多孔硅胶表面分子印迹青蒿素吸附剂的制备及其在超临界流体下的吸附分离行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青蒿素是从黄花蒿中分离出的一种具有高效抗疟疗效的植物活性成分,是世界卫生组织推荐治疗疟疾的首选药物。
     分子印迹聚合物吸附剂能够专一性识别和吸附目标分子,选择性能力突出。而表面印迹技术将分子识别位点设计在印迹材料的表面上,减小了识别位点与目标分子之间的位阻效应。在传统有机溶剂中,印迹聚合物虽然能实现较好的分离效果,但吸附平衡时间却较长,吸附容量亦有限,且环境不友好。超临界CO2流体对青蒿素具有良好的溶解性能,渗透扩散能力又强,但超临界流体对于结构相近的类似物的选择性分离能力并不突出。若以超临界CO2作为溶剂介质替代有机溶剂,将印迹聚合物吸附剂应用其中,两种技术优势互补,能改善吸附过程的传质效果,提高吸附容量,缩短吸附平衡时间,而且环境友好,具有可持续发展前景。
     本论文中介绍了硅胶表面青蒿素分子印迹聚合物的制备过程,在多孔硅胶(40-60目)上嫁接上乙烯基三乙氧基硅烷(VTES),然后以青蒿素为模板分子,丙烯酰胺(AM)和甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,成功制备出一种基于多孔硅胶表面的青蒿素分子印迹聚合物吸附剂。并利用元素分析、扫描电子显微镜、傅里叶红外光谱等分析检测手段对其进行表征,表征结果显示硅胶上聚合上了印迹层,BET吸附结果显示,印迹硅胶的比表面积为325.042m2/g,孔径为83.013A。
     测定并分析了常温常压条件下,印迹聚合物在甲苯溶剂中对青蒿素的吸附分离行为。结果显示在青蒿素初始浓度为2.00mg/mL时,印迹聚合物对青蒿素的吸附量是随着吸附时间的增加而逐渐增加的,整个吸附过程呈现两个不同的阶段,前2h是一个快速吸附的阶段,大约10h左右,吸附趋于平衡。选用了Pseudo-first-order、Pseudo-second-order以及Elovich三个吸附动力学模型关联动力学实验数据,以Pseudo-second-order模型的关联效果最佳,相关系数R2为0.9730。青蒿素初始浓度在0.20~2.00mg/mL范围内,印迹聚合物和非印迹聚合物对青蒿素的吸附量都随着青蒿素初始浓度的增加而增加,但印迹聚合物的吸附量远高于非印迹聚合物。在青蒿素初始浓度为2.00mg/mL时,印迹聚合物对青蒿素的吸附量为32.44mg/g。选用了Langmuir、Freundlich以及Langmuir-Freundlich三个吸附等温线模型来关联等温线实验数据,以Langmuir-Freundlich模型的关联效果最好,相关系数R2为0.9953。在初始浓度为2.00mg/mL的青蒿素/蒿甲醚混合溶液中,印迹聚合物对青蒿素的选择性系数α为2.29,相对选择性系数β为2.03。在初始浓度为2.00mg/mL的青蒿素/蒿甲醚/蒿乙醚混合溶液中,印迹聚合物吸附青蒿素的选择性系数α分别为2.88和3.38,前者是相较于蒿甲醚,后者是相较于蒿乙醚,相对选择性系数β分别为2.74和3.10。
     利用带有视频监测窗口的超临界相平衡监测仪观察并测定了固体青蒿素在超临界CO2中的溶解相平衡过程。在313K(11~31MPa)、323K(14~31MPa)、333K(16~31MPa)的温度压力条件范围内,青蒿素固体在超临界CO2中溶解度值的分布范围为0.498×10-3mol/mol~2.915×10-3mol/mol。温度一定的条件下,青蒿素在超临界CO2中的溶解度随压力的升高而变大。压力一定的条件下,在小于转折压力区(20~23MPa)时,青蒿素在超临界CO2中的溶解度随温度的升高而下降,在大于转折压力时,变化结果正好相反。选用Chrastil经验模型和Mendez-Santiago and Teja模型对实验数据进行关联,平均相对误差分别为8.32%和8.27%,表明模型计算值与实验值之间吻合度较好,离临界区越远,压力越大,相对误差越小。
     考察了313K,20MPa时,印迹聚合物在超临界CO2中对青蒿素的吸附分离行为。在相同的初始浓度时,印迹聚合物对青蒿素的吸附量在大致趋势上是随着时间的增加而增加,整个吸附过程呈现两个不同的阶段,前0.5~1h是一个快速吸附的阶段,大约3h左右,吸附趋于平衡。选用了Pseudo-first-order和Pseudo-second-order吸附动力学方程拟合实验数据,在青蒿素初始浓度为1.74mg/mL时,Pseudo-second-order方程的拟合效果最佳,相关系数R2为0.9936。在相同的时间点,分子印迹聚合物对青蒿素的吸附量是随着青蒿素初始浓度的增加而增加。青蒿素初始浓度为1.74mg/mL时,印迹聚合物对青蒿素的吸附量可达123.89mg/g。在青蒿素/蒿甲醚的初始浓度为1.94mg/mL时,印迹聚合物对青蒿素的选择性系数α为3.29。
     在本课题的实验条件范围内,印迹聚合物在超临界CO2中的吸附平衡时间不到甲苯中的1/3,吸附容量是是甲苯中的4倍左右,选择性系数较甲苯中有所提高。
Artemisinin is an effective antimalarial drug isolated from the herbal medicine Artemisia annua L. It is recommended to treat malaria by World Health Organization (WHO).
     Molecularly imprinted polymer is a kind of adsorbent with the ability of specifically recognizing and binding the target molecules. The surface molecular imprinting technique can decrease the steric hindrance between recognition sites and target molecules by designing the molecular recognition sites on the surfaces of imprinted materials. In the conventional organic solvents, though good separation can be achieved by imprinted polymers, the time to reach adsorption equilibrium is long and the adsorption capacity is also limited. In addition, the organic solvents are not good for environment. Supercritical CO2 has good solubility for artemisinin and high diffusion ability, but it has not excellent selectivity for analogues. If imprinted polymers are employed in supercritical CO2 instead of organic solvents, the mass transfer rate and adsorption capcity should be impoved. Combination of molecular imprinting technique and supercritical technology is a promising and environment-friendly method with prospects of sustainable development.
     In this paper, the preparation process of molecularly imprinted polymers (MIPs) for artemisinin was introduced. Silica gel (40-60mesh) were used as supporting matrix, and vinyltriethoxysilane (VTES) was grafted onto its surfaces. The preparation of MIPs for artemisinin was performed on the surfaces of the modified silica gel using artemisinin as the template, acrylamide (AM) and methacrylic acid (MAA) as the functional monomers and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. Elementary analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and pore size analysis were used to characterize the prepared MIPs. The results showed that the imprinted film was coated onto the surfaces of silica gel. The surface area of MIPs was 325.042m2/g and pore size was 83.013?.
     Under the normal temperature and pressure condition, the adsorption and separation behaviour was measured in toluene solvent. The adsorption reached equilibrium at about 10h, while fast adsorption took place during the first 2h. Pseudo-first-order, Pseudo-second-order and Elovich adsorption kinetic equations were used to correlate the experimental data of the adsorption kinetics, and pseudo-second-order equation had the best correlation (R2=0.9730). At varied initial concentrations of artemisinin (range from 0.20mg/mL to 2.00mg/mL), adsorption capcity of MIPs and NIPs (non-imprinted polymers) both increased with the initial concentration of artemisinin, but MIPs had much higher adsorption capcity than that of NIPs. The adsorption capcity was 32.44mg/g at an initial artemisinin concentration of 2.00mg/mL. Langmuir, Freundlich and Langmuir-Freundlich isotherms were used to correlate the experimental data of the adsorption isotherm, and Langmuir-Freundlich isotherm had the best correlation (R2=0.9953). The selectivity coefficient of MIPs for artemisinin was 2.29 in artemisinin/artemether mixed solution with the initial concentration of 2mg/mL of each substance, and the relative selectivity coefficient was 2.03. The selectivity coefficients of MIPs for artemisinin with respect to artemether and arteether were 2.88 and 3.38 in artemisinin/artemether/arteether mixed solution with the initial concentration of 2mg/mL of each substance, and the relative selectivity coefficients were 2.74 and 3.10, respectively.
     A supercritical apparatus with a video detection window was applied in the observation of the process of artemisinin dissolved in supercritical CO2 and the determination of artemisinin solubility in supercritical CO2 at 313K (11~31MPa),323K (14~31MPa),333K (16~31MPa) by static method. The range of experimental solubility data was from 0.498×10-3 to 2.915×10-3mol/mol. At a fixed temperature, the solubility of artemisinin in supercritical CO2 increases with the pressure. At a fixed pressure, the effect of temperature on the solubility shifts from negative at the pressures below the crossover region to positive at the pressures above the crossover region. Chrastil and Mendez-Santiago-Teja models were selected to correlate the experimental solubility data. The average absolute relative deviation of the two correlations was 8.32% and 8.33%, respectively, which showed the good agreement between calculated values and experimental values. The relative deviation will be smaller when the experimental conditions are far away from the critical point.
     Under the 313K,20MPa condition, the adsorption and separation behaviour was measured in supercritical CO2. The adsorption reached equilibrium at about 3h, while fast adsorption took place during the first 0.5~1h. Pseudo-first-order and Pseudo-second-order adsorption kinetic equations were used to fit the experimental data, and pseudo-second-order equation had the better correlation (R2=0.9936). Adsorption capcity of MIPs for artemisinin increased with the initial concentration of artemisinin, and the adsorption capcity was 123.89mg/g at an initial artemisinin concentration of 1.74mg/mL. The selectivity coefficient of MIPs for artemisinin was 3.29 in artemisinin/artemether mixed solution with the initial concentration of 1.94mg/mL of each substance.
     Under the experimental conditions, adsorption equilibrium time in supercritical CO2 was less than 1/3 of that in toluene, adsorption capcity of MIPs in supercritical CO2 was as 4 times as that in toluene, and the selectivity coefficient of MIPs in supercritical CO2 increased when compared with that in toluene.
引文
[1]青蒿素结构研究协作组.一种新型的倍半萜内酯--青蒿素.科学通报.1977,22(3):142.
    [2]李英.青蒿素研究.上海科学技术出版社.2007.
    [3]屠呦呦.青蒿及青蒿素类药物.化学工业出版社.2009.
    [4]屠呦呦,倪慕云,钟裕亮等.中药青蒿化学成分研究Ⅰ.药学学报1981,16(5):366-370.
    [5]谢德玉,叶和春,李国风.青蓠素的研究进展--生物技术的应用前景.植物学通报.1995,12(4):28-31.
    [6]李国栋.青蒿素类药物的研究现状.中国药学杂志.1998,33(7):385-389.
    [7]陈扬,朱世民.青蒿素类抗疟药研究进展.药学学报.1998,33(3):234-239.
    [8]周维善,沈季铭,陈朝华等.青蒿素及其一类物结构和合成的研究--异脱氧青蒿素的全合成.中国科学B辑.1984,14(2):150.
    [9]刘春朝,王玉春,欧阳藩.青蒿素研究进展.化学进展.1999,11(1):41-48.
    [10]杨耀芳.青蒿素及其衍生物的药理作用和临床应用.中国临床药学杂.2003,12(4):253-257.
    [11]郭燕,王俊,陈正堂.青蒿素类药物的药理作用新进展.中国临床药理学与治疗学.2006,11(6):615-620.
    [12]温悦,孟德胜.青蒿素类药物药理作用研究进展.医药导报.2007,26(10):1193-1195.
    [13]谭涛,秦宗会,谭蓉.青蒿素类药物的药理作用研究进.中国药业.2009,18(3):63-64.
    [14]Klayman DL. Qinghaosu (Artemisinin), an antimalarial drug from China. Science. 1985,228:1049-1055.
    [15]World Health Organization. The Use of Artemisinin and its Derivatives as Anti-Malarial Drugs. Malaria Unit. Division of Control of Tropical Diseases. Geneva.1998.
    [16]Butler AR, Wu YL. Artemisinin (Qinghaosu):a new type of antimalarial drug. Chem Soc Rec.1992,21:85-90.
    [17]Dhingra V, Rao KV, Narasu ML. Current status of artemisinin and its derivatives as antimalarial drugs. Life Sciences.1999,66(4):279-300.
    [18]Newton P, White N. Malaria:new developments in treatment and prevention. Annu Rev Med.1999,50:179.
    [19]Li Y, Wu YL. An over four millennium story behind qinghaosu (artemisinin)-a fantastic antimalarial drug from a traditional Chinese herb. Curr Med Chem.2003,10(21):2179-2230.
    [20]王宗德,孙芳华.青蒿素理化性质及其测定方法的研究进展.江西农业大学学报. 1999,21(4):606-611.
    [21]刘静明,倪慕云,屠呦呦等.青蒿素的结构和反应.化学学报.1979,37(2):129-143.
    [22]赵世善,曾美怡.高效液相色谱法测定青蒿植物中的青蒿素.药物分析杂志.1986,6(1):3-4.
    [23]Brown GD. Secondary metabolism in tissue culture or Artemisia annu. Journal of Natural Products.1994,57(7):975-977.
    [24]李英,虞佩琳,陈一心等.青蒿素类似物的研究.科学通报.1985,30(7):1313-1315.
    [25]曾美怡,赵世善,付桂兰.青蒿素分析中的各种定量反应.药物分析杂志.1986,6(3):183-185。
    [26]曾美怡.板式有机过氧化物碘量法的改进研究--碘量法测定青蒿素.药物分析杂志.1984,4(6):327-329.
    [27]邓定安,许承辉.有抗肿瘤活性的青蒿B衍生物.药学学报.1992,27(4):317-320.
    [28]Woerdenbag HJ, Moskal TA, Pras N, et al. Cytotoxicity of Artemisinin-related endoperoxicles to Ehrlich ascites tumor cells. J Nat Prod.1993,56(6):849-856.
    [29]Aldier E, Atragene D, Bergandi L, et al. Artemisinin inhibits nitric oxide synthase and nuclear factor NF-κB activation. FEBS Lett.552:141-144.
    [30]舒贝,马行一.青蒿素及其衍生物的免疫调节作用.中国中西医结合肾病杂志.2005,6(3):176-178.
    [31]马培林,张凤民,宋维华等.青蒿素抗柯萨奇B组病毒感染的实验观察.中国地方病杂志.2004,23(5):403-405.
    [32]杜智敏,刘影.青蒿素抗心律失常作用研究.中国药学杂志.2003,38(5):372.
    [33]Schmid G, Hofheize W. Total synthesis of Qinghaosu. J Am Chem Soc. 1983,105(3):624-625.
    [34]Yadav JS, Babu RS, Sabitha G. Stereoselective total synthesis of (+)-artemisinin. Tetrahedron.2003,44(2):387-389.
    [35]Ravindranathan T. Artemisinin (Qinghaosu). Current Science.1994,66(1):35-41.
    [36]赵兵,王玉春,吴江等.青蒿素提取条件研究.中草药.2000,31(6):421-423.
    [37]郝金玉,施超欧.黄花蒿中青蒿素的微波辅助提取.中国医药工业杂志.2002,33(8):385-387.
    [38]钱国平,杨亦文,吴彩娟等.超临界C02从黄花蒿中提取青蒿素的研究.化工进展.2005,24(3):286-290.
    [39]胡淼,钱国平,杨亦文等.超临界C02提取青蒿素的工艺.江南大学学报(自然科学版).2006,5(1):100-103.
    [40]Quispe-Condori S, Sanchez D, Foglio MA, et al. Global yield isotherms and kinetic of artemisinin extraction from Artemisia annua L. leaves using supercritical carbon dioxide. J of Supercritical Fluids.2005,36:40-48.
    [41]Kohler M, Haerdi W, Christen P, et al. Extraction of artemisinin and artemisinic acid from Artemisia annua L. using supercritical carbon dioxide. Journal of Chromatography A. 1997,785:353-360.
    [42]Tzeng TC, Lin YL, Jong TT, et al. Ethanol modified supercritical fluids extraction of scopoletin and Artemisinin from Artemisia annua L. Separation and Purification Technology. 2007,56:18-24.
    [43]Pauling L. A theory of the structure and process of formation of antibodies. Journal of the American Chemical Society.1940,62(10):2643-2657.
    [44]Dickey FH. The preparation of specific adsorbents. Proceedings of the National Academy of Sciences of the United States of America.1949,35(5):227-229.
    [45]Wulff G, Sarhan A. Use of polymers with enzyme-analogous structures for the resolution of racemates. Angew Chem Int Ed Engl.1972,11:341-344.
    [46]Wulff G, Sarhan A, Zabrocki K. Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Lett.1973,44:4329-4332.
    [47]Wulff G. Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates-A Way towards Artificial Antibodies. Angew Chem Int Ed.1995,34:1812-1832.
    [48]Mosbach K. Molecular imprinting. Trends in biochemical sciences.1994,19(1):9-14.
    [49]Mosbach K, Ramstrom O. The emerging technique of molecular imprinting and its future impact on biotechnology. Nature Biotechnology.1996,14(2):163-170.
    [50]小宫山真.分子印迹学--从基础到应用.科学出版社.2006.
    [51]谭天伟.分子印迹技术及应用.化学工业出版社.2010.
    [52]Liang S, Wan J, Zhu J, et al. Effects of porogens on the morphology and enantioselectivity of core-shell molecularly imprinted polymers with ursodeoxycholic acid. Separation and Purification Technology.2010,72:208-216.
    [53]Perez-Moral N, Mayes AG. Comparative study of imprinted polymer particles prepared by different polymerization methods. Analytica Chimica Acta.2004,504:15-21.
    [54]Ansell RJ, Mosbach K. Molecularly imprinted polymers by suspension polymerization in perfluorocarbon liquid, with emphasis on the influence of the porogenic solvent. Journal of Chromatography A.1997,787:55-56.
    [55]Su H, Zhao Y, Li J, et al. Biosorption of Ni2+ by the surface molecular imprinting adsorbent. Process Biochemistry.2006,41:1422-1426.
    [56]He C, Long Y, Pan J, et al. A method for coating colloidal particles with molecularly imprinted silica films. J Mater Chem.2008,18:2849-2854.
    [57]Gao B, An F, Zhu Y. Novel surface ionic imprinting materials prepared via couple grafting of polymer and ionic imprinting on surfaces of silica gel particles. Polymer. 2007,48:2288-2297.
    [58]Sulitzky C, Ruckert B, Hall AJ, et al. Grafting of molecularly imprinted polymer films on silica supports containing surface-bound free radical initiators. Macromolecules. 2002,35:79-91.
    [59]Su H, Wang Z, Tan T. Preparation of a surface molecular-imprinted adsorbent for Ni2+ based on Penicillium chrysogenum. J Chem Technol Biotechnol.2005,80:439-444.
    [60]Shiomia T, Matsuia M, Mizukamib F, et al. A method for the molecular imprinting of hemoglobin on silica surfaces using silanes. Biomaterials.2005,26:5564-5571.
    [61]Zhang W, Qin L, He XW, et al. Novel surface modified molecularly imprinted polymer using acryloyl-β-cyclodextrin and acrylamide as monomers for selective recognition of lysozyme in aqueous solution. Journal of Chromatography A.2009,1216:4560-4567.
    [62]Han M, Kane R, Goto M, et al. Discriminate Surface Molecular Recognition Sites on a Microporous Substrate:A New Approach. Macromolecules.2003,36:4472-4477.
    [63]Kirsch N, Alexander C, Lubke M, et al. Enhancement of selectivity of imprinted polymers via post-imprinting modification of recognitionsites. Polymer.2000,41:5583-5590.
    [64]Li X, Husson SM. Adsorption of dansylated amino acids on molecularly imprinted surfaces:A surface Plasmon resonance study. Biosensors and Bioelectronics. 2006,22:336-348.
    [65]Li F, Jiang H, Zhang S. An ion-imprinted silica-supported organic-inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol-gel process for selective separation of cadmium(II) from a queous solution. Talanta.2007,71:1487-1493.
    [66]Wei S, Jakusch M, Mizaikoff B. Capturing molecules with template materials-Analysis and rational design of molecularly imprinted polymers. Analytica Chimica Acta. 2006,578:50-58.
    [67]Hart BR, Rush DJ, Shea KJ. Discrimination between Enantiomers of Structurally Related Molecules:Separation of Benzodiazepines by Molecularly Imprinted Polymers. J Am Chem Soc.2000,122:460-465.
    [68]Liu F, Liu X, Ng SC, et al. Enantioselective molecular imprinting polymer coated QCM for the recognition of L-tryptophan. Sensors and Actuators B.2006,113:234-240.
    [69]An F, Gao B, Feng X. Adsorption and recognizing ability of molecular imprinted polymer MIP-PEI/SiO2 towards phenol. Journal of Hazardous Materials.2008,157:286-292.
    [70]Qi P, Wang J, Wang L, et al. Molecularly imprinted polymers synthesized via semi-covalent imprinting with sacrificial spacer for imprinting phenols. Polymer. 2010,51:5417-5423.
    [71]Yin J, Meng Z, Du M, et al. Pseudo-template molecularly imprinted polymer for selective screening of trace β-lactam antibiotics in river and tap water. Journal of Chromatography A.2010,1217:5420-5426.
    [72]Toth B, Laszlo K, Horvai G. Chromatographic behavior of silica-polymer composite molecularly imprinted materials. Journal of Chromatography A.2005,1100:60-67.
    [73]Oxelbark J, Legido-Quigley C, Aureliano CSA. Chromatographic comparison of bupivacaine imprinted polymers prepared in crushed monolith, microsphere, silica-based composite and capillary monolith formats. Journal of Chromatography A. 2007,1160:215-226.
    [74]Hosoya K, Shirasu Y, Kimata K, et al. Molecularly Imprinted Chiral Stationary Phase Prepared with Racemic Template. Anal Chem.1998,70:943-945.
    [75]Matsui T, Osawa T, Shirasaka K. Improved Method of Molecular Imprinting of Cyclodextrin on Silica-gel Surface for the Preparation of Stable Stationary HPLC Phase. Journal of Inclusion Phenomena and Macrocyclic Chemistry.2006,56:39-44.
    [76]Deng QL, Lun ZH, Yan C, et al. Preparation and Evaluation of Molecularly Imprinted Monolithic Column for Felodipine in Micro-liquid Chromatography. Chinese Chemical Letters.2005,16(7):955-959.
    [77]Maier NM, Lindner W. Chiral recognition applications of molecularly imprinted polymers:a critical review. Anal Bioanal Chem.2007,389:377-397.
    [78]Wei X, Husson SM. Surface-Grafted, Molecularly Imprinted Polymers Grown from Silica Gel for Chromatographic Separations. Ind Eng Chem Res.2007,46:2117-2124.
    [79]Tamayo FG, Titirici MM, Martin-Esteban A, et al. Synthesis and evaluation of new propazine-imprinted polymer formats for use as stationary phases in liquid chromatography. Analytica Chimica Acta.2005,542:38-46.
    [80]Qin L, He XW, Li WY, et al. Molecularly imprinted polymer prepared with bonded β-cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media. Journal of Chromatography A.2008,1187:94-102.
    [81]Kitahara K, Yoshihama I, Hanada T, et al. Synthesis of monodispersed molecularly imprinted polymer particles for high-performance liquid chromatographic separation of cholesterol using templating polymerization in porous silica gel bound with cholesterol molecules on its surface. Journal of Chromatography A.2010,1217:7249-7254.
    [82]Tamayo FG, Turiel E, Martin-Esteban A. Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction:Recent developments and future trends. Journal of Chromatography A.2007,1152:32-40.
    [83]He Q, Chang X, Wu Q, et al. Synthesis and applications of surface-grafted Th(IV)-imprinted polymers for selective solid-phase extraction of thorium(Ⅳ). Analytica Chimica Acta.2007,605:192-197.
    [84]Hu X, Pan J, Hu Y, et al. Preparation and evaluation of solid-phase microextraction fiber based on molecularly imprinted polymers for trace analysis of tetracyclines incomplicated samples. Journal of Chromatography A.2008,1188:97-107.
    [85]Han DM, Fang GZ, Yan XP. Preparation and evaluation of a molecularly imprinted sol-gel material for on-line solid-phase extraction coupled with high performance liquid chromatography for the determination of trace pentachlorophenol in water samples. Journal of Chromatography A.2005,1100:131-136.
    [86]Sergeyeva TA, Matuschewske H, Piletsky SA, et al. Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization. Journal of Chromatography A.2001,907:89-99.
    [87]Pap T, Horvath V, Tolokan A, et al. Effect of solvents on the selectivity of terbutylazine imprinted polymer sorbents used in solid-phase extraction. Journal of Chromatography A. 2002,973:1-12.
    [88]Jiang X, Zhao C, Jiang N, et al. Selective solid-phase extraction using molecular imprinted polymer for the analysis of diethylstilbestrol. Food Chemistry. 2008,108:1061-1067.
    [89]Jiang X, Tian W, Zhao C, et al. A novel sol-gel-material prepared by a surface imprinting technique for the selective solid-phase extraction of bisphenol A. Talanta.2007,72:119-125.
    [90]Luo X, Zhan Y, Tu X, et al. Novel molecularly imprinted polymer using 1-(α-methyl acrylate)-3-methylimidazolium bromide as functional monomer for simultaneous extraction and determination of water-soluble acid dyes in wastewater and soft drink by solid phase extraction and high performance liquid chromatography. Journal of Chromatography A. 2011,1218:1115-1121.
    [91]Yano K, Karube I. Molecularly imprinted polymers for biosensor applications. Trends in Analytical Chemistry.1999,18(3):199-204.
    [92]Prasad BB, Sharma PS, Lakshmi D. Molecularly imprinted polymer-based solid-phase extraction combined with molecularly imprinted polymer-based sensor for detection of uric acid. Journal of Chromatography A.2007,1173:18-26.
    [93]Zhang Z, Liao H, Li H, et al. Stereoselective histidine sensor based on molecularly imprinted sol-gel films. Analytical Biochemistry.2005,336:108-116.
    [94]Prasad BB, Madhuri R, Tiwari MP, et al. Electrochemical sensor for folic acid based on a hyperbranched molecularly imprinted polymer-immobilized sol-gel-modified pencil graphite electrode. Sensors and Actuators B:Chemical.2010,146:321-330.
    [95]Tada M, Sasaki T, Shido T, et al. Design, characterization and performance of a molecular imprinting Rh-dimer hydrogenation catalyst on a SiO2 surface. Phys Chem Chem Phys.2002,4:5899-5909.
    [96]Volkmann A, Bruggemann O. Catalysis of an ester hydrolysis applying molecularly imprinted polymer shells based on an immobilized chiral template. Reactive&Functional Polymers.2006,66:1725-1733.
    [97]Markowitz MA, Kust PR, Deng G, et al. Catalytic Silica Particles via Template-Directed Molecular Imprinting. Langmuir.2000,16:1759-1765.
    [98]Visnjevski A, Schomacker R, Yilmaz E, et al. Catalysis of a Diels-Alder cycloaddition with differently fabricated molecularly imprinted polymers. Catalysis Communications. 2005,6:601-606.
    [99]Visnjevski A, Yilmaz E, Bruggemann O. Catalyzing a cycloaddition with molecularly imprinted polymers obtained via immobilized templates. Applied Catalysis A:General. 2004,260:169-174.
    [100]陈维杻.超临界流体萃取的原理和应用.化学工业出版社.1998.
    [101]张静澄.超临界流体萃取.化学工业出版社.2000.
    [102]廖传华,周勇军.超临界流体技术及其过程强化.中国石化出版社.2007.
    [103]程建,申文忠,刘以红.天然产物超临界CO2萃取.中国石化出版社.2009.
    [104]朱自强.超临界流体技术-原理和应用.化学工业出版社.2000.
    [105]Chrastl J. Solubility of Solids and Liquids in Supercritical Gases. J Phys Chem 1982,86:3016-3021.
    [106]Banchero M, Ferri A, Manna L, et al. Solubility of disperse dyes in supercritical carbon dioxide and ethanol. Fluid Phase Equilibria.2006,243:107-114.
    [107]Khimeche K, Alessi P, Kikic I, et al. Solubility of diamines in supercritical carbon dioxide Experimental determination and correlation. J of Supercritical Fluids.2007,41:10-19.
    [108]Jarvis AP, Morgan ED. Isolation of Plant Products by Supercritical-fluid Extraction. Phytochem. Anal.1997,8:217-222.
    [109]del Valle JM, de la Fuente JC, Cardarelli DA. Contributions to supercritical extraction of vegetable substrates in Latin America. Journal of Food Engineering.2005,67:35-57.
    [110]Palma M, Taylor LT. Extraction of polyphenolic compounds from grape seeds with near critical carbon dioxide. Journal of Chromatography A.1999,849:117-124.
    [111]Ramirez P, Fornari T, Senorans FJ, et al. Isolation of phenolic antioxidant compounds by SFC. J of Supercritical Fluids.2005,35:128-132.
    [112]Sanchez-Camargo AP, Meireles MAA. Proximate composition and extraction of carotenoids and lipids from Brazilian redspotted shrimp waste (Farfantepenaeus paulensis). Journal of Food Engineering.2011,102:87-93.
    [113]Hao LP, Cao XJ, Hur BK. Separation of single component of EPA and DHA from fish oil using silver ion modified molecular sieve 13X under supercritical condition. Journal of Industrial and Engineering Chemistry.2008,14:639-643.
    [114]Bruni R, Guerrini A, Scalia S, et al. Rapid Techniques for the Extraction of Vitamin EIsomers from Amaranthus caudatus Seeds:Ultrasonic and Supercritical Fluid Extraction. Phytochem Anal.2002,13:257-261.
    [115]Wood JA, Bernards MA, Wan WK, et al. Extraction of ginsenosides from North American ginseng using modified supercritical carbon dioxide. J of Supercritical Fluids. 2006,39:40-47.
    [116]Zhang Y, Yao X, Bao B, et al. Anti-fatigue Activity of a Triterpenoid-rich Extract from Chinese Bamboo Shavings (Caulis bamfusae in taeniam). Phytother Res.2006,20:872-876.
    [117]Salgin U. Extraction of jojoba seed oil using supercritical CO2+ethanol mixture in green and high-tech separation process. J of Supercritical Fluids.2007,39:330-337.
    [118]Machmudah S, Kawahito Y, Sasaki M, et al. Supercritical CO2 extraction of rosehip seed oil:Fatty acids composition and process optimization. J of Supercritical Fluids. 2007,41:421-428.
    [119]彭英利,马承愚.超临界流体技术应用手册.化学工业出版社.2005.
    [120]Mendez-Santiago J, Teja AS. The solubility of solids in supercritical fluids. Fluid Phase Equilibria.1999,158-160:501-510.
    [121]Peng DY, Robinson DB. A new two-constant equation of state. Ind Eng Chem Res. 1976,15:59-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700