Eu~(3+)、Tm~(3+)、Er~(3+)和Yb~(3+)共掺杂氟化物纳米晶上转换发光及其动力学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕稀土Eu~(3+), Tm~(3+), Er~(3+)和Yb~(3+)共掺杂的氟化物纳米晶的研究得到了如下一些创新成果:
     1)利用微乳液法合成了直径大约为2 nm的YF3:Yb/Tm/Eu纳米须;用油酸作为修饰试剂,合成了平均尺寸为6.7 nm的NaYF_4: Yb/Er/Eu纳米晶,在这些样品中首次在室温条件下观察到了Eu~(3+)的一些不寻常的紫色和紫外上转换发射,并通过不同掺杂样品光谱及荧光动力学过程的研究分析了稀土离子间能量传递过程。
     2)选择PVP作为修饰试剂合成了水溶性的尺寸为30 nm左右的NaYF_4:Yb/Tm/Eu和NaYF_4:Yb/Er/Eu纳米晶,在这两种三掺体系中,其单个纳米晶就可以被394 nm和980 nm激光分别激发,产生两种颜色的特征发射。我们进一步以SiO2为壳层对这两种材料进行了包覆,改善了纳米微粒的环境稳定性和发光性能。并且讨论了这种材料在双色生物标记中的可能应用。
     3)用水热法合成了Yb/Tm共掺LaF3及YF3上转换发光材料,当Yb~(3+)掺杂从10%提高到20%时,就使基质LaF3由六角相转变为斜方相。在相同的实验条件下,我们研究了晶相依赖的Tm~(3+)上转换发光特性及其动力学过程。
     4)以油酸作为修饰试剂,合成了尺寸为200 nm NaYF_4: Yb/Er微米晶。修饰后的微米晶可以在非极性溶剂中形成澄清透明的胶体溶液。同时测量了这种油酸修饰的微米晶的变温上转换发射光谱,研究表明:Er~(3+)的上转换光谱对温度有很强的依赖关系。
Upconversion refers to nonlinear optical processes characterized by the successive absorption of two or more pump photons via intermediate long-lived energy states followed by the emission of the output radiation at a shorter wavelength than the pump wavelength. Principles and applications of such upconversion phosphors were presented in several reviews up to the 1970s by Auzel, Garlick, and Wright. Since then, upconversion has become a pervading effect in all RE-doped materials under high-density infrared excitation. Due to their unique and excellent optical properties, rare-earth fluoride upconversion nano-materials have important applications in high-resolution displays, solid lasers, integrated optical systems, infrared imaging, biological analysis and medical diagnosis and have attracted much attention. Establishing well-controlled synthesis strategies to these materials, understanding their growth and the relationships of their structures, morphologies and optical behaviors are crucial to the production of nanophosphors with designated optical properties. In this thesis, we reported some distinct upconversion emissions of several kinds of fluoride nanocrystals doped with Eu~(3+), Tm~(3+), Er~(3+) and Yb~(3+) ions, and characterized their properties.
     (1) YF3:Yb/Tm/Eu nanobundles with a mean diameter of ~2 nm were synthesized by microemulsion method. Besides the UC emissions from Tm~(3+) ions, not only the unusual ~5D_2→~7F_3, ~5D_3→~7F_J emissions of Eu~(3+) were observed, but also the ultraviolet (UV) UC fluorescence from ~5H_(3-7), ~5G_(2-6), and ~5L_6 levels were recorded under room temperature. To the best of our knowledge, it is the first time to report the ~5H_(3-7), ~5G_(2-6), ~5L_6→~7F_0 transitions, which expand the vast space for the research, development and application of Europium. Furthermore, we investigated the excitation power dependence of upconversion luminescence intensities. The upconversion emission peaked at 326.7 nm came from the transitions of ~5H_J→~7F_0. Its n value was 4.8±0.3, indicating that populating the 5HJ levels needed five 980 nm photons. Also, we found that populating the ~5D_0 level was the result of three photons and four photons processes. These unique optical properties were attributed to the bridging function of Tm~(3+) ions in populating high-energy states of Eu~(3+) ions. The population of the Eu~(3+) ions occured through the energy transfer from Tm ~(3+) ions and resulted in the reduction of upconversion intensity of the Tm~(3+) ions. Through adjusting the doping proportion of Tm ~(3+) to Eu~(3+) ions, strong emissions of both Tm~(3+) and Eu~(3+) ions can be obtained. In addition, we investigated the temporal evolution of upconversion luminescence in the nanocrystals. Temporal evolutions of ~5H_J, ~5G_J, and ~5L_6 levels of Eu~(3+) ions were reported for the first time. The analyses of lifetimes indicated that the lifetimes were increasing along the ladder of the energy levels ~5H_J, ~5L_6, ~5D_3, ~5D_2, ~5D_1, and ~5D_0 except for ~5G_J. The ~5G_J levels presented a short lifetime due to the narrow energy gap to ~5L_J, which increased the nonradiative relaxation rate from ~5G_J to ~5L_J and destroyed the monotony along the energy ladder. This phenomenon indicates that in the trivalent europium ions, the higher the energy level locates, the more unstable the level is. These high-energy states prefer to de-excite to low-energy levels radiatively or nonradiatively.
     (2) NaYF_4: Yb/Er/Eu NCs with an average size about 6.7 nm were synthesized using oleic acid as capping ligand. Under 980 nm excitation, besides the UC emissions from Tm~(3+) ions, ~5D_3→~7F_3, ~5D_2→~7F_0,1,2 and more abundant ~5H_(3-7)→~7F_(0-3) transitions were reported for the first time under room temperature. Furthermore, we study the integrated emission intensity ratios of ~4G_(11/2), ~2H_(11/2), ~4F_(9/2) levels of Er~(3+) ions between NaYF_4: 20%Yb~(3+), 1.5%Er~(3+), 1% (or 4%)Eu~(3+) and NaYF_4: 20%Yb~(3+), 1.5%Er~(3+) NCs under 980 nm excitation, and conclude the energy transfer law of ~4G_(11/2_, ~2H_(11/2), ~4F_(9/2) levels of Er~(3+) ions. When the excited Er~(3+) ions serve as activators, it is easier to transfer their energy to acceptors after they are excited to the longer lifetime level.
     (3) Water-soluble PVP-stabilized NaYF_4: Yb/Er/Eu and NaYF_4: Yb/Tm/Eu NCs were synthesized by hydrothermal method. The NCs were coated with a very thin silica shell. And amino groups were introduced to the surface of silica shells by copolymerization of 3-aminopropyl (triethoxy) silane. The core/shell NCs can be dispersed in ethanol and water to form stable colloidal solution. This kind of distinct tri-doped NCs can emit dual-color characteristic luminescence under 980 nm and 394 nm excitation.
     (4) Three kinds of Tm~(3+) / Yb~(3+) codoped fluoride microphosphors with similar sizes were synthesized by hydrothermal method. The results indicate 20% Yb~(3+) doping is sufficient for hexagonal LaF_3 microparticles to crystallize completely in the orthorhombic phase. And crystal symmetry has obvious effect on the luminescence spectra of Tm~(3+) ions and lifetimes of the radiative levels of Tm~(3+) ions.
     (5) Hexagonal-phase NaYF_4: Yb/Er microcrystals with an average size about 200 nm were synthesized using oleic acid as capping ligand. The microcrystals are capable of being dispersed in nonpolar organic solvents to form fully transparent and stable colloidal solutions. Under 980 nm excitation, the Yb~(3+)/Er~(3+) codoped microcrystals colloidal solution presents bright and almost-monochromatic green upconversion fluorescence. Temperature-change spectra indicate: thermalization effects between the ~2H_(11/2) and ~4S_(3/2) levels separated by 765 cm~(-1) in NaYF_4: Yb/Er microcrystals were the reason of the 520 nm emissions. And the green emission intensity of Er~(3+) ions had a maximum at 160K under 980 nm excitation, which was attributed to the thermal activated distribution of electrons and the thermal quenching effect.
引文
[1]徐叙瑢.发光学的回顾与进展[J].物理与工程, 2001, 11:1.
    [2]Idris N M, Li Z Q, Ye L, et al. Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles [J]. Biomaterials, 2009, 30:5104.
    [3]Hischemoller A, Nordmann J, Ptacek P, et al. In-Vivo Imaging of the Uptake of Upconversion Nanoparticles by Plant Roots [J]. J. Biomed. Nanotechno., 2009, 5:278.
    [4]Bhargava R N, Gallagher D, Hong X, et al. Optical properties of manganese-doped nanocrystals of ZnS [J]. Phys. Rev. Lett., 1994, 72:416.
    [5]Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids [J]. Chem. Rev., 2004, 104:139.
    [6]Johnson L F, Guggenheim H J. Infrared-Pumped Visible Laser [J]. Appl. Phys. Lett., 1971, 19:44.
    [7]Hehlen M P, Kuditcher A, Lenef a L, et al. Nonradiative dynamics of avalanche upconversion in Tm : LiYF_4 [J]. Phys. Rev.B, 2000, 61:1116.
    [8]Yi G, Lu H, Zhao S, et al. Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF_4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors [J]. Nano Lett., 2004, 4:2191.
    [9]Chatteriee D K, Rufalhah a J, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals [J]. Biomaterials., 2008, 29:937.
    [10]Wang F, Liu X G. Recent advances in the chemistry of lanthanide-dopedupconversion nanocrystals [J]. Chem. Soc. Rev., 2009, 38:976.
    [11]Thrash R J, Johnson L F. Upconversion laser emission from Yb~(3+)-sensitized Tm~(3+) in BaY2F8 [J]. J. Opt. Soc. Am. B, 1994, 11:881.
    [12]Stouwdam J W, Van Veggel F. Near-infrared emission of redispersible Er~(3+), Nd~(3+), and Ho~(3+) doped LaF3 nanoparticles [J]. Nano Lett, 2002, 2:733.
    [13]Chen D, Wang Y, Yu Y, et al. Intense ultraviolet upconversion luminescence from Tm~(3+)/Yb~(3+):beta-YF3nanocrystals embedded glass ceramic [J]. Appl. Phys. Lett., 2007, 91:051920.
    [14]苏锵. 20世纪稀土发展的回顾与前瞻[J].稀土信息, 2001:5.
    [15]Joubert M-F. Photon avalanche upconversion in rare earth laser materials [J]. Opt. Mater., 1999, 11:181.
    [16]Pollnau M, Gamelin D R, Luthi S R, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems [J]. Phys. Rev. B, 2000, 61:3337.
    [17]Joubert M-F. Photon avalanche upconversion in rare earth laser materials [J]. Opt. Mater., 1999, 11:181.
    [18]Piehler D. Upconversion process creates compact blue/green lasers [J]. Laser Focus World, 1993, Nov:95.
    [19]Downing E, Hesselink L, Ralston J, et al. A Three-Color, Solid-State, Three-Dimensional Display [J]. science, 1996, 273:1185.
    [20]徐时清,马洪萍,张在宣.三维立体显示用稀土掺杂氧卤磅酸盐玻璃[J].稀有金属材料与工程, 2005, 34:1173.
    [21]刘政威,佘仲明.能量上转换功能材料及其制作的防伪标记材料:中国,ZL00113404.3[P], 2004.
    [22]Shalav A, Richards B S, Trupke T, et al. Application of NaYF_4:Er~(3+)up-converting phosphors for enhanced near-infrared silicon solar cell response [J]. Appl. Phys. Lett., 2005, 86:013505.
    [23]Wang L Y, Yan R X, Hao Z Y, et al. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles [J]. Angew. Chem. int. Edit., 2005, 44:6054.
    [24]Wang L Y, Li Y D. Green upconversion nanocrystals for DNA detection [J]. Chem. Commun., 2006:2557.
    [25]Kaczmarek S M, Bensalah A, Boulon G. gamma-Ray induced color centers in pure and Yb doped LiYF_4 and LiLuF_4 single crystals [J]. Opt. Mater., 2006, 28:123.
    [26]Tsuboi T, Murayama H, Shimamura K. Low temperature luminescence of Tm~(3+) ions in LiYF_4 crystal [J]. J. Alloy. Compd., 2006, 408:776.
    [27]El-Agmy R M. Upconversion CW laser at 284 nm in a Nd : YAG-pumped double-cladding thulium-doped ZBLAN fiber laser [J]. Laser Phys., 2008, 18:803.
    [28]Zhu X S, Jain R. Watt-level Er-doped and Er-Pr-codoped ZBLAN fiber amplifiers at the 2.7-2.8 mu m wavelength range [J]. Opt. Lett., 2008, 33:1578.
    [29]Ye C C, Hewak D W, Hempstead M, et al. Spectral properties of Er~(3+)-doped gallium lanthanum sulphide glass [J]. J. Non-Cryst. Solids, 1996, 208:56.
    [30]Yuhu W, Junichi O. New transparent vitroceramics codoped with Er~(3+) and Yb~(3+) for efficient frequency upconversion [J]. Appl. Phys. Lett., 1993, 63:3268.
    [31]Dejneka M J. The luminescence and structure of novel transparent oxyfluoride glass-ceramics [J]. J. Non-Cryst. Solids, 1998, 239:149.
    [32]Higuchi H, Takahashi M, Kawamoto Y, et al. Optical transitions and frequency upconversion emission of Er~(3+) ions in Ga2S3--GeS2--La2S3 glasses [J]. J. Appl. Phys., 1998, 83:19.
    [33]Qiu J, Kawamoto Y. Blue up-conversion luminescence and energy transfer process in Nd~(3+)-Yb~(3+)-Tm~(3+) co-doped ZrF_4-based glasses [J]. J. Appl. Phys., 2002, 91:954.
    [34]张思远,毕宪章.稀土光谱理论[M].吉林科学技术出版社, 1991.
    [35]黄世华.离子中心的发光动力学[M].科学出版社, 2002, 5.
    [36]Judd B R. Optical Absorption Intensities of Rare-Earth Ions [J]. Phys. Rev., 1962, 127:750.
    [37]Ofelt G S. Intensities of Crystal Spectra of Rare-Earth Ions [J]. J. Chem. Phys., 1962, 37:511.
    [38]黄世华.激光光谱学原理和方法[M].吉林大学出版社, 2001, 7.
    [39]Wang G, Qin W, Zhang J, et al. Enhancement of violet and ultraviolet upconversion emissions in Yb~(3+)/Er~(3+)-codoped YF3 nanocrystals [J]. Opt. Mater., 2008, 31:296.
    [40]Cao C Y, Qin W P, Zhang J S, et al. Ultraviolet upconversion emissions of Gd~(3+) [J]. Opt Lett, 2008, 33:857.
    [41]Qin W P, Cao C Y, Wang L L, et al. Ultraviolet upconversion fluorescence from 6DJ of Gd~(3+) induced by 980 nm excitation [J]. Opt Lett, 2008, 33:2167.
    [42]Naruke H, Mori T, Yamase T. Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor [J]. Opt. Mater., 2009, 31:1483.
    [43]Lim S F, Riehn R, Ryu W S, et al. In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans [J]. Nano Lett., 2006, 6:169.
    [44]Hanaoka K, Kikuchi K, Kobayashi S, et al. Time-Resolved Long-Lived Luminescence Imaging Method Employing Luminescent Lanthanide Probes with aNew Microscopy System [J]. J. Am. Chem. Soc., 2007, 129:13502.
    [45]Krumpel a H, Bos a J J, Bessiere A, et al. Controlled electron and hole trapping in YPO4:Ce~(3+),Ln~(3+) and LuPO4:Ce~(3+),Ln~(3+) (Ln=Sm, Dy, Ho, Er, Tm) [J]. Phys. Rev. B, 2009, 80.
    [46]Cao C Y, Qin W P, Zhang J S, et al. Enhanced ultraviolet up-conversion emissions of Tm~(3+)/Yb~(3+) codoped YF3 nanocrystals [J]. J. Fluorine Chem., 2008, 129:204.
    [47]Wang G F, Qin W P, Zhang J S, et al. Synthesis and spectral properties of Eu~(3+)-doped YF3 nanobundles [J]. J. Fluorine Chem., 2008, 129:621.
    [48]Wang G F, Qin W P, Wang L L, et al. Intense ultraviolet upconversion luminescence from hexagonal NaYF_4 : Yb~(3+)/Tm~(3+) microcrystals [J]. Opt. Express, 2008, 16:11907.
    [49]Sivakumar S, Boyer J C, Bovero E, et al. Up-conversion of 980 nm light into white light from sol-gel derived thin film made with new combinations of LaF3:Ln~(3+) nanoparticles [J]. J. Mater. Chem., 2009, 19:2392.
    [50]Schafer H, Ptacek P, Zerzouf O, et al. Synthesis and Optical Properties of KYF_4/Yb, Er Nanocrystals, and their Surface Modification with Undoped KYF_4 [J]. Adv. Funct. Mater., 2008, 18:2913.
    [51]Jang K H, Kim E S, Shi L, et al. Laser spectroscopic investigation of lithium doping effect on luminescence enhancement in YVO4:Eu~(3+) thin films [J]. Chem. Phys. Lett., 2009, 479:65.
    [52]Xu Z H, Li C X, Yang P P, et al. Uniform Ln(OH)3 and Ln2O3 (Ln = Eu, Sm) Submicrospindles: Facile Synthesis and Characterization [J]. Cryst. Growth Des., 2009, 9:4127.
    [53]Yadav R S, Dutta R K, Kumar M, et al. Improved color purity in nano-sizeEu~(3+)-doped YBO3 red phosphor [J]. J. Lumin., 2009, 129:1078.
    [54]Rajan G, Gopchandran K G. Enhanced luminescence from spontaneously ordered Gd2O3:Eu~(3+) based nanostructures [J]. Appl. Surf. Sci., 2009, 255:9112.
    [55]Wei X D, Cai L Y, Lu F C, et al. Structure and luminescence of Ca2Si5N8:Eu2+ phosphor for warm white light-emitting diodes [J]. Chinese Phys. B, 2009, 18:3555.
    [56]Jung K Y, Han K H. Improved cathodoluminescence of Y2SiO5 : Ce-BAM : Eu mixed blue phosphor [J]. Electrochem. Solid St. , 2005, 8:H91.
    [57]Chen D, Wang Y, Yu Y, et al. Intense ultraviolet upconversion luminescence from Tm~(3+)/Yb~(3+):beta-YF3 nanocrystals embedded glass ceramic [J]. Appl. Phys. Lett., 2007, 91:051920.
    [58]Huang L, Yamashita T, Jose R, et al. Intense ultraviolet emission from Tb~(3+) and Yb~(3+) codoped glass ceramic containing CaF2 nanocrystals [J]. Appl. Phys. Lett., 2007, 90:131116.
    [59]Chen G, Liu H, Somesfalean G, et al. Upconversion emission tuning from green to red in Yb~(3+)/Ho~(3+)-codoped NaYF_4 nanocrystals by tridoping with Ce~(3+) ions [J]. Nanotechnology, 2009, 20:385704.
    [60]Mahalingam V, Vetrone F, Naccache R, et al. Colloidal Tm~(3+)/Yb~(3+)-Doped LiYF_4 Nanocrystals: Multiple Luminescence Spanning the UV to NIR Regions via Low-Energy Excitation [J]. Adv. Mater., 2009, 9999:NA.
    [61]Mahalingam V, Naccache R, Vetrone F, et al. Sensitized Ce~(3+) and Gd~(3+) Ultraviolet Emissions by Tm~(3+) in Colloidal LiYF_4 Nanocrystals [J]. Chem. Eur. J., 2009, 15:9660.
    [62]Dwivedi Y, Thakur S N, Rai S B. Study of frequency upconversion in Yb~(3+)/Eu~(3+) by cooperative energy transfer in oxyfluoroborate glass matrix [J]. Appl.Phys. B-Lasers O., 2007, 89:45.
    [63]Maciel G S, Biswas A, Prasad P N. Infrared-to-visible Eu~(3+) energy upconversion due to cooperative energy transfer from an Yb~(3+) ion pair in a sol-gel processed multi-component silica glass [J]. Opt Commun, 2000, 178:65.
    [64]Jubera V, Garcia A, Chaminade J P, et al. Yb~(3+) and Yb~(3+)-Eu~(3+) luminescent properties of the Li2Lu5O4(BO3)3 phase [J]. J. Lumin., 2007, 124:10.
    [65]He L, Wang Y H, Sun W M. Luminescence properties of BaB8O13:Eu under UV and VUV excitation [J]. J. Rare Earth., 2009, 27:385.
    [66]Wang G F, Qin W P, Xu Y, et al. Size-dependent upconversion luminescence in YF3:Yb~(3+)/Tm~(3+) nanobundles [J]. J. Fluorine Chem., 2008, 129:1110.
    [67]Wang G F, Qin W P, Wang L L, et al. Enhanced ultraviolet upconversion in YF3:Yb~(3+)/Tm~(3+) nanocrystals [J]. J. Rare Earth., 2009, 27:330.
    [68]Wang G F, Qin W P, Zhang J S, et al. Controlled synthesis and luminescence properties from cubic to hexagonal NaYF_4:Ln~(3+) (Ln = Eu and Yb/Tm) microcrystals [J]. J. Alloy. Compd., 2009, 475:452.
    [69]Wang G F, Qin W P, Zhang J S, et al. Synthesis, growth mechanism, and tunable upconversion luminescence of Yb~(3+)/Tm~(3+)-codoped YF3 nanobundles [J]. J.Phys. Chem. C, 2008, 112:12161.
    [70]Deshazer L G, Dieke G H. Spectra and Energy Levels of Eu~(3+) in LaCl3 [J]. J. Chem. Phys., 1963, 38:2190.
    [71]Wang L, Xue X, Shi F, et al. Ultraviolet and violet upconversion fluorescence of europium (III) doped in YF3 nanocrystals [J]. Opt. Lett., 2009, 34:2781.
    [72]Weber M J. Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y2O3 [J]. Phys. Rev., 1968, 171:283.
    [73]Weber M J. Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y2O3 [J]. Phys. Rev., 1968, 171:283.
    [74]Lim S F, Riehn R, Ryu W S, et al. In Vivo and Scanning Electron Microscopy Imaging of Upconverting Nanophosphors in Caenorhabditis elegans [J]. Nano Lett., 2005, 6:169.
    [75]Chatterjee D K, Rufaihah a J, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals [J]. Biomaterials, 2008, 29:937.
    [76]Li L, Tsung C K, Yang Z, et al. Rare-earth-doped nanocrystalline Titania microspheres emitting luminescence via energy transfer [J]. Adv. Mater., 2008, 20:903.
    [77]Feng W, Sun L D, Yan C H. Ag nanowires enhanced upconversion emission of NaYF_4:Yb,Er nanocrystals via a direct assembly method [J]. Chem. Commun., 2009:4393.
    [78]Wang L Y, Li Y D. Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials [J]. Nano Lett., 2006, 6:1645.
    [79]Yuan D, Yi G S, Chow G M. Effects of size and surface on luminescence properties of submicron upconversion NaYF_4:Yb,Er particles [J]. J. Mater. Res., 2009, 24:2042.
    [80]Wang L Y, Li Y D. Green upconversion nanocrystals for DNA detection [J]. Chem. Commun., 2006:2557.
    [81]Wang L, Li Y. Controlled Synthesis and Luminescence of Lanthanide Doped NaYF_4 Nanocrystals [J]. Chem. Mater., 2007, 19:727.
    [82]Van De Rijke F, Zijlmans H, Li S, et al. Up-converting phosphor reporters for nucleic acid microarrays [J]. Nat. Biotechno., 2001, 19:273.
    [83]Hu H, Xiong L, Zhou J, et al. Multimodal-Luminescence Core-Shell Nanocomposites for Targeted Imaging of Tumor Cells [J]. Chem. Eur. J., 2009, 15:3577.
    [84]Li P, Peng Q, Li Y D. Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals [J]. Adv. Mater., 2009, 21:1945.
    [85]Banerjee S, Huebner L, Romanelli M D, et al. Oxoselenido Clusters of the Lanthanides: Rational Introduction of Oxo Ligands and Near-IR Emission from Nd(III) [J]. J. Am. Chem. Soc., 2005, 127:15900.
    [86]Wei-Wei Z, Mei X, Wei-Ping Z, et al. Site-selective spectra and time-resolved spectra of nanocrystalline Y2O3:Eu [J]. Chem. Phys. Lett., 2003, 376:318.
    [87]Wu C F, Qin W P, Qin G S, et al. Photoluminescence from surfactant-assembled Y2O3:Eu nanotubes [J]. Appl. Phys. Lett., 2003, 82:520.
    [88]Jiang X-C, Yan C-H, Sun L-D, et al. Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu~(3+) nanocrystals with improved luminescent properties [J]. J. Solid State Chem., 2003, 175:245.
    [89]Riwotzki K, Meyssamy H, Kornowski A, et al. Liquid-Phase Synthesis of Doped Nanoparticles: Colloids of Luminescing LaPO4:Eu and CePO4:Tb Particles with a Narrow Particle Size Distribution [J]. J. Phys. Chem. B, 2000, 104:2824.
    [90]Karsten R, Heike M, Heimo S, et al. Liquid-Phase Synthesis of Colloids and Redispersible Powders of Strongly Luminescing LaPO4:Ce,Tb Nanocrystals [J]. Angew. Chem. Int. Edit., 2001, 40:573.
    [91]Feng W, Sun L D, Yan C H. Ag nanowires enhanced upconversion emission of NaYF_4:Yb,Er nanocrystals via a direct assembly method [J]. Chem. Commun., 2009:4393.
    [92]Liu C, Wang H, Li X, et al. Monodisperse, size-tunable and highly efficient beta-NaYF_4:Yb,Er(Tm) up-conversion luminescent nanospheres: controllable synthesis and their surface modifications [J]. J. Mater. Chem., 2009, 19:3546.
    [93]Nyk M, Kumar R, Ohulchanskyy T Y, et al. High Contrast in Vitro and in Vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm~(3+) and Yb~(3+) Doped Fluoride Nanophosphors [J]. Nano Lett., 2008, 8:3834.
    [94]Schafer H, Ptacek P, Zerzouf O, et al. Synthesis and Optical Properties of KYF_4/Yb, Er Nanocrystals, and their Surface Modification with Undoped KYF_4 [J]. Adv. Funct. Mater., 2008, 18:2913.
    [95]Sivakumar S, Boyer J C, Bovero E, et al. Up-conversion of 980 nm light into white light from sol-gel derived thin film made with new combinations of LaF3:Ln~(3+) nanoparticles [J]. J. Mater. Chem., 2009, 19:2392.
    [96]Wang G, Qin W, Zhang J, et al. Controlled synthesis and luminescence properties from cubic to hexagonal NaYF_4:Ln~(3+) (Ln=Eu and Yb/Tm) microcrystals [J]. J. Alloy. Compd., 2009, 475:452.
    [97]Ghosh P, Patra A. Influence of Crystal Phase and Excitation Wavelength on Luminescence Properties of Eu~(3+)-Doped Sodium Yttrium Fluoride Nanocrystals [J]. J. Phys. Chem. C, 2008, 112:19283.
    [98]Liang X, Wang X, Zhuang J, et al. Branched NaYF_4 nanocrystals with luminescent properties [J]. Inorg. Chem., 2007, 46:6050.
    [99]Zeng J H, Li Z H, Su J, et al. Synthesis of complex rare earth fluoride nanocrystal phosphors [J]. Nanotechnology, 2006, 17:3549.
    [100]Zhang M F, Fan H, Xi B J, et al. Synthesis, characterization, and luminescence properties of uniform Ln~(3+)-doped YF3 nanospindles [J]. J. Phys. Chem.C, 2007, 111:6652.
    [101]Tao F, Wang Z J, Yao L Z, et al. Synthesis and photoluminescence properties of truncated octahedral Eu-doped YF3 submicrocrystals or nanocrystals [J]. J. Phys. Chem. C, 2007, 111:3241.
    [102]Coutures J, Rouanet A, Verges R, et al. Etude a haute température des systèmes formes par le sesquioxyde de lanthane et les sesquioxydes de lanthanides. I. Diagrammes de phases (1400°C < T < T Liquide) [J]. J. Solid State Chem., 1976, 17:171.
    [103]Patra A. Effect of crystal structure and concentration on luminescence in Er~(3+):ZrO2 nanocrystals [J]. Chem. Phys. Lett., 2004, 387:35.
    [104]Amitava P, Christopher S F, Rakesh K, et al. Effect of crystal nature on upconversion luminescence in Er~(3+):ZrO2 nanocrystals [J]. Appl. Phys. Lett., 2003, 83:284.
    [105]Zheng H R, Wang X J, Qu S X, et al. Dynamical processes of Ln~(3+) ions doped in LaF3 nanocrystals embedded in transparent oxyfluoride glass [J]. J. Lumin., 2006, 119:153.
    [106]Meltzer R S, Feofilov S P, Tissue B, et al. Dependence of fluorescence lifetimes of Y2O3 : Eu~(3+) nanoparticles on the surrounding medium [J]. Phys. Rev. B, 1999, 60:R14012.
    [107]Peng H, Huang S, Sun L, et al. Analysis of surface effect on luminescent properties of Eu~(3+) in YVO4 nanocrystals [J]. Phys. Lett. A, 2007, 367:211.
    [108]Ozen G, Forte O, Di Bartolo B, et al. Upconversion as a discriminating tool in site-selective spectroscopy of the praseodymium ion in Y3Al5O12 [J]. J. Appl. Phys., 2007, 102.
    [109]Patra A, Sominska E, Ramesh S, et al. Sonochemical Preparation andCharacterization of Eu2O3 and Tb2O3 Doped in and Coated on Silica and Alumina Nanoparticles [J]. J. Phys. Chem. B, 1999, 103:3361.
    [110]Rapaport A, Milliez J, Bass M, et al. Role of pump duration on temperature and efficiency of up-conversion in fluoride crystals co-doped with ytterbium and thulium [J]. Opt. Express, 2004, 12:5215.
    [111]Rapaport A, Milliez J, Bass M, et al. Numerical model of the temperature dependence of the up-conversion efficiency of fluoride crystals codoped with ytterbium and thulium [J]. J. Appl. Phys., 2005, 97:123527.
    [112]Liang H J, Chen G Y, Li L, et al. Upconversion luminescence in Yb~(3+)/Tb~(3+)-codoped monodisperse NaYF_4 nanocrystals [J]. Opt. Commun., 2009, 282:3028.
    [113]Schietinger S, Menezes L D, Lauritzen B, et al. Observation of Size Dependence in Multicolor Upconversion in Single Yb~(3+), Er~(3+) Codoped NaYF_4 Nanocrystals [J]. Nano Lett., 2009, 9:2477.
    [114]Zhang Y Y, Yang L W, Han H L, et al. Excitation power controlled luminescence switching in Yb~(3+)-Tm~(3+) co-doped hexagonal NaYF_4 nanorods [J]. Opt. Commun., 2009, 282:2857.
    [115]Wang G F, Qin W P, Zhang J S, et al. Controlled synthesis and luminescence properties from cubic to hexagonal NaYF_4:Ln~(3+) (Ln = Eu and Yb/Tm) microcrystals [J]. J.Alloys and Compd., 2009, 475:452.
    [116]Heer S, Küpe K, Güel H U, et al. Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF_4 Nanocrystals [J]. Adv. Mater., 2004, 16:2102.
    [117]Mai H X, Zhang Y W, Si R, et al. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties [J]. J. Am. Chem. Soc., 2006,128:6426.
    [118]Zeng J H, Su J, Li Z H, et al. Synthesis and Upconversion Luminescence of Hexagonal-Phase NaYF_4:Yb, Er~(3+) Phosphors of Controlled Size and Morphology [J]. Adv. Mater., 2005, 17:2119.
    [119]Yi G-S, Chow G-M. Water-Soluble NaYF_4:Yb,Er(Tm)/NaYF_4/Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence [J]. Chem. Mate., 2006, 19:341.
    [120]Wei Y, Lu F, Zhang X, et al. Synthesis of Oil-Dispersible Hexagonal-Phase and Hexagonal-Shaped NaYF_4:Yb,Er Nanoplates [J]. Chem. Mater., 2006, 18:5733.
    [121]Boyer J-C, Vetrone F, Cuccia L A, et al. Synthesis of Colloidal Upconverting NaYF_4 Nanocrystals Doped with Er~(3+), Yb~(3+) and Tm~(3+), Yb~(3+) via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors [J]. J. Am. Chem. Soc., 2006, 128:7444.
    [122]Boyer J-C, Cuccia L A, Capobianco J A. Synthesis of Colloidal Upconverting NaYF_4: Er~(3+)/Yb~(3+) and Tm~(3+)/Yb~(3+) Monodisperse Nanocrystals [J]. Nano Lett., 2007, 7:847.
    [123]Dong B, Song H, Yu H, et al. Upconversion Properties of Ln~(3+) Doped NaYF_4/Polymer Composite Fibers Prepared by Electrospinning [J]. J. Phys. Chem. C, 2008, 112:1435.
    [124]Yi G S, Lee W B, Chow G M. Synthesis of LiYF_4, BaYF5, and NaLaF_4 optical nanocrystals [J]. J. Nanosci. Nanotechno., 2007, 7:2790.
    [125]Yi G S, Chow G M. Water-soluble NaYF_4 : Yb,Er(Tm)/NaYF_4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence [J]. Chem. Mater., 2007, 19:341.
    [126]Yi G S, Lu H C, Zhao S Y, et al. Synthesis, characterization, and biologicalapplication of size-controlled nanocrystalline NaYF_4 : Yb,Er infrared-to-visible up-conversion phosphors [J]. Nano Lett., 2004, 4:2191.
    [127]Yang F Z, Yi G S, Chen D P, et al. Synthesis and up-conversion luminescence properties of nanocrystal Yb, Ho co-doped sodium yttrium fluoride [J]. Chem. J. Chinese. U., 2004, 25:1589.
    [128]Ma Y Q, Yi G S, Sun B Q, et al. Up-conversion luminescent properties of SrAl2O4 : Eu2+, Dy~(3+) phosphors [J]. Spectrosc. Spect. Anal, 2003, 23:435.
    [129]Wang L Y, Li Y D. Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials [J]. Nano Lett, 2006, 6:1645.
    [130]Qin R F, Song H W, Pan G H, et al. Polyol-mediated synthesis of well-dispersed alpha-NaYF_4 nanocubes [J]. J. Cryst. Growth, 2009, 311:1559.
    [131]Bai X, Song H W, Pan G H, et al. Improved Upconversion Luminescence Properties of Gd2O3:Er~(3+)/Gd2O3:Yb~(3+) Core-Shell Nanorods [J]. J. Nanosci. Nanotechno., 2009, 9:2677.
    [132]Maurice E, Monnom G, DussardiéB, et al. Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers [J]. Opt. Lett., 1994, 19:990.
    [133]Bai X, Song H, Pan G, et al. Size-Dependent Upconversion Luminescence in Er~(3+)/Yb~(3+)-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects [J]. J.Phys. Chem. C, 2007, 111:13611.
    [134]Auzel F. Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions [J]. Phys. Rev. B, 1976, 13:2809.
    [135]Weber M J. Multiphonon Relaxation of Rare-Earth Ions in Yttrium Orthoaluminate [J]. Phys. Rev. B, 1973, 8:54.
    [136]De G, Qin W, Zhang J, et al. Effect of OH- on the upconversionluminescent efficiency of Y2O3:Yb~(3+), Er~(3+) nanostructures [J]. Solid State Commun., 2006, 137:483.
    [137]Zhang J S, Qin W P, Zhang J S, et al. A novel approach from infrared to ultraviolet emission enhancement in Yb~(3+), Er~(3+): CaF2 nanofilms [J]. J. Nanosci. Nanotechno., 2008, 8:1258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700