal effect on the TEM00 mode output power of a laser-diode side-pumped solid-state laser.Applied Optics,2000,39(30):5482-5487.
    [22]D.C.Brown.Nonlinear thermal distortion in YAG rod amplifiers.IEEE Journal of Quantum Electron,1998,34(12):2383-2392.
    [23]J.Frauchiger,P.Albers,and H.P.Weber.Modeling of thermal lensing and higher order ring mode oscillation in end-pumped CW Nd:YAG lasers.IEEE Journal of Quantum Electron,1992,28(4):1046-1056.
    [24]J.Uppal,J.Monga,and D.Bhawalkar.Study of thermal effects in Nd doped phosphate glass laserrod.IEEE Journal of Quantum Electron,1986,22(12):2259-2265.
    [25]T.Y.Fan.Heat generation in Nd:YAG and Yb:YAG.IEEE Journal of Quantum Electron,1993,29(6):1457-1459.
    [26]W.Koechner,Solid-state laser engineering[M].New York:Springer-Verlag,1999,5th ed..
    [27]R.I.Epstein,M.I.Buchwald,B.C.Edwards,T.R.Gosnell,and C.E.Mungan.Observation of laser-induced fluorescent cooling of a solid.Nature,1995,377(12):500-503.
    [28]S.R.Bowman.Lasers without internal heat generation.IEEE Journal of Quantum Electron,1999,35(1):115-122.
    [29]R.I.Eostein,B.C.Edwards,M.I.Buchwald,and T.R.Gosnell.Fluorescent Refrigeration[P].US patent No:5447032,1995.
    [30]C.S.Edwards,P.Gill,H.A.Klein,A.P.Levick,and W.R.C.Rowley.Laser-cooling efficts in few-ion clouds of Yb~(3+).Applied Physics B,1994,59:179-185.
    [31]E.K.Bashkirov.Dynamics of phonon mode in superradiance regime of laser cooling of crystals.Physics Letter A,2005,341:345-351.
    [32]C.W.Hoyt.Laser cooling in thulium-doped solids[D].PhD thesis,New Mexico:The University of New Mexico,2003.
    [33]C.W.Hoyt,M.sheik-Bahae,R.I.Epstein,B.C.Edwards,and J.E.Anderson.Observation of anti-Stokes fluorescence cooling in thulium-doped glass.Physics Review Letters,2000,85(17):3600-3603.
    [34]C.W.Hoyt,M.P.Hasselbeck,and M.Sheik-Bahae.Advance in laser cooling of thulium-doped glass.Journal of the Optical Societyof America B,2003,20(5):1066-1074.
    [35]R.I.Epstein,J.J.Brown,B.C.Edwards,and A.Gibbs.Measurements of optical refrigeration in ytterbium-doped crystals.Journal of Applied Physics,2001,90(9):4815-4819(2001).
    [36]P.Pringsheim.Zwei bemerkungen uber den unterschied von lumineszenz undtemperatur-strahlung.Z.Physik,1929,57:739-746.
    [37]N.Djeu and W.T.Whitney.Laser cooling by spontaneous anti-Stokes scattering.Physical Review Letters,1981,46(4):236-239.
    [38]秦伟平,陈宝玖,秦冠仕,杜国司,许武,黄世华.能量传递制冷机制中激光制冷的最佳泵浦频率和最大制冷效率.发光学报,2000,21(2):94-98.
    [39]张存泉,徐烈.反斯托克斯荧光制冷技术的研究.红外与激光工程,2002,31(2):95-100.
    [40]秦伟平,张家骅,陈宝玖,吕少哲,郭书林,黄世华.固体中反斯托克斯荧光制冷的两种基本机制.发光学报,1999,20(2):126-129.
    [41]C.E.Mungan,M.I.Buchwald,B.C.Edwards,R.I.Epstein,and T.R.Gosnell.Laser cooling of a solid by 16 K starting from room temperature.Physical Review Letters,1997,78(6):1030-1033.
    [42]T.Kushida and J.E.Geusic.Optical refrigeration in Nd-doped yttrium aluminium garnet.Physical Review Letters,1968,21(16):1172-1175.
    [43]A.Rayner.Laser cooling of solids[D].PhD thesis,The University of Queensland,2002.
    [44]T.R.Gosnell.Laser cooling of a solid by 65 K starting from room temperature.Optics Letters,1999,24(15):1041-1043.
    [45]S.R.Bowman and C.E.Mungan.New materials for optical cooling.Applied Physics B,2000,71:807-811.
    [46]B.C.Edwards,M.I.Buchwald,and R.I.Epstein.Development of the Los Alamos solid-state optical refrigerator.Review of Scientific Instruments,1998,69(5):2050-2055(1998).
    [47]B.C.Edwards,J.E.Anderson,R.I.Epstein,G.L.Mills,and A.J.Mord.Demonstration of a solid-sate optical cooler:an approach to cryogenic refrigeration.Journal of Applied Physics,1999,86(11):6489-6493.
    [48]B.C.Edwards,M.I.Buchwald,and R.I.Epstein.Optical refrigerator using reflectivity tuned delectric mirrors[P].US patent No:6041610,2000.
    [49]房晖,吴云龙,熊玉峰,乔延利,王乐意,易维宁.反斯托克斯荧光制冷及其在空间遥感领域的应用.量子电子学报,2004,21(4):411-414.
    [50]秦伟平,陈宝玖,秦冠仕,杜国司.激光制冷中能级间距的选择.发光学报,2000,21(2):99-103.
    [51]秦伟平,秦冠仕,张继森,吴长锋,赵丹,刘晃清,王继伟,黄世华,杜国同.单分子—光子制冷泵的热力学行为(Ⅰ).发光学报,2001,22(3):281-288.
    [52]秦伟平.反斯托克斯荧光制冷的研究进展与综述.物理学进展,2000,20(2):98-167.
    [53]秦伟平,陈宝玖,张永旭,秦冠仕,杜国同.荧光制冷器的未来发展.发光学报,2001,22(1):37-42.
    [54]张存泉 徐烈.反斯托克斯荧光制冷的发展回顾和研究现状.低温与超导,2001,29(3):34-38.
    [55]张存泉 徐烈.反斯托克斯荧光制冷的热力学分析.激光技术,2002,26(4):264-266.
    [56]X.Tian-ming,L.Cheng-fang,Z.Xiao,and Z.Jia-cheng.Laser cooling using anti-Stokes fluorescence in Yb~(3+)-doped fluorozirconate glass.Wuhan University Journal of Natural Sciences,2002,7(2):177-181.
    [57]吴科,钟家柽,龚楚清,周小,昝菱,黄玲,李承芳.掺镱氟锆酸盐玻璃光纤反斯托克斯荧光制冷初探.武汉大学学报(理学版),2001,47(4):453-455.
    [58]孙海生 印建平.固体材料反斯托克斯荧光制冷的理论研究及其最新进展.物理学进展,2007,26(1):43-68.
    [59]贾佑华 印建平.固体材料激光冷却的实验研究及其最新进展.物理学进展,2005,25(2):153-165.
    [60]贾佑华,纪宪明,印建平.影响固体材料激光冷却若干因素的研究.物理学报,2007,56(3):1770-1774.
    [61]孙海生,贾佑华,纪宪明,印建平.Tm~(3+)掺杂光纤激光制冷的理论分析.物理学报,2006,55(6):3112-3118.
    [62]J.You-Hua,Z.Biao,J.Xian-Ming,and Y.Jian-Ping.Research on intracavity laser cooling of solid.Chinese Physics Letters,2008,25(1):85-88.
    [63]汤珂,陈国邦,冯仰浦.激光制冷.低温与超导,2002,30(3):5-11.
    [64]S.Vavilov.Some remarks on the Stokes law.Journal of Physics(Moscow),1945,9(1):68-71.
    [65]S.Vavilov.Photoluminescence and thermodynamics.Journal of Physics(Moscow),1946,10(4):499-502.
    [66]L.Landau.On the themodynamics of photoluminescence.J.Phys.(Moscow) 1946,10(6),503-506.
    [67]李恭亮 郭继华.晶体光学原理[M].北京:国防工业出版社,1990.
    [68]S.F..Theory of the optical properties of solids.Solid State Physics,1963,15:299-408.
    [69]S.R.Bowman,S.P.O'Connor,and S.Biswal.Ytterbium laser with reduced thermal loading.IEEE Journal of Quantum Electron,2005,41(12):1510-1517.
    [70]L.D.Deloach,S.A.Payne,L.L.Chase,L.K.Smith,W.L.Kway,and W.F.Krupke,Evaluation of absorption and emission properties of Yb~(3+) doped crystals for laser applications.IEEE Journal of Quantum Electron,1993,29(4):1179-1191.
    [71]S.A.Payne,L.L.Chase,L.K.Smith,W.L.Kway,and W.F.Krupke.Infrared cross-section measurements for crystals doped with Er~(3+),Tm~(3+),and Ho~(3+).IEEE Journal of Quantum Electron,1992,25(I1):2619-2630.
    [72]刘树江,卢安贤,唐晓东,贺少勃.掺Yb~(3+)硅酸盐和磷酸盐激光玻璃的光谱性质.中南大学学报(自然科学版),2006,37(3):433-437.
    [73]N.V.Kuleshov,A.A.Lagatsky,A.V.Podlipensky,and V.P.Mikhailov.Pulsed laser operation of Yb-doped KY(WO_4)_2 and KGd(WO_4)_2.Optics Letters,1997,22(17):1317-1319.
    [74]F.Brunner,G.J.Spuhler,J.A.d.Au,etal.Diode-pumped femtosecond Yb:KGd(WO_4)_2 laser with 1.1-W average power.Optics Letters,2000,25(15):1119-1121.
    [75]G.Paunescu,J.Hein,and R.Sauerbery.100-fs diode-pumped Yb:KGW mode-locked laser.Applied Physics B,2004,79:555-558.
    [76]G.R.Holtom.Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars.Optics Letters,2006,31(18):2719-2721.
    [77]M.Delaigue,I.Manek-Honninger,F.Salin,C.Honninger,P.Rigail,A.Courjaud,and E.Mottay.300 kHz femtosecond Yb:KGW regenerative amplifier using an acousto-optic Q-switch.Applied Physics B,2006,84:375-378.
    [78]A.A.Lagatsky,N.V.Kuleshov,and V.P.Mikhailov.Diode-pumped CW lasing of Yb:KYW and Yb:KGW.Optics Communications,1999,165:71-75.
    [79]J.E.Hellstrom,S.Bjurshagen,V.Pasiskevicius,J.Liu,V.Petrov,and U.Griebner.Efficient Yb:KGW lasers end-pumped by high-power diode bars.Applied Physics B,2006,83:235-239.
    [80]N.V.Kuleshov,A.A.Lagatsky,V.G.Shcherbitsky,V.P.Mikhailov,E.Mikhailov,E.Heumann,T.Jensen,and A.Diening.CW laser performance of Yb and Er,Yb doped tungstates.Applied Physics B,1997,64:409-413.
    [81]S.Biswal,S.P.O'Connor,and S.R.Bowman.Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate.Applied Optics,2005,44(15):3093-3097.
    [82]J.E.Hellstrom,S.Bjurshagen,and V.Pasiskevieius.Laser performance and thermal lensing in high-power diode-pumped Yb:KGW with athermal orientation.Applied Physics B,2006,83:55-59.
    [83]S.Biswal,S.P.O'Connor,and S.R.Bowman.Nonradiative losses in Yb:KGd(WO_4)_2 and Yb:Y_2Al_5O_(12).Applied Physics Letters,2006,89(9).
    [84]S.R.Bowman and C.E.Mungan.New materials for optical cooling.Applied Physics B,2000,71:807-811.
    [85]S.R.Bowman.Lasers without internal heat generation.IEEE Journal of Quantum Electronics,1999,35(1):115-122.
    [86]S.R.Bowman,S.P.O'Connor,and S.Biswal.Ytterbium laser with reduced thermal loading.IEEE Journal of Quantum Electronics,2005,41(12):1510-1517.
    [87]S.R.Bowman,N.W.Jenkins,B.Feldman,and S,P.O'Connor.Demonstration of a radiatively cooled laser.CLEO 2002,2002.
    [88]V.Kushawaha,A.Banerjee,and L.Major.High-Efficiency Flashlamp-Pumped Nd:KGW Laser.Applied Physics B,1993,56:239-242.
    [89]D.Kasprowicz,S.Mielcarek,A.Majchrowski,E.Michalski,and M.Drozdowski.Optical properties of KGd(WO_4)_2 single crystals studies by Brillouin spectroscopy.Crystal Research Technology,2005,41(6):541-546.
    [90]M.C.Pujol,M.Rico,C.Zaldo,R.Sole',V.Nikolov,X.Solans,M.Aguilo',and F.Diaz.Crystalline structure and optical spectroscopy of Er~(3+)-doped KGd(WO_4)_2 single crystals.Applied Physics B,1999,68:187-197.
    [91]M.C.Pujol,R.Sole',J.Massons,Jna.Gavaldo',X.Solans,C.Zaldo,F.Diaz,and M.Aguilo.Structural study of monoclinic KGd(WO_4)_2 and effects of lanthanide substitution.Journal of Applied Crystallography,2001,34(1):1-6.
    [92]吕少珍,杨文琴,郭丽花.LD泵浦光入射方向和偏振方向对钨酸钾钆激光晶体荧光性能的影响.福建师范大学学报(自然科学版),2006,22(3):55-58.
    [93]李建立,王宇明,张礼杰,万玉春,刘景和.Yb:KY(WO_4)_2晶体生长及缺陷分析.稀有金属材料与工程,2006,35(8):1331-1333.
    [94]李艳红,李建利,洪元佳,张亮,孙晶,刘景和,洪广言.Nd:KGW多波长激光晶体生长与光谱特性.中国激光,2002,A29(5):444-446.
    [95]王英伟,程灏波,刘景和,李艳红,洪元佳.熔盐法生长Nd:KGW多波长激光 晶体结构及光谱性能的研究.光学技术,2004,30(6):717-720.
    [96]王英伟,王自东,程灏波.新型激光晶体Yb:KY(WO_4)_2的结构与光谱.物理学报,2006,55(9):4803-4808.
    [97]王宇明,刘景和,张礼杰,李建立,曾繁明,万玉春,张亮.TSSG法生长Er~(3+)/Yb~(3+):KY(WO_4)_2激光晶体及性能表征.稀有金属材料与工程,2006,35(9):1504-1508.
    [98]张礼杰,雷鸣,王宇明,李建立,孙或,刘景和.Yb~(3+)掺杂KY(WO_4)_2激光晶体生长、结构与光谱分析.物理学报,2006,55(6):3141-3146.
    [99]张礼杰,王英伟,雷鸣,李俊,李建利,王宇明,刘景和.Nd~(3+):KGd(WO_4)_2晶体生长及激光性能.长春理工大学学报,2005,28(2):84-87.
    [100]朱忠丽,万玉春,曾繁明,葛建军,张建军,刘景和.Yb:NaY(WO_4)_2激光晶体的光谱性能.硅酸盐学报,2004,32(8):942-945.
    [101]涂朝阳,李坚富,游振宇,朱昭捷,吴柏昌,罗涛,赖洪章.熔盐提拉法生长的Nd~(3+):KGd(WO_4)_2单晶的性能研究.无机材料学报,2004,19(3):536-540.
    [102]涂朝阳,李坚强,朱昭捷,林建明.Yb~(3+):KGd(WO_4)_2材料的频率上转换发光.光谱学与光谱分析,2003,23(3):438-440.
    [103]涂朝阳,李坚富,朱昭捷,王燕,游振宇,吴柏昌.Nd~(3+):Er~(3+):KY(WO_4)_2激光晶体的生长和光谱特性.光谱学与光谱分析,2003,23(4):672-674.
    [104]A.Major,I.Nikolakakos,J.S.Aitchison,A.I.Ferguson,N.Langford,and P.W.E.Smith.Characterization of the nonlinear refractive index of the laser crystal Yb:KGd(WO_4)_2.Applied Physics B,2003,77,433-436.
    [105]杨培志,邓佩珍,黄国松,徐军.Yb:FAP晶体的光谱特性.光子学报,1999,28(7):634-637.
    [106]S.R.Bowman,N.W.Jenkins,S.P.O'Connor,and B.J.Feldman.Sensitivity and stability of a radiation-balanced laser system.IEEE Journal of Quantum Electron,2002,38(10):1339-1348.
    [107]X.Mateos,V.Petrov,M.Aguilo,R.M.Sole,J.Gavalda,J.Massons,F.Diaz,and U.Crriebner.Continuous-Wave Laser Oscillation of Yb~(3+) in Monoclinic KLu(WO_4)_2.IEEE Journal of Quantum Electron,2004,40(8):1056-1059.
    [108]S.Rivier,X.Mateos,V.Petrov,U.Griebner,A.Aznar,O.Silvestre,R.Sole,M.Aguilo,and F.Diaz.Mode-locked laser operation of epitaxially grown Yb:KLu(WO_4)_2 composites.Optics Letters,2005,30(18):2484-2486.
    [109]U.Griebner,J.Liu,S.River,A.Aznar,R.Grunwald,R.M.Sole,M.Aguilo,F.Diaz,and V.Petrov.Laser opteration of epitaxially grown Yb:KLu(WO_4)_2-KLu(WO_4)_2 composites with monoclinic crystalline structure.IEEE Journal of Quantum Electron,2005,41(3):408-414.
    [110]J.Liu,U.Griebner,V.Petrov,H.Zhang,J.Zhang,and J.Wang.Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO_4)_2laser with self-Raman conversion.Optics Letters,2005,30(8):2427-2429.
    [111]M.T.Murtagh,G.H.S.Jr.,J.C.Fajardo,B.C.Edwards,and R.I.Epstein.Laser-induced fluorescent cooling of rare-earth-doped fluoride glasses.Journal of Non-Crystalline Solids,1999,253:50-57.
    [112]余其铮.辐射换热原理[M].哈尔滨:哈尔滨工业大学出版社,2000).
    [113]B.Heeg,P.A.DeBarber,and G.Rumbers.Influence of fluorescence reabsorption and trapping on solid-state optical cooling.Applied Optics,2005,44(15):3117-3124.
    [114]B.Heeg and G.Rumbles.Influence of radiative transfer on optical cooling in the condensed phase.Journal of Applied Physics,2003,93(4):1966-1973.
    [115]R.W.Olson,R.F.Loring,and M.D.Fayer.Luminescent solar concentrators and the reabsorption problem.Applied Optics,1981,20(17),2934-2940.
    [116]I.Schnitzer,E.Yablonovitch,C.Caneau,and T.J.Gmitter.Ultrahigh spontaneous emission quantum efficiency,99.7%internally and 72%externally,from AlGaAs/GaAs/AlGaAs double heterostructures.Applied Physics Letters,1993,62(2):131-133.
    117.J.Naus,T.Klinkovsky,P.Ilik,and D.Cikanek.Model studies of chlorophyll fluorescence reabsorption ar chloroplast level under different exciting conditions.Photosynthesis Research,1994,40:67-74.
    [118]B.L.Chadwick and R.J.S.morrison.Mote Carlo simulation of radiation trapping and quenching of photofragment fluorescence after 193 nm photolysis of NaCl.Journal of the Chemical Society,1995,91:1931-1934.
    [119]M.N.Berberan-Santos,E.J.N.Pereira,and J.M.G.Martinho.Stochastic theory of molecular radiative transport.Journal of Chemical Physics,1995,103:3022-3028.
    [120]E.J.N.Pereira,M.N.Berberan-Santos,and J.M.G.Martinho.Molecular radiative transport.Ⅱ.Monte-Carlo simulation.Journal of Chemical Physics,1996,104(22):8950-8965.
    [121]M.N.Berberan-Santos,E.J.N.Pereira,and J.M.G.Martinho.Stochastic theory of combined radiative and nonradiative transport.Journal of Chemical Physics,1997,107(24):10480-10484.
    [122]M.P.Hehlen.Reabsorption artifacts in measured excited-state lifetimes of solids.Journal of the Optical Societyof America B,1997,14(6):1312-1318.
    [123]A.G.F,S.S.B,and G.E.V.Solid state heat capacity disk laser.Laser and Particle Beams,1998,16(4):605-625.
    [124]周炳琨,高以智,陈倜嵘,陈家骅,激光原理[M].北京:国防工业出版社, 2002.
    [125]C.E.Mungan.Thermodynamics of a radiation-balanced lasing.Journal of the Optical Societyof America B,2003,20(5):1075-1082.
    [126]S.N.Andrianov and V.V.Samartev.Solid-state lasers with internal laser refrigeration effect.Proceedings of SPIE,2001,4605:208-213.
    [127]S.V.Petrushkin,R.N.Shakhmuratov,and V.V.Samartsev.Serf-cooling of the active element of a solid-State laser.Laser Physics,2002,12(12):1387-1390.
    [128]S.N.Andrianov,S.V.Petrushkin,and V.V.Samartsev.Solid-state lasers with internal radiation cooling.IEEE,2003,91.
    [129]C.Li,Q.Liu,M.Gong,G.Chen,and P.Yan.Modeling of radiation-balanced continuous-wave laser oscillators.Journal of the Optical Societyof America B,2004,12(3):539-542.
    [130]X.Wang,D.Cao,M.Zhou,and J.Tan.Q-switched lasers with optical cooling.Journal of the Optical Societyof America B,2007,24(9):2213-2217.
    [131]X.Wang,D.Cao,J.Tan,and M.Zhou.Pump fields requirements for athermal lasers.光子学报,2007,36(8):1377-1380.
    [132]C.Li,Q.Liu,M.Gong,G.Chen,and P.Yan.Modeling of radiation-balanced continuous-wave laser oscillators.Journal of the Optical Societyof America B,2004,12(3):539-542.
    [133]单振国,黄国松,符祖良,方祖捷.LD泵浦微型YAG激光器的单模连续运转.中国激光,1991,18(8):574-577.
    [134]单振国,刘祝安,方祖捷,黄国松,金志良LD泵浦固体激光器的光谱匹配.中国激光,17(10):577-581.
    [135]胡文涛,周复正,李传东.二极管激光侧面泵浦腔内倍频Nd:YAG板条激光器研究.光学学报,1995,15(7):845-850.
    [136]罗亦鸣,李明中,秦兴武.大功率环形LD侧面泵浦Nd:YLF激光器的特性.强激光与粒子束,2002,14(3):331-333.
    [137]陈义红,赵兵,赵德政.大功率全固化固体激光器的研制.光电子·激光,2001,12(12):1234-1235.
    [138]王海林,黄维玲,周卓尤,曹红兵.二极管侧面泵浦连续固体激光器的研究.激光杂志,2001,22(5):31-32.
    [139]T.M.Baer,D.F.Head,P.Gooding,G.J.Kintz,and S.Hutchison.Performance of diode-pumped Nd:YAG and Nd:YLF lasers in a tightly folded resonator configuration.IEEE Journal of Quantum Electron,1992,28(4):1131-1138.
    [140]P.Laporta,S.D.Silvestri,V.Magni,and O.Svelto.Diode-pumped cw bulk Er:Yb:glass laser.Optics Letters,1991,16(24):1952-1954.
    [141]H.R.Verdun and T.Chuang.Efficient TEM00-mode operation of a Nd:YAG lasser end pumped by a three-bar high-power diode-laser array.Optics Letters,1992,17(14):1000-1002.
    [142]J.R.Leger and C.Goltsos.Geometrical transformation of linear diode-laser array for longitudinal pumping of solid-state lasers.IEEE Journal of Quantum Electron,1992,28(4):1088-1100.
    [143]戴特力,向永寿,罗于静,冉竹玉,曾毅.光纤自聚集二极管纵向泵浦Nd:YAG激光器.重庆师范学院学报(自然科学版),1993,10(2):1-4.
    [144]S.Yamaguchi and H.Imai.Nd:YAG laser end-pumped by a 1cm aperture laser-diode bar with a GRIN lens array coupling.IEEE Journal of Quantum Electron,1992,28(4):1101-1105.
    [145]Y.Kaneda,M.Oka,H.Masuda,and S.Kubota.7.6W of continuous-wave radiation in a TEM00 mode from a laser-diode end-pumped Nd:YAG laser.Optics Letters,1992,17(14):1003-1005.
    [146]J.Berger,D.F.Welch,W.Streifer,D.R.Scifres,N.J.Hoffman,J.J.Smith,and D.Radecki.Fiber-bundle coupled diode end-pumped Nd:YAG laser.Optics Letters,1988,13(3):306-308.
    [147]C.Bibeau,R.J.Beach,S.C.Mitchell,M.A.Emanuel,J.Skidmore,C.A.Ebbers,S.B.Sutton,and K.S.Jancaitis.High-average-power 1-um performance and frequency conversion of a diode-end-pumped Yb:YAG laser.IEEE Journal of Quantum Electron,1998,34(10):2010-2019.
    [148]E.C.Honea,R.J.Beach,S.B.Sutton,J.A.Speth,S.C.Mitchell,J.A.Skidmore,M.A.Emanuel,and S.A.Payne.115-W Tm:YAG diode-pumped solid-state laser.IEEE Journal of Quantum Electron,1997,33(9):1592-1600.
    [149]郜洪云,傅汝廉,陈德胜,秦华,刘娟,史新刚,巴恩旭.LDA端泵浦固体激光器的耦合系统—空心导管的设计.光电子·激光,2005,16(5):541-544.
    [150]贾伟.大口径高效率激光二极管阵列泵浦技术研究[D].国防科技大学博士学位论文,长沙:国防科技大学研究生院,2005.
    [151]郜洪云,傅汝廉,秦华,史新刚.LDA端泵浦固体激光器的新型耦合系统—圆锥形导管.光电子·激光,2006,17(4):419-423.
    [152]郜洪云,傅汝廉,秦华,史新刚.透镜导管的优化设计.光电子·激光,2006,17(4):396-400.
    [153]刘晓娟,傅汝廉,秦华,史新冈,卓然然,郜洪云.LDA耦合系统透镜导管的理论与实验研究.光学精密工程,2006,14(2):167-172.
    [154]贾伟,李明中,丁磊,罗亦鸣,唐军,张小民.大口径高功率激光二极管阵列端面泵浦技术研究.强激光与粒子束,2005,17(S0):105-107.
    [155]R.J.Beach.Theory and optimization of lens ducts.Applied Optics,1996, 35(12):2005-2015.
    [156]M.L.Stitch and M.Bass,Laser handbook[M].Elsevier science publishers B.V.,1972.
    [157]A.G.Fox and T.Li.Resonant modes in a master interferometer.Bell Syst.Tech,1961,40:453-488.
    [158]A.E.Siegman and H.Y.Miller.Unstable optical resonator loss calculations using the prony method.Applied Optics,1970,9(12):2729-2736.
    [159]J.C.Gutierrez-Vega,R.Rodriguez-Masegosa,and S.Chavez-Cerda.Bessel-Gauss resonator with spherical output geometrical- and wave-optics analysis.Journal of the Optical Society of America A,2003,20(11):2113-2122.
    [160]冯国英,叶一东,吕百达.带可变反射率镜无源和有源腔的衍射分析.四川大学学报,1995,32(3):283-288.
    [161]聂辉,翁兴涛,杨越.激光平行平面有源腔自再现模的探求.光学与光电技术,2003,1(3):44-47.
    [162]刘泽金,陆启生,李文煜,舒柏宏,赵伊君.含有相位孔径光阑谐振腔的模式及传输特性的数值分析.应用激光,1997,17(1):22-26.
    [163]刘泽金,陆启生,李文煜,舒柏宏,赵伊君.有源腔内位相光阑改善腔模的数值分析.应用激光,1997,17(3):97-99.
    [164]王宁,陆雨田,孔勇.用快速傅里叶变换法分析超高斯反射镜腔的光场分布.中国激光,2004,31(11):1317-1322.
    [165]C.Pare and P.A.Belanger.Custom laser resonators using graded-phase mirrors:circular geometry.IEEE Journal of Quantum Electron,1994,30(4):1141-1148.
    [166]刘文广,陆启生,刘泽金.光束变换环形孔径有源激光谐振腔模式的数值模拟.光学学报,2004,24(10):1339-1343.
    [167]凌东雄.圆形镜共焦腔模式分布的有限元数值计算.应用激光,1999,19(2):69-72.
    [168]A.A.Ishaaya,N.Davidson,G.Machavariani,E.Hasman,and A.A.Friesem.Efficient Selectionof High-Order Laguerre-Gaussian Modes in a-Switched Nd:YAG Laser.IEEE Journal of Quantum Electron,2003,39(1):74-82.
    [169]S.D.Silvestri,V.Magni,O.Svelto,and G.Valentini.Lasers with super-Gaussian mirrors.IEEE Journal of Quantum Electron,1990,26(9):1500-1509.
    [170]G.L.Bourdet.Numerical simulation of a high-average-power diode-pumped ytterbium-doped YAG laser with an unstable cavity and a super-Gaussian mirror.Applied Optics,2005,44(6):1018-1027.
    [171]M.Endo.Numerical simulation ofan optical resonator for generation of a doughnut-likelaser beam.Optics Express,2004,12(9):1959-1965.
    [172]A.Kennedy,M.Bowers,P.Bolton,and J.B.Gruber.Rod lensing and diffraction effects on the optimum design parameters of a super-Gaussian coupled unstable resonator.Proceedings of SPIE,2003,4969:79-88.
    [173]R.I.Hernandez-Aranda,S.Chavez-Cerda,and J.C.gutierrez-Vega.Theory of the unstable Bessel resonator.Journal of the Optical Society of America A,2005,22(9):1909-1917.
    [174]A.Caprara and G.C.Reali.Time-resolved M2 of nanosecond pulses from a Q-switched variable-reflectivity-mirror Nd:YAG laser.Optics Letters,1992,17(6):414-416.
    [175]J.W.Goodman,Introduction to Fourier Optics[M],Mcgraw-Hill Companies,1996.
    [176]T.J.Johnson and G.Zachmann.Introduction to Step-Scan FTIR[M].Bruker Optics,2007.
    [177]Nathalie Vermeulen,Christof Debaes,Peter Muys,and Hugo ThienpontT.Mitigating Heat Dissipationin Raman Lasers Using Coherent Anti-Stokes Raman Scattering.Physical Review Letters,2007,99:093903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700