氢等离子体法制备金属磷化物及其加氢脱硫催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属磷化物作为一类新型半导体材料可广泛应用于光电、磁、催化等领域。金属磷化物作为催化剂常采用程序升温还原法制备,但该法制备温度高,磷物种易损失,且高温制备容易导致催化剂颗粒烧结。本论文用氢等离子体还原法(PR)制备了一系列过渡金属磷化物,考察并优化了磷化镍(Ni2P)、磷化钻(CoP)、磷化钼(MoP)和磷化钨(WP)的制备条件;采用典型含硫化合物二苯并噻吩(DBT)和4,6二甲基二苯并噻吩(4,6-DMDBT),考察了金属磷化物的加氢脱硫催化反应性能;采用XRD、CO化学吸附、TPR、HRTEM、SEM、ICP-AES等对金属磷化物的结构进行了表征,初步研究了氢等离子体还原法制备过渡金属磷化物的反应机理。
     论文系统考察了电压、放电时间、金属与磷的原子比(M/P)及加入贵金属对体相Ni2P, CoP, MoP和WP制备的影响。结果表明,提高电压和增加还原时间有利于提高所制备的金属磷化物的晶化程度;当金属磷化物存在一种晶型(如WP和MoP)时,氧化物前体中M/P影响其晶化程度;当存在多种晶型时,M/P比决定了金属磷化物的晶体结构;PR法可以按化学计量比制备金属磷化物,而不需要在其前体引入过量的磷;少量引入贵金属(如Ru)可进一步缓和制备条件;采用PR法可制备磷化镓(GaP)、磷化铟(InP)、磷化铁(Fe2P)等重要半导体材料。
     采用PR法和传统程序升温还原法制备了体相Ni2P、CoP、MoP和WP,比较了不同方法制备的体相磷化物在DBT加氢脱硫反应中的催化性能;研究了制备条件和钝化方法对磷化物晶化度和加氢脱硫催化反应的影响规律。发现PR法制备的催化剂比传统程序升温法制备的活性高;PR法制备的体相磷化物活性顺序为CoP>Ni2P>MoP≈WP。
     研究发现CoP在四种金属磷化物中制备条件最为苛刻,且易于形成加氢脱硫活性很低的Co2P相,因而采用传统程序升温还原法制备的CoP催化剂在加氢脱硫反应中表现出最低的活性。当在氧化物前体中引入少量Ru时,可以在较温和条件下制备出高结晶度、高活性CoP催化剂。反应评价结果表明,Ru的引入主要促进了CoP的形成,改善了晶粒的分散,但没有明显改变催化反应过程和活性中心本质。
     用PR法制备了MCM-41担载的WP、MoP和Ni2P催化剂,以DBT和4,6-DMDBT的十氢萘溶液为模拟油考察了其加氢脱硫反应性能。对混合物料HDS活性顺序为:WP>MoP>Ni2P, WP和MoP以加氢脱硫路径为主,Ni2P以直接脱硫路径为主。若将WP/MCM-41与Ni2P/MCM-41机械混合,则可以同时高效脱除DBT和4,6-DMDBT。此外,比较了不同方法制备的Ni-W-P在加氢脱硫反应中的催化活性,其活性顺序顺序为:先硫化后还原法>PR法>先混合后还原法(MR)>>共浸渍法。共浸渍法制备的Ni-W-P活性低的主要原因是有杂晶生成。
Transition metal phosphides are attractive candidates for high-performance catalytic, electronic, and magnetic applications. A variety of methods can be used to synthesize bulk metal phosphides. Amoung them, temperature programmed reduction (TPR) of metal phosphates at high temperature was generally feasible for the preparation of supported transition-metal phosphides for using as hydrotreating or hydrogenation catalysts, but the particles were always aggregated, and phosphorus loss occured at high reduction temperature. In this paper, we describe a new strategy for synthesizing metal phosphides (Ni2P, CoP, MoP and WP) that using nonthermal hydrogen plasma as the reduction medium instead of the H2 used in the TPR method, and the HDS acitivity of DBT and 4,6-DMDBT was evaluated. XRD, CO chemisorption, TPR, HRTEM, SEM, ICP-AES techniques were used to characterize the structures of the metal phosphides. The mechanism of phosphide preparation with PR method was also speculated.
     Bulk metal phosphides were prepared with PR method, the effect of voltage, reduction time, M/P ratio and doping of noble metal on the phosphide phase formation were investigated. The results told that under higher voltage, longer reduction time, the phosphides were better crystallized. For MoP and WP, the M/P ratio influenced the crystallization, while for Ni2P and CoP, it determined phase of the phosphide. The reduciton voltage of oxidic precursors could be lower down by co-impregnation of Ru; InP, GaP, Fe2P were also be prepared by hydrogen plasma method (PR).
     Transition metal phosphides (Ni2P, CoP, MoP, WP) were prepared by TPR and PR method, the HDS performance was also compared. The influence of the M/P ratio, voltage and passivation method on the HDS performances of the phosphides prepared with PR method was examined. The results indicated that catalysts prepared by PR method showed higher DBT HDS activity then TPR method. And the activity of phosphides prepared by PR method was in the following order:CoP>Ni2P>MoP≈WP。
     CoP was more difficult to be prepared then MoP, N12P and WP, and Co2P which owned low HDS activity could easily formed, so the activity of CoP prepared by TPR method showed lower HDS activity. Better crystallised and high HDS performance CoP could be prepared with lower reduction voltage by doping oxidic CoP with Ru, the particle size of CoP was smaller and CoP phase was not changed.
     The phosphides catalysts:MoP/MCM-41, WP/MCM-41 and Ni2P/MCM-41, were prepared by four methods. The HDS activity was in the following order:WP>MoP>Ni2P, WP and MoP mainly through direct hydrodesulfurization path, while direct hydrodesulfurization mainly happened on Ni2P. The mechanically mixed of them were evaluated in simultaneously HDS of DBT and 4,6-DMDBT. The results showed that there was synergistic effect between WP+Ni2P/MCM-41 which exhibited best performance; the hydrodesulfurization activity was in the following order:SR>PR>MR>>IP.
引文
[1]Trindad T, O'Brien P, Pickett N L. Nanocrystalline semiconductors:synthesis, properties, and perspectives [J].Chem. Mater.,2001,13(11):3843-3858.
    [2]Cattarin S, Musiani M, Casellato U, et al. Preparation of n-and p-InP films by PH3 treatment of electrodeposited in layers [J].J. Electrochem. Soc.,142 (4):1267-1272.
    [3]Lim T H, Ravi S, Bumby C W, et al. Synthesis, characterization and photoconductivity of highly crystalline InP nanowires prepared from solid hydrogen phosphide [J].J. Mater. Chem.,2009,19(27):4852-4856.
    [4]Guisbiers G, Wautelet M, Buchaillot L. Phase diagrams and optical properties of phosphide, arsenide, and antimonide binary and ternary III-V nanoalloys [J]. Phys. Rev. B,2009,79(15):155426.
    [5]Liu B D, Bando Y, Tang C C, et al. Synthesis and optical study of crystalline GaP nanoflowers [J].Appl. Phys. Lett.,2005,86(8):083107.
    [6]Gao S M, Lu J, Chen N, et al. Aqueous synthesis of III-V semiconductor GaP and InP exhibiting pronounced quantum confinement [J].Chem. Commun.,2002,24:3064-3065.
    [7]Ahrenkiel S P, Micic O I, Miedaner A, et al. Synthesis and characterization of colloidal InP quantum rods [J].Nano Lett.,2003,3:833-837.
    [8]Fu L T, Chen Z G, Zou J, et al. Fabrication and visible emission of single-crystal diameter-modulated gallium phosphide nanochains [J] J. Appl. Phys.,2010,107:124321.
    [9]Zheng M J, Zhang L D, Liu F M, et al. Preparation and optical properties of SiO2 thin films containing InP nanocrystals [J].Mater. Res. Bull.,2000,35(14-15):2469-2477.
    [10]Lo C T, Kuo PY. Synthesis and magnetic properties of iron phosphide nanorods [J].J. Phys. Chem. C,2010,114(11):4808-4815.
    [11]Berhault G, Afanasiev P, Loboue H, et al. In situ XRD, XAS, and magnetic susceptibility study of the reduction of ammonium nickel phosphate NiNH4PO4·H2O into nickel phosphide [J].Inorg. Chem.,2009,48(7):2985-2992.
    [12]Singh N, Khanna P K, Joy P A. Solid state synthesis and room temperature magnetic properties of iron phosphide nanoparticles [J].J. Nanopart. Res.,2009,11(2):491-497.
    [13]Tegus O, Bruck E, Buschow K H J, et al. Transition-metal-based magnetic refrigerants for room-temperature applications [J].Nature,2002,415(6868):150-152.
    [14]Raub C J, Matthias B T, Geballe T H, et al. Superconductivity of some new pt-metal compounds [J].J. Phys. Chem. Solids,1963,24(9):1093-1100.
    [15]Delong L E, Meisner G P. The pressure-dependence of the superconducting transition-temperature of LaFe4P12, LaRu4P12, LaOs4P12 [J].Solid State Commun.,1985,53(2):119-123.
    [16]Liu X G, Chen J X, Zhang J Y. A novel catalyst for gas phase hydrodechlorination of chlorobenzene:Silica supported Ni3P [J]. Catal. Commun.,2007,8(12):1905-1909.
    [17]Zhou S J, Chen J X, Liu X G, et al. Influence of reduction conditions on the catalytic activity of Ni2P/SiO2 for gas-phase hydrodechlorination of chlorobenzene [J].Chin. J. Catal.,2007,28(6):498-500.
    [18]Chen J X, Zhou S J, Liu X G, et al. Gas-phase hydrodechlorination of chlorobenzene over silica-supported Ni2P catalysts prepared under different reduction conditions [J], Catal. Lett.,2008,122(1-2):167-175.
    [19]Yang P F, Jiang Z X, Ying P L, et al. Effect of surface composition on the catalytic performance of molybdenum phosphide catalysts in the hydrogenation of acetonitrile [J].J. Catal.,2008,253(1):66-73.
    [20]Oyama S T. Novel catalysts for advanced hydroprocessing:transition metal phosphides [J]. J. Catal.,2003,216(1-2):343-352.
    [21]Oyama S T, Gott T, Zhao H, et al. Transition metal phosphide hydroprocessing catalysts:A review [J]. Catal. Today,2009,143(1-2):94-107.
    [22]Gu Z J, Paranthaman M P, Pan Z W. Vapor-phase synthesis of gallium phosphide nanowires [J]. Cryst. Growth Des.,2009,9(1):525-527.
    [23]Kim Y H, Jun Y W, Jun B H, et al. Sterically induced shape and crystalline phase control of GaP nanocrystals [J], J. Am.Chem. Soc.,2002,124(46):13656-13657.
    [24]Shahid M, Din I, Mazhar M, et al. A phosphine complex of copper (I) bromide as single-source precursor for the aerosol-assisted chemical vapour deposition of phosphide [J], Inorg. Chim. Acta,2009,362(9):3069-3072.
    [25]Liu Z Y, Huang X, Zhu Z B, et al. A simple mild hydrothermal route for the synthesis of nickel phosphide powders [J], Ceram. Int.,2010(36):1155-1158.
    [26]Liu S L, Liu X Z, Xu L Q, et al. Controlled synthesis and characterization of nickel phosphide nanocrystal [J], J. Cryst. Growth,2007,304 (2):430-434.
    [27]Lu B, Bai Y J, Feng X, et al. Solvo-thermal synthesis of crystalline dinickel phosphide [J], J. Cryst. Growth,2004,260(1-2)115-117.
    [28]Qian X F, Xie Y, Qian Y T, et al. Organo-thermal preparation of nanocrystalline cobalt phosphides [J], Mater. Sci. Eng. B,1997,49(2)135-137
    [29]Qian X, Zhang X M, Wang C,et al. A new way to prepare nanocrystalline dinickel phosphide [J].Mater. Res. Bull.,1998,33(5):669-672.
    [30]Xie Y, Su H L, Qian X F, et al. A mild one-step solvothermal route to metal phosphides (metal= Co, Ni, Cu) [J].J. Solid State Chem.,2000,149(1):88-91.
    [31]Wei S, Lu J, Yu W C, et al. InP nanocrystals via surfactant-aided hydrothermal synthesis [J],J. Appl. Phys.,2004,95(7):3683-3688.
    [32]Park J, Koo B, Yoon KY, et al. Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump [J].J. Am. Chem. Soc.,2005,127(23):8433-8440.
    [33]Manriquez V, Honle W, Vonschnering H G. Zur chemie und strukturchemie von phosphiden und polyphosphiden.42. Trilithiumheptaphosphid Li3P7:Darstellung, Struktur und Eigenschaften [J].Z. Anorg. Allg. Chem.,1986,539(8),95.
    [34]Gopalakrishnan J, Pandey S, Rangan K K. Convenient Route for the Synthesis of transition-metal pnictides by direct reduction of phosphate, arsenate, and antimonate precursors [J].Chem. Mater.,1997,9(10):2113-2116.
    [35]Guan Q X, Li W, Zhang M H, et al. Alternative synthesis of bulk and supported nickel phosphide from the thermal decomposition of hypophosphites [J].J. Catal.,2009,263(1):1-3.
    [36]Henkes A E, Schaak R E. Trioctylphosphine:A general phosphorus source for the low-temperature conversion of metals into metal phosphides [J].Chem. Mater.,2007,19(17):4234-4242.
    [37]Yang S, Liang C, Prins R. A novel approach to synthesizing highly active Ni2P/SiO2 hydrotreating catalysts [J].J. Catal.,2006,237:118-130.
    [38]Davidson F M, Wiacek R, Korgel B A. Supercritical fluid-liquid-solid synthesis of gallium phosphide nanowires [J].Chem. Mater.,2005,17(2):230-233.
    [39]Yoon K Y, Jang Y, Park J, et al. Synthesis of uniform-sized bimetallic iron-nickel phosphide nanorods [J].J. Solid State Chem.,2008,181(7):1609-1613.
    [40]Battaglia D, Peng X G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent [J].Nano Lett.,2002,2(9):1027-1030.
    [41]Liu S L, Qian Y T, Xu L Q. Synthesis and characterization of hollow spherical copper phosphide (Cu3P)Nanopowders [J].Solid State Commun.,2009,149(11-12):438-440.
    [42]Wang J W, Johnston-Peck A C, Tracy J B. Nickel phosphide nanoparticles with hollow, solid, and amorphous structures [J].Chem. Mater.,2009,21(94):462-4467.
    [43]Woo R L, Gao L, Goel N, et al. Kinetic control of self-catalyzed indium phosphide nanowires, nanocones, and nanopillars [J].Nano Lett.,2009,9(6):2207-2211.
    [44]Chen Y Z, She H D, Luo X H, et al. Solution-phase synthesis of nickel phosphide single-crystalline nanowires [J].J. Cryst. Growth,2009,311(4):1229-1233.
    [45]Cao Y W, Banin U, Growth and properties of semiconductor core/shell nanocrystals with InAs cores [J].J. Am. Chem. Soc.,2000,122(40):9692-9702.
    [46]Budnikova Y H, Tazeev D I, Trofimov B A, et al. Electrosynthesis of nickel phosphides on the basis of white phosphorus [J].Electrochem. Commun.,2004,6(7):700-702.
    [47]Zecevic S K, Zotovic J B, Gojkovic S L, et al. Electrochemically deposited thin films of amorphous Fe-P alloy, Part I. Chemical compoition and phase structure characterization [J].J. Electroanal. Chem.,1998,448(2):245-252.
    [48]Haseeb A S M A, Chakraborty P, Ahmed I, et al. XRD, XPS and SIMS investigations on electrodeposited nickel-phosphorous alloy coatings [J].Thin Solid Films,1996,283(1-2):140-144.
    [49]Wang A, Qin M, Guan J, et al. The synthesis of metal phosphides:Reduction of oxide precursors in a hydrogen plasma [J].Angew. Chem. Int. Ed.,2008,47(32):6052-6054.
    [50]Guan J, Wang Y, Qin M, et al. Synthesis of transition-metal phosphides from oxidic precursors by reduction in hydrogen plasma [J].J. Solid State Chem.,2009,182(6):1550-1555.
    [51]Hu X L, Yu J C. High-yield synthesis of nickel and nickel phosphide nanowires via microwave-assisted processes [J].Chem. Mater.,2008,20(21):6743-6749.
    [52]Brock S L, Perera S C, Stamm K L. Chemical routes for production of transition-metal phosphides on the nanoscale:implications for advanced magnetic and catalytic materials [J].Chem. Eur. J.,2004,10(14):3364-3371.
    [53]Brock S L, Senevirathne K. Recent developments in synthetic approaches to transition metal phosphide nanoparticles for magnetic and catalytic applications [J].J. Solid State Chem.,2008,181(7)1552-1559.
    [54]Schnering H G V, Hoenle W. Chemistry and structural chemistry of phosphides and polyphosphides.48. Bridging chasms with polyphosphides [J].Chem. Rev.,1988,88(1),243-273.
    [55]Yang S, Liang C, Prins R. A novel approach to synthesizing highly active Ni2P/SiO2 hydrotreating catalysts [J].J. Catal.,2006,237:118-130.
    [56]Senevirathne K, Burns A W, Bussell M E, et al. Synthesis and characterization of discrete nickel phosphide nanoparticles:Effect of surface ligation chemistry on catalytic hydrodesulfurization of thiophene [J].Adv. Funct. Mater.,2007,17:3933-3939.
    [57]Guan Q X, Li W. A novel synthetic approach to synthesizing bulk and supported metal phosphides [J].J. Catal.,2010,271(2)413-415.
    [58]Seo H R, Cho K S, Kim S H, et al. Effects of a Phosphorus Precursor on Structure and Activity of Ni2P/SiO2, Hydrotreating Catalysts:EXAFS Studies [J]. Journal of the Korean Physical Society,2010,56(6):2083-2087.
    [59]Cho K S and Lee Y K. XAFS studieson highly dispersed Ni2P/SiO2 catalysts for hydrodesulfurization of 4,6-dimethyldibenzothiophene[J], Nuclear Instruments and Methods in Physics Research A,2010:621:690-694.
    [60]Cho K S, Seo H R, Lee Y K. A new synthesis of highly active Ni2P/Al2O3 catalyst by liquid phase phosphidation for deep hydrodesulfurization [J], Catal. Communications,2011,12:470-474.
    [61]Gong S W, Liu L J, He H F,et al. Dibenzothiophene hydrodesulfurization over MoP/SiO2 catalyst prepared with sol-gel method[J]. Korean J. Chem. Eng.,2010,27(5):1419-1422.
    [62]Sweeny N P, Rohrer C S, Brown O W. Dinickel phosphide as a heterogeneous catalyst for the vapor phase reduction of nitrobenzene with hydrogen to aniline and water [J].J. Am. Chem. Soc.,1958,80(4):799-800.
    [63]Muetterties E L, Sauer J C. Catalytic properties of metal phosphides.1. Qualitative assay of catalytic properties [J].J. Am. Chem. Soc.,1974,96(11):3410-3415.
    [64]Nozaki F, Tokumi M. Hydrogenation activity of metal phosphides and promoting effect of oxygen [J].J.Catal.,1983,79(1):207-210.
    [65]Wang H; Shu Y Y, Zheng M Y, et al. et al. Selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde over SiO2 supported nickel phosphide catalysts [J].Catal. Lett.,2008,124(3-4):219-225.
    [66]Li X, Zhang Y L, Wang A J, et al. Influence of TiO2 and CeO2 on the hydrogenation activity of bulk Ni2P[J]. Catal. Communications,2010,11:1129-1132.
    [67]Zhou G L, Wang P G, Jiang Z X, et al. Selective Hydrogenation of Acetylene over a MoP Catalyst[J],Chn. J. Catal.,2011,32:27-30.
    [68]Zhang X F, Zhang Q M, Zhao A Q, et al. Naphthalene Hydrogenation over Silica Supported Nickel Phosphide in the Absence and Presence of N-Containing Compounds[J]. Energy Fuels,2010,24:3796-3803.
    [69]Chen J X, Sun L M, Wang R J, et al. Hydrodechlorination of chlorobenzene over Ni2P/SiO2 catalysts:Influence of Ni2P loading [J].Catal. Lett.,2009,133(3-4):346-353.
    [70]Yao Z W, Dong H T, Shang Y S. Catalytic activities of iron phosphide for NO dissociation and reduction with hydrogen [J].J. Alloys Compd.,2009,474(1-2):L10-L13.
    [71]Liu P, Rodriguez J A, Takahashi Y, et al. Water-gas-shift reaction on a Ni2P(001) catalyst: Formation of oxy-phosphides and highly active reaction sites [J].J. Catal.,2009,262(2):294-303.
    [72]Cheng R H, Shu Y Y, Zheng M Y, et al. Molybdenum phosphide, a new hydrazine decomposition catalyst:Microcalorimetry and FTIR studies [J] J. Catal.,2007,249(2):397-400.
    [73]Ding L N, Shu Y Y, Wang A Q, et al. Preparation and catalytic performances of ternary phosphides NiCoP for hydrazine decomposition [J], Appl. Cat. A:General,2010,385:232-237.
    [74]Izhar S, Nagai M. Transition metal phosphide catalysts for hydrogen oxidation reaction [J].Catal. Today,2009,146(1-2):172-176.
    [75]Duan X P, Teng Y, Wang A J, et al. Role of sulfur in hydrotreating catalysis over nickel phosphide [J] J. Catal.,2009,261(2):232-240.
    [76]Zhao H Y, Li D, Bui P, et al. Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts [J].Applied Catalysis A, General 已接受.
    [77]Liu P, Rodriguez J A. Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the Ni2P(001) Surface:The Importance of Ensemble Effect [J].J. Am. Chem. Soc.,2005,127:14871-14878.
    [78]Zhao G H, Zheng M Y, Wang A Q, et al. Catalytic Conversion of Cellulose to Ethylene Glycol over Tungsten Phosphide Catalysts [J], Chin. J. Catal.2010,31:928-932.
    [79]Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel [J].Catal. Today,2003,86(1-4):211-263.
    [80]Nag N K, Sapre A V, Broderick D H, et al. Hydrodesulfurization of polycyclic aromatics catalyzed by sulfided Co-Mo/Al2O3:The relative reactivities [J].J Catal.,1979,57(3):509-512.
    [81]Vrinat M L. The kinetics of the hydrodesulfurization process-a review [J].Appl. Catal.,1983,6(2):137-158.
    [82]Aubert C, Durand R, Geneste P, et al. Hydroprocessing of dibenzothiophene, phenothiazine,phenoxathiin,thianthrene,and thioxanthene on a sulfided NiO-MoO3/Al2O3 catalyst [J].J. Catal.,1986,97(1):169-176.
    [83]Wang H, Prins R. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over sulfided Mo/y-Al2O3 [J].J. Catal.,2008,258(1):153-164.
    [84]Todorova T, Prins R, Weber T. A density functional theory study of the hydrogenolysis reaction of CH3SH to CH4 on the catalytically active (100) edge of 2H-MoS2 [J].J. Catal.,2005,236(2):190-204.
    [85]Meille V, Schulz E, Lemaire M, et al. Hydrodesulfurization of alkyldibenzothiophenes over a NiMo/Al2O3 catalyst:Kinetics and mechanism [J].J. Catal.,1997,170(1):29-36.
    [86]Bataille F, Lemberton J, Michaud P, et al. Alkyldibenzothiophenes hydrodesulfurization-promoter effect, reactivity, and reaction mechanism [J].J. Catal.,2000,191 (2):409.
    [87]Houalla M, Broderick D H, Sapre A V, et al. Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed by sulfided Co-Mo/y-Al2O3 [J].J. Catal.,1980,61(2):523-527.
    [88]Kabe T, Ishihara A, Tajima H. Hydrodesulfurization of sulfur-containing polyaromatic compounds in light oil [J].Ins. Eng. Chem. Res.,1992,31(6):1577-1580.
    [89]Kilanowski D R, Teeuwen H, de Beer V H J, et al. Hydrodesulfurization of thiophene, benzothiophene, dibenzothiophene, and related compounds catalyzed by sulfided CoO-MoO3/γ-Al2O3:Low-pressure reactivity studies [J].J. Catal.,1978,55(2):129-137.
    [90]Kabe T, Ishihara A, Zhang Q. Deep desulfurization of light oil. Part 2:hydrodesulfurization of dibenzothiophene,4-methyl dibenzothiophene and 4,6-dimethyldibenzothiophene [J].Appl. Catal.,1993,97(1):L1-L9.
    [91]Li X, Wang A, Egorova M, et al. Kinetics of the HDS of 4,6-dimethyldibenzothiophene and its hydrogenated intermediates over sulfided Mo and NiMo on y-Al2O3[J].J. Catal.,2007,250(2):283-293.
    [92]Landau M V, Berger D, Herskowitz M. Hydrodesulfurization of methyl-substituted dibenzothiophenes:fundamental study of routes to deep desulfurization [J].J. Catal.,1996,159(1):236-245.
    [93]Tops(?)e H, Clausen B S, Massoth F E. In "Catalysis Science and Technology" (Anderson J R and Boudart M, eds.) [C], Vol.11, Springer-Verlag, New York,1996.
    [94]Startsev A N. The mechanism of HDS catalysis [J].Catal. Rev.-Sci. Eng.,1995,37(3):353-423.
    [95]Tops(?)e H, Clausen B S. Active sites and support effects on hydrodesulfurization catalyst [J].Appl Catal.,1986,25(1-2):273-293.
    [96]Hagenbach G, Courty P, Delmon B. Physicochemical investigations and catalystic activity measurements on crystallized molybdenum sulfided-cobalt sulfided mixed catalysts [J].J Catal.,1973,31(2):264-273.
    [97]Usman, Yamamoto T, Kubota T, et al. Effect of phosphrous addition on the active sites of a Co-Mo/Al2O3 catalyst for the hydrodesulfurization of thiophene [J].Appl. Catal. A,2007,328(2):219-225.
    [98]Lee J J, Kim H, Koh J H, et al. Performance of fluorine-added CoMoS/Al2O3 prepared by sonochemically and chemical vapor deposition methods in the hydrodesulfurization of dibenzothiophene and 4,6-dibenzothiophen [J].Appl. Catal. B,2005,61 (3-4):274-280.
    [99]Ramos R R, Bolivar C, Castillo J, et al. Ultrasound assisted synthesis of nanometric Ni, Co, NiMo and CoMo HDS catalysts [J].Catal. Today,2008,133-135:277-281.
    [100]Rana. M S, Ramirez J, Gutierrez-Alejandre A, et al. Support effects in CoMo hydrodesulfurization catalysts prepared with EDTA as a chelating agent [J].J. Catal.,2007,246(1):100-108.
    [101]Lelias M A, van Gestel J, Mauge F, et al. Effect of NT A addition on the formation, structure and activity of the active phase of cobalt-molybdenum sulfide hydrotreating catalysts [J].Catal. Today,2008,130(1):109-116.
    [102]Silva-Rodrigo R, Calderon-Salas C, Melo-Banda J A, et al. Synthesis, characterization and comparison of catalytic properties of NiMo-and NiW/Ti-MCM-41 catalysts for HDS of thiophene and HVGO [J].Catal. Today,2004,98(1-2):123-129.
    [103]Dhar G R, Kumaran G M, Kumar M, et al. Physico-chemical characterization and catalysis on SBA-15 supported molybdenum hydrotreating catalysts [J].Catal. Today,2005,99(3-4):309-314.
    [104]Zepeda T A, Pawelec B, Fierro J L G, et al. Effect of Al and Ti content in HMS material on the catalytic activity of NiMo and CoMo hydrotreating catalysts in the HDS of DBT [J].Microporous Mesoporous Mater.,2008,111 (1-3):157-170.
    [105]Rothlisberger A, Prins R. Intermediates in the hydrodesulfurization of 4,6-dimethyl-dibenzothiophene over Pd/γ-Al2O3 [J],J. Catal.,2005,235(1):229-240.
    [106]Qian E W H, Otani K, Li L, et al. Hydrodesulfurization and hydrogenation reactions on noble metal catalysts, Part Ⅱ. Effect of partial pressure of hydrogen sulfide on sulfur behavior on alumina-supported platinum and palladium catalysts [J],J. Catal.,2004,221 (2):294-301.
    [107]Aegerter P A, Quigley W W C, Simpson G J, et al. Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts:adsorption sites, catalytic activities,and nature of the active surface [J],J. Catal.,1996,164(1):109-121.
    [108]Liu P, Rodriguez J A, Muckerman J T. The Ti8C12 metcar [J].J. Phys. Chem. B,2004,108(49):18796-18798.
    [109]Robinson W R A M, van Gestel J N M, Koranyi T I,et al. Phosphorus Promotion of Ni(Co)-Containing Mo-Free Catalysts in Quinoline Hydrodenitrogenation [J].J. Catal.,1996,161(2):239-550.
    [110]Shu Y Y, Oyama S T, Synthesis, characterization, and hydrotreating activity of carbon-supported transition metal phosphides [J].J. Catal.,2005,43:1517-1532.
    [111]Teng Y, Wang A J, Li X, et al. Preparation of high-performance MoP hydrodesulfurization catalysts via a sulfidation-reduction procedure [J].J. Catal.,2009,266(2):369-379.
    [112]Koranyi T I, Coumans A E, Hensen E J M, et al. The influence of metal loading and activation on mesoporous materials supported nickel phosphide hydrotreating catalysts [J].Appl. Catal. A,2009,365(1):48-54.
    [113]Clark P A, Oyama S T. Alumina-supported molybdenum phosphide hydroprocessing catalysts [J].J. Catal.,2003,218(1):78-87.
    [114]Wierzbicka M, Malecki A, The detailed mechanism of oxidation of Ni-P alloys [J].J. Therm. Anal. Calorim.,1999,55(3):981-987.
    [115]Lu Z H. XANES studies of III-V semiconductor surface passivation [J].Prog. Surf. Sci.,1995,50(1-4):335-345.
    [116]Wang A J, Ruan L F, Teng Y, et al. Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported nickel phosphide catalysts [J], J. Catal.,2005,229:314-321
    [117]Abu I I, Smith K J. Hydrodenitrogenation of carbazole over a series of bulk NixMoP catalysts [J].Catal. Today,2007,125(3-4):248-255.
    [118]Sun F, Wu W, Wu Z, et al. Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP, Ni2P, and Ni-Mo-P catalysts [J].J. Catal.,2004,228(2):298-310.
    [119]Li X, Lu M, Wang A, et al. Promoting effect of TiO2 on the hydrodenitrogenation performance of nickel phosphide [J].J. Phys. Chem. C,2008,112(42):16584-16592.
    [120]Burns A W, Gaudette A F, Bussell M E. Hydrodesulfurization properties of cobalt-nickel phosphide catalysts:Ni-rich materials are highly active [J].J. Catal.,2008,260(2):262-269.
    [121]Kanda Y, Temma C, Nakata K, et al. Preparation and performance of noble metal phosphides supported on silica as new hydrodesulfurization catalysts [J], Appl. Cat. A: Genera,2010,386:171-178.
    [122]Teixeira da Silva V, Sousa L A, Amorim R M, et al. Lowering the synthesis temperature of Ni2P/SiO2 by palladium addition J. Catal.,2011,279:88-102.
    [123]Phillips D C, Sawhill S J, Self R, et al. Synthesis, Characterization, and Hydrodesulfurization Properties of Silica-Supported Molybdenum Phosphide Catalysts [J].J. Catal.,2002,207(2):266-273.
    [124]Sawhill S J, Phillips D C, Bussell M E. Thiophene hydrodesulfurization over supported nickel phosphide catalysts [J].J. Catal.,2003,215(2):208-219.
    [125]Sawhill S J, Layman K A, van Wyk D R, et al. Thiophene hydrodesulfurization over nickel phosphide catalysts:effect of the precursor composition and support [J].J. Catal. 2005,231(2):300-313.
    [126]Stinner C, Prins R, Weber T. Binary and ternary transition-metal phosphides as HDN catalysts [J].J. Catal.,2001,202(1):187-194.
    [127]Zuzaniuk Z, Prins R. Synthesis and characterization of silica-supported transition-metal phosphides as HDN catalysts [J]J. Catal.,2003,219(1):85-96.
    [128]Nelson A E, Sun M, Junaid A S M. On the structure and composition of the phosphosulfide overlayer on Ni2P at hydrotreating conditions [J].J. Catal.,2006,241 (1):180-188.
    [129]Oyama S T, Got T, Asakura K, et al. In situ FTIR and XANES studies of thiophene hydrodesulfurization on Ni2P/MCM-41 [J], J. Catal.,2009,268:209-222.
    [130]Oyama S T, Lee Y K. The active site of nickel phosphide catalysts for the hydrodesulfurization of 4,6-DMDBT [J].J. Catal.,2008,258(2):393-400.
    [131]Shu Y, Lee Y K, Oyama S T. Structure-sensitivity of hydrodesulfurization of 4,6-dimethyldibenzothiophene over silica-supported nickel phosphide catalysts [J].J. Catal.,2005,236(1):112-121.
    [132]Gaudette A F, Burns A W, Hayes J R, et al. Mossbauer spectroscopy investigation and hydrodesulfurization properties of iron-nickel phosphide catalysts [J],J. Catal.,2010,272(1):18-27.
    [133]Guo D H, Nakagawa Y, Ariga H, et al. STM studies on the reconstruction of the Ni2P (1010) surface [J], Surface Science.,2010,604:1347-1352.
    [134]Clark P, Li W, Oyama S T. Synthesis and activity of a new catalyst for hydroprocessing: tungsten phosphide [J].J. Catal.,2001,200(1):140-147.
    [135]Burns A W, Layman K A, Bale D H, et al. Understanding the relationship between composition and hydrodesulfurization properties for cobalt phosphide catalysts [J].Appl. Catal. A.,2008,343(1-2):68-76.
    [136]Oyama S T, Wang X, Lee Y K, et al. Effect of phosphorus content in nickel phosphide catalysts studied by XAFS and other techniques [J].J. Catal.,2002,210(1):207-217.
    [137]Oyama S T, Clark P, da Silva V L S T, et al. XAFS characterization of highly active alumina-supported molybdenum phosphide catalysts (MoP/Al2O3) for hydrotreating [J].J. Phys. Chem. B,2001,105(21):4961-4966.
    [138]Lee Y K, Shu Y and Oyama S T. Active phase of a nickel phosphide (Ni2P) catalyst supported on KUSY zeolite for the hydrodesulfurization of 4,6-DMDBT [J]. Appl. Cat. A: General,2007,322:191-204.
    [139]Kawai T, Bando K K, Lee Y K, et al. EXAFS measurements of a working catalyst in the liquid phase:An in situ study of a Ni2P hydrodesulfurization catalyst [J]. J. Catal.,2006,241(1):20-24.
    [140]Feng Z, Liang C, Wu. W, et al. Carbon Monoxide Adsorption on Molybdenum Phosphides: Fourier Transform Infrared Spectroscopic and Density Functional Theory Studies [J]. J. Phys. Chem. B,2003,107(49):13698-13702.
    [141]Layman K A, Bussell M E. Infrared spectroscopic investigation of CO adsorption on silica-supported nickel phosphide catalysts [J]. Journal of Physical Chemistry B,2004,108:10930-10941.
    [142]Layman K A, Bussell M E. Infrared spectroscopic investigation of thiophene adsorption on silica-supported nickel phosphide catalysts [J]. Journal of Physical Chemistry B,2004,108:15791-15802
    [143]Lee Y K, Oyama S T. Bifunctional nature of a SiO2-supported Ni2P catalyst for hydrotreating: EXAFS and FTIR studies [J]. J. Catal.,2006,239(2):376-389.
    [144]Clark P, Wang X, Oyama S T. Characterization of Silica-Supported Molybdenum and Tungsten Phosphide Hydroprocessing Catalysts by 31P Nuclear Magnetic Resonance Spectroscopy [J].J. Catal.,2002,207(2):256-265.
    [145]Oyama S T, Clark P, Wang X, et al. Structural Characterization of Tungsten Phosphide (WP) Hydrotreating Catalysts by X-ray Absorption Spectroscopy and Nuclear Magnetic Resonance Spectroscopy [J]. J. Phys. Chem. B,2002,106:1913-1920.
    [146]Stinner C, Tang Z, Haouas M, et al. Preparation and 31P NMR characterization of nickel Phosphides on silica [J]. J. Catal.,2002,208(2):456-466.
    [147]赵化侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993.
    [148]Tendero C, Tixier C, Tristant P, et al. Atmospheric pressure plasmas:A review [J].Spectrochimica Acta Part B,2006,61(1):2-30.
    [149]朱爱国,许雪艳,朱仁义,等.介质阻挡放电产生等离子体简介[J].巢湖学院学报,2008,10(6):56-60.
    [150]杨宽辉,王保伟,许根慧.介质阻挡放电等离子体特性及其在化工中的应用[J],化工学报,2007,58(7):1609-1618.
    [151]Rudolph R, Francke K P, and Miessner H, Concentration dependence of VOC decomposition by dielectric barrier discharges [J].Plasma Chem. Plasma Process.,2002,22(3):401-412.
    [152]Song H, Han S L, Li J, et al. The study of degradation of benzene by non-thermal equilibrium plasma cooperating with catalyst [J].Petrochemical Tech.,2007,36(4):397-401.
    [153]Jiang J M, Hou J, Zheng G Y, et al. The decomposition of benzene and xylene under normal atmospheric pressure by dielectric barrier discharge [J].China Envi. Sci.,2001,21 (6):531-534.
    [154]王喜眉,田晓梅,孙奉娄,介质阻挡放电净化汽车尾气中的实脸研究[J],山西科技,2005,(1):117.
    [155]Nagao I, Nishida M, Yukimura K, et al. Nox removal using nitrogen gas activated by dielectric barrier discharge at atmospheric pressure [J].Vacuum,2002,65(3-4):481-487.
    [156]Gentile A C, Kushner M J. Reaction chemistry and optimization of plasma remediation of NxOy from gas streams [J].J. Appl. Phys.,1995,78(3):2074-2085.
    [157]Takaki K, Shimizu M, Mukaigawa S, et al. Effect of electrode shape in dielectric barrier discharge plasma reactor for NOx removal [J].IEEE Transactions on Plasma Science,2004,32(1):32-38.
    [158]Chang M B, Balbach J H, Rood M J, et al. Removal of SO2 from gas streams using a dielectric barrier discharge and combined plasma photolysis [J].J. Appl. Phys.,1991,69(8):4409-4417.
    [159]Ma H B, Chen P, Zhang M L, et al. Study of SO2 removal using non-thermal plasma induced by dielectric barrier discharge (DBD) [J].Plasma Chem. Plasma Process.,2002,22(2):239-254.
    [160]Mok Y S, Jo J O. Degradation of organic contaminant by using dielectric barrier discharge reactor immersed in wastewater [J].IEEE Transactions on Plasma Science,2006,34(6):2624-2629.
    [161]Young S M. Direct and indirect applications of dielectric barrier discharge plasma to catalytic reduction of nitrogen oxides from exhaust gas [J].Plasma Science & Technology 2006,8(2):207-212.
    [162]Kim H H. Nonthermal plasma processing for air-pollution control:A historical review, current issues, and future prospects [J].Plasma Process. Polym.,2004,1(2):91-110.
    [163]Byeon J H, Hwang J H, Park, J H, et al. Collection of submicron particles by an electrostatic precipitator using a dielectric barrier discharge [J].Aerosol Sci.,2006,37(11):1618-1628.
    [164]Yao S, Fushimi C, Madokoro K, et al. Uneven Dielectric Barrier Discharge reactors for diesel particulate matter removal [J].Plasma Chem. Plasma Process.,2006,26(5):481-493.
    165] Mok Y S, Huh Y J. Simultaneous removal of nitrogen oxides and particulate matters from diesel engine exhaust using dielectric barrier discharge and catalysis hybrid system [J].Plasma Chem. Plasma Process.,2005,25(6):625-639.
    [166]Grundmann J, Muller S, Zahn R J. Treatment of soot by dielectric barrier discharges and ozone [J].Plasma Chem. Plasma Process.,2005,25(5):455-466.
    [167]Okazaki K, Kishida T, Ogawa K, et al. Direct conversion from methane to methanol for high efficiency energy system with exergy regeneration [J].Energy Convers. Manage.,2002,43(9):1459-1468.
    [168]Wang B W, Xu G H. Conversion natural gas to C2 hydrocarbons through dielectric barrier discharge plasma [J].Sci. China, Ser. B,2002,45(3)299-310.
    [169]Massines F, Rabehi A, Decomps P, et al. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier [J].J. Appl. Phys.,1998,83(6):2951-2957.
    [170]Chen Q, Fu Y B, Zhang Y F, et al. PAA polymerized downstream of a high pressure DBD plasma [J].Surf. Coat. Technol.,2007,201(9-11):4854-4857.
    [171]Kim Y K, Eichler M, Klages C P, Effects of discharge pulsing on the cleaning of surfaces using a dielectric barrier discharge at atmospheric pressure [J].Surf. Coat. Technol.,2003,171:321-327.
    [172]Thiebaut J M, Belmonte T, Chaleix D, et al. Comparison of surface cleaning by two atmospheric pressure discharges [J].Surf. Coat. Technol.,2003,169:186-189.
    [173]Panousis E, Clement F, Loiseau J F, et al. Titanium alloy surface treatment using an atmospheric plasma jet in nitrogen pulsed discharge conditions [J].Surf. Coat. Technol.,2007,201(16-17):7292-7302.
    [174]Geyter N D, Morent R, Leys C, et al. Treatment of polymer films with a dielectric barrier discharge helium and argon at medium pressure [J].Surf. Coat. Technol.,2007,201:7066-7075.
    [175]Liu C Z, Cui N Y, Brown N M D, et al. Effects of DBD plasma operating parameters on the polymer surface modification [J].Surf. Coat. Technol.,2004,185:311-320.
    [176]Yokoyama T, Kogoma M, Kanazawa S, et al. The improvement of the atmospheric-pressure glow plasma method and the deposition of organic films [J].J. Phys. D:Appl. Phys.,1990,23(3)374-377.
    [177]Prat R, Koh Y J, Babukutty Y, et al. Polymer deposition using atmospheric pressure plasma glow (APG) discharge [J].Polymer,2000,41 (20):7355-7360.
    [178]Kanazawa S, Kogoma M, Moriwaki T, et al. Stable glow plasma at atmospheric pressure [J].J. Phys. D:Appl. Phys.,1988,21(5):838-840.
    [179]Foest R, Adler F, Sigeneger F, et al. Study of an atmospheric pressure glow discharge (APG) for thin film deposition [J].Surf. Coat. Technol.,2003,163-164:323-330.
    [180]Liu D P, Ma T C, Yu S J. Plasma-assisted CVD of hydrogenated diamond-like carbon films by low-pressure dielectric barrier discharges [J].J.Phys.D:Appl. Phys.,2001,34:1651.
    [181]Ohsawa A, Morrow R, Murphy A B. An investigation of a dc dielectric barrier discharge using a disc of glass beads [J].J. Phys. D:Appl. Phys.,2000,33:1487-1492.
    [182]Kizling M B, Jaras S G. A review of the use of plasma techniques in catalyst preparation and catalytic reactions[J].Appl. Catal. A:General,1996,147(1):1-21.
    [183]Li X G, Murai T, Chiba A, et al. Particle features, oxidation behaviors and magnetic properties of ultrafine particles of Ni-Co alloy prepared by hydrogen plasma metal reaction [J], J. Appl. Phys.,1999,86(4):1867-1873.
    [184]Liu C J, Cheng D G, Zhang Y P, et al. Remarkable enhancement in the dispersion and low-temperature activity of catalysts prepared via novel plasma reduction-calcination method [J], Catalysis Surveys from Asia,2004,8(2):111-118.
    [185]Gheorghy P. Vissokov, Plasma-chemical preparation of nanostructured catalysts for low-temperature steam conversion of carbon monoxide:catalytic activity [J], Catal. Today,2004,89:223-231.
    [186]Zhu Y R, Li Z H, Zhou Y H, et al. Plasma treatment of Ni and Pt catalysts for partial oxidation of methane [J], React.Kinet.Catal.Lett.,2006,87(1):33-41.
    [187]Chen M H, Chu W, Dai X Y, et al. New palladium catalysts prepared by glow discharge plasma for the selective hydrogenation of acetylene [J]. Catal. Today,2004,89:201-204.
    [188]Savastenko N A, Bruser V, Bruser M, et al. Enhanced electrocatalytic activity of CoTMPP-based catalysts for PEMFCs by plasma treatment [J]. Journal of Power Sources 2007,165:24-33.
    [189]Wang A J and Kabe T. Fine-tuning of pore size of MCM-41 by adjusting the initial pH of the synthesis mixture [J]. Chem. Commun.,1999:2067-2068.
    [190]Gong S, Liu L, and He H., Thiophene Hydrodesulfurization Over an MoP Catalyst Prepared With Different Phosphide Sources [J]. Energy Sources:A,2011,33:641-648.
    [191]Wang X, Clack P, Oyama S T. Synthesis, Characterization, and Hydrotreating Activity of Several Iron Group Transition Metal Phosphides [J].J. Catal.,2002,208(2):321-331.
    [192]Rodriguez J A, Kim J Y, Hanson J C, et al. Physical and chemical properties of MoP, Ni2P, and MoNiP hydrodesulfurization catalyst:Time-resolved X-ray diffraction, density functional, and hydrodeslufurization activity studies [J].J. Phys. Chem. B,2003,107(26):6276-6285.
    [193]Wang R and Smith K J. The effect of preparation conditions on the properties of high-surface area Ni2P Catalysts [J], Appl.Catal. A:Gen,2010,380:149-164.
    [194]Stinner C, Prins R and WeberT. Formation, Structure, and HDN Activity of Unsupported Molybdenum Phosphide [J], J.Catal.,2000,191:438-444.
    [195]Clark P, Li W, and Oyama S T. Synthesis and Activity of a New Catalyst for Hydroprocessing:Tungsten Phosphide [J]. J. Catal.,2001,200:140-147.
    [196]孟明,林培琰,伏义路,Co-Pt(Pd,Rh)/y-Al2O3催化剂的脉冲吸附和程序升温研究[J],分子催化,1997,11(5):325-331.
    [197]Algra R E, Verheijen M A, Borgstrom M T, et al. Twinning superlattices in indium phosphide nanowires [J],Nature,2008,456(7220):369-372
    [198]Sweeney C M, Stamm K L, Brock S L. On the feasibility of phosphide generation from phosphate reduction:The case of Rh, Ir, and Ag [J].J. Alloys Compd.,2008,448(1-2):122-127.
    [199]Chen J X, Chen Y, Yang Q, et al. An approach to preparing highly dispersed Ni2P/SiO2 catalyst[J].Catal. Communications,2010,11:571-575.
    [200]Zhang Y P, Ma P S, Zhu X L. et al. A novel plasma-treated Pt/NaZSM-5 catalyst for NO reduction by methane, Catal. Communications,2004,5:35-39.
    [201]Cecilia J A, Infantes-Molina A, Rodriguez-Castellon E, et al. Dibenzothiophene hydrodesulfurization over cobalt phosphide catalysts prepared through a new synthetic approach: Effect of the support[J]. Appl. Catal. B:Environmental,2009,92:100-113.
    [202]Nagai M, Fukiage T, Kurata S. Hydrodesulfurization of dibenzothiophene over alumina-supported nickel molybdenum phosphide catalysts [J].Catal. Today,2005,106(1-4):201-205.
    [203]Abu I I, Smith K J. The effect of cobalt addition to bulk MoP and Ni2P catalysts for the hydrodesulfurization of 4,6-dimethyldibenzothiophene [J].J. Catal.,2006,241(2):356-366.
    [204]Abu I I, Smith K J. HDN and HDS of model compounds and light gas oil derived from Athabasca bitumen using supported metal phosphide catalysts [J].Appl. Catal. A,2007,328(1):58-67.
    [205]宋亚娟,李翠清,王新亚等.助剂对WP/γ-Al2O3催化剂二苯并噻吩加氢脱硫活性的影响[J].石油化工高等学校学报,2005,18(3):25-30.
    [206]孙桂大,李翠清,周志军等.助剂对WP/γ-Al2O3催化剂性能的影响[J].石油学报(石油加工),2008,24(1):46-51.
    [207]Duan X, Li X, Wang A, et al. Effect of TiO2 on hydrodenitrogenation performances of MCM-41 supported molybdenum phosphides [J].Catal. Today,2010,149:11-18.
    [208]Blanchard P E R, Grosvenor A P, Cavell R G, et al. Effects of metal substitution in transition-metal phosphides (Ni1-xM'x)(2)P (M'=Cr, Fe, Co) studied by X-ray photoelectron and absorption spectroscopy [J].J. Mater. Chem.,2009,19(33):6015-6022.
    [209]Song C S, Ma X L. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization [J], Appl. Catal. B:Environmental,2003,41:207-238.
    [210]Marques J, Guillaume D, Merdrignac I, et al. Effect of catalysts acidity on residues hydrotreatment [J], Appl. Catal.B:Environmental,2011,101:727-737.
    [211]Cho K S, LeeY K. XAFS studies on highly dispersed Ni2P/SiO2 catalysts for hydrodesulfurization of 4,6-dimethyldibenzothiophene [J], Nuclear Instruments and Methods in Physics Research A,2010,621:690-694.
    [212]Tang K, Hong X, Zhao Y H, et al. Adsorption Desulfurization on a Nanocrystalline NaY Zeolite Synthesized Using Carbon Nanotube Templated Growth [J], Petroleum Science and Technology,2011,29(8):779-787.
    [213]Hayes J R, Bowker R H, Gaudette A F, et al. Hydrodesulfurization properties of rhodium phosphide:Comparison with rhodium metal and sulfide catalysts [J], J. Catal.,2010,276:249-258.
    [214]Kuang X J, Wang X Q and Liu GB. Geometrical structures and dissociation channels of MPn+(M=Fe, Co or Ni; n=2,4,6 or 8) binary cluster ions[J]. Transition Met. Chem.,2011,36:45-51.
    [215]Delsante S, Schmetterer C, Ipser H. et al. Thermodynamic Investigation of the Ni-Rich Side of the Ni-P System [J]. J. Chem. Eng. Data,2010,55:3468-3473.
    [216]Fan M S, Abdullah A Z, Bhatia S. Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2:Preparation, characterization and activity studies [J], Appl. Catal. B:Environmental,2010,100:365-377.
    [217]Maneeprakorn W, Malik M A and O'Brien P. The preparation of cobalt phosphide and cobalt chalcogenide(CoX, X=S, Se) nanoparticles from single source precursors [J]. J. Mater. Chem.,2010,20:2329-2335.
    [218]Song C S, Reddy K M. Mesoporous molecular sieve MCM-41 supported Co-Mo catalyst for hydrodesulfurization of dibenzothiophene in distillate fuels[J]. Appl Catal:A.,1999,176:1-10.
    [219]Liu P, Rodriguez J A, Asakura T,Desulfurization Reactions on Ni2P(001) and a-Mo2C(001) Surfaces:Complex Role of P and C Sites [J]. J. Phys. Chem. B,2005,109:4575-4583.
    [220]魏红,李克斌,赵锋等.磷钨酸光催化降解直接大红4BE溶液的研究[J].中国环境科学,2011,31(6):921-926.
    [221]朱秀华,王炜,李海成.磷钨酸光催化降解染料废水研究[J].上海环境科学,2001,20(9):9-13.
    [222]杨婥,冯雪风,郝金丽H3PMo12040/SiO2光催化剂的制备及性能的研究[J].江西化工,2008,3:97-101.
    [223]Zheng J, Sun B, Yang R, et al. Metal Al Produced by H2 Plasma Reduction of AlCl3:A Thermodynamic and Kinetic Study on the Plasma Chemistry [J]. J. Phys. Chem. B,2008, 112:12748-12752.
    [224]张玉文.冷等离子体氢还原金属氧化物的基础研究[D].上海:上海大学,2005.
    [225]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996.
    [226]金佑民,樊友三.低温等离子体物理基础[M].北京:清华大学出版社,1983.
    [227]李学丹.低温等离子体化学[J].化学通报,1991,(5):17-19.
    [228]Robino C. Representation of mixed reactive gases on free energy (Ellingham-Richardson) diagrams[C]. Metallurgical and materials transactions b-process metallurgy and materials processing science,1996,27(1):65-69.
    [229]黄承都,白素丽,吕静等.等离子体法制备钴基费-托合成催化剂及性能表征[J].催化学报,2011,32(6):1027-1034.
    [230]郭芳,储伟,徐慧远等.采用等离子体强化制备CO2甲烷化用镍基催化剂[J].2007,28(5):429-434.
    [231]郭芳,储伟,石新雨等.等离子体引入方式对强化制备二氧化碳重整甲烷反应的Ni/γ-Al2O3催化剂的影响[J].高等学校化学学报,2009,30-746-751.
    [232]Wappling R, Haggstrom L, Ericsson T, et al. First-order magnetic transition, magnetic-structure, and vacancy distribution in Fe2P[J]. J. Solid State Chem.,1975,13(3):258-271.
    [233]Maeda Y, Takashima Y. Mossbauer studies of FeNiP and related compounds[J]. J. Inorg. Nucl. Chem.,1973,35(6):1963-1969.
    [234]姚素薇,郭鹤桐,周婉秋.镍-钨-磷非晶态合金的电沉积方法及耐腐蚀性能的研究[J].材料保护,1994,27(3):9-13.
    [235]罗径源,王明生.Fe-Ni-P非晶合金的电沉积[J].北京技大学学报,1990,12(5):491-494.
    [236]Gao C H. Stability of electrodeposited amorphous Ni-Fe-P alloys[J]. Trans. Nonferrous Met. Soc.,2006,16:1325-1330.
    [237]周白杨,高诚辉.电沉积工艺对铁-镍-磷合金磁参量影响的研究[J].期物理测试,1996,4:5-9.
    [238]高诚辉.电镀范围对Fe-Ni-P合金硬度和耐磨性的影响[J].材料保护,1996,29(9)4-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700