负载型过渡金属磷化物制备及DBT在CoP上加氢脱硫反应网络
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着原油重质化和劣质化程度日益加深以及环保法相关规定日趋严格,人们逐渐把研究的重点放在开发新型高效的加氢精致催化剂上。过渡金属磷化物催化剂以其优异的加氢脱硫活性及稳定性越来越受到人们的关注。程序升温还原方法是目前为止比较有效可行的方法,但这种方法尚存在明显的不足,例如还原温度高、时间长、氢气消耗大及存在大量的磷损失。低温H2等离子技术的引入很好的解决了这些不足,可以更加方便快捷的合成体相过渡金属磷化物。
     体相过渡金属磷化物的催化活性往往较低,而负载型过渡金属磷化物具有较高的催化活性,如何选择适宜载体及简便高效的负载方法以提高催化剂的活性是目前研究的重点。本文以常见的MCM-41为载体,采用低温H2等离子体发生装置对不同负载方法制备的前体进行还原,制备负载型过渡金属磷化物(Ni2P/MCM和CoP/MCM),通过XRD及ICP对制备材料的晶相及元素组成进行了表征,并通过固定床反应考察制备好的催化剂的加氢脱硫性能。结果表明:采用共浸渍法制备负载型过渡金属磷化物时,仍需要过量磷的加入,这是由于磷与载体存在一定的相互作用;采用分步浸渍法可以避免磷与载体之间的相互作用,按化学计量比合成负载型过渡金属磷化物。对比固定床反应发现,分步浸渍法制备的负载型过渡金属磷化物的HDS活性要高于共浸渍法制备的催化剂,这是由于共浸渍法制备的催化剂中过量的P对反应存在抑制作用。
     通过共沉淀和等离子体法制备得到了体相CoP。在340℃C和4MPa的条件下分别考察了有无哌啶存在的环境下体相CoP对二苯并噻吩(DBT)及其加氢中间体四氢二苯并噻吩(TH-DBT)和六氢二苯并噻吩(HH-DBT)的加氢脱硫进行了研究。体相CoP同时表现出了相对较强的加氢/脱氢活性以及脱硫活性,哌啶对二苯并噻吩的加氢的抑制程度要比对其脱硫的抑制程度大。而在TH-DBT和HH-DBT的加氢脱硫过程中检测到少量的DBT及联苯(BP),这是由于在CoP催化剂上TH-DBT可以脱氢生成DBT。我们拟定了一个DBT在CoP上加氢脱硫的反映网络图。
With continuous declining in quality of petroleum feedstocks and the stringent environmental legislation, people pay more and more attentions to develop novel catalysts for hydroprosessing. Transition metal phosphides have recently been the focus of research due to their high activity and stability. The temperature programmed reduction can be used to prepare the transition metal phosphides. Nevertheless, there are some obvious deficiencies. For example, the reaction has to reach a very high temperature, a big H2flow velocity and excess phosphorous is needed. The hydrogen plasma was used to sovle this problem and substitute the temperature programmed reduction.
     Bulk transition metal phosphides show a low HDS activities but supported transition-metal phosphides show a relatively high HDS actibities. So how to prepare the supported transition-metal phosphides more easily is the topices of recent researches. MCM-41were chosen for the carrier. The oxidic precursors, which were prepared in different ways, were reduced by hydrogen plasma. Two kinds of Supported transition-metal phosphides (Ni2P/MCM and CoP/MCM) were prepared in this way and then characterized by XRD and ICP. Hydrodesulfurization activities were studied at the fixed reactor. Because of the interaction during P and the carrier, we must add more P to prepare the supported transition-metal phosphides(MP/MCM-C) by co-impregnation method. Sequential-impregnation method can prevent the interaction and prepared the supported transition-metal phosphides(MP/MCM-S) stoichiometric. It was shown that the HDS activity of MP/MCM-S were higher than MP/MCM-C because of the excess P, which can affect HDS activity of supported transition-metal phosphides.
     A bulk CoP catalyst was prepared by co-precipitation of cobalt phosphate followed by hydrogen plasma(PR) with H2. The hydrodesulfurization(HDS) of dibenzothiophene(DBT) and its hydrogenated intermediates1,2,3,4-tetrahydro-dibenzothiophene(TH-DBT) and1,2,3,4,4a,9b-hexahydro-dibenzothiophene(HH-DBT) was studied at340℃and4MPa both in the presence and absence of piperidine(Pi). Bulk CoP exhibited a relatively high hydrogenation/dehydrogenation activity and high desulfurization activity. Pi retarded the hydrogenation of DBT to a greater extent than the desulfurization. A minor amount of dibenzothiophene(DBT) observed in the HDS of TH-DBT and HH-DBT is due to dehydrogenation of TH-DBT. We postulate a reaction network of the HDS of DBT over CoP catalysis.
引文
[1]Marcilly C. State of European refining industry is less bleak than reported [J].Oil&Gas Science and Technology,2001,56(5):499-514.
    [2]EPA, Control of Air Pollution from New Motor Vehicles Amendment to the Tier 2/ Gasoline Sulfur Regulations,US Environmental Protection Agency,April 13,2001. http://www. epa.gov/fedrgstr/EPA-AIR/2001/April/Day-13/a8927.htm
    [3]EPA-Diesel RIA, Regulatory Impact Analysis:Heavy-dutyEngine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements,United States Environmental Protection Agency, Air and Radiation, EPA420-R-00-026, December 2000.
    [4]EPA,EPA Gives the Green Light on Diesel Sulfur Rule, Press Release, United States Environmental ProtectionAgency, February 28,2001
    [5]王瑶,王安杰,阮立峰,等.哌啶对Mo/MCM-41催化剂上二苯并噻吩加氢脱硫反应的影响[J].石油炼制与化工,2004,35(11):9-13.
    [6]关杰.等离子体法制备金属磷化物及其加氢脱硫性能[D].大连:大连理工大学,2009.
    [7]孙福侠,李灿.过渡金属磷化物加氢精制催化性能研究进展[J].石油学报,2005,21(6):1-11.
    [8]Jie Guan, Yao Wang, Minglei Qin, et al. Synthesis of transition-metal phosphides from oxidic precursors by reduction in hydrogen plasma [J], Journal of Solid State Chemistry,2009,182:1550-1555.
    [9]Petasch W, Kegel B,Schmid H.et al. Low-pressure plasma cleaning:a process for precision cleaning applications [J]. Surf. Coat. Techno I.,1997,97:176-181.
    [10]王瑶.用全硅MCM-41担载Co-Mo和Ni-Mo硫化物研制深度加氢脱硫催化剂[D].大连:大连理工大学化工学院,2004.
    [11]Eley D D, et al. Advances in Catalysis[M]. New York:Academic Press,1998
    [12]凌凤香,姚银堂,马波,等.气相色谱-原子发射光谱联用技术测定柴油中硫化物[J].燃料化学学报,2002,30(6):535-539.
    [13]Vrinat M L. The kinetics of the hydrodesulfurization process-areview [J].Appl. Catal.,1983,6(2):137-158.
    [14]Aubert C, Durand R, Geneste P, el al. liydroprocessing of dibenzothiophene, phenolthia-zine, phenoxathiin, thianthrene,and thioxanthone on a sulfided NiO-MoO3/Al2O3 catalyst [J]. J. Catal.,1986,97(1):169-176.
    [15]Wang ll, Prins R. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over sulfided Mo/γ Al2O3, [J]. J. Catal.,2008,258(1):153-164.
    [16]Xiang Li, Jin Bai,Anjie Wang, et al. Hydrodesulfurization of Dibenzothiophene and its Hydrogenated Intermediates Over Bulk Ni2P [J]. Topics in Catalysis, 2004,14(2):317-321.
    [17]Aronsson B, Rundqvist S Borides. Silicides and Phosphides [M]. New York:Wiley,1965.
    [18]Corbridge D E C.Studies in Inorganic Chemistry [M]. Amsterdam:Elsevier,1990.
    [19]秦明磊.氢等离子体法制备金属磷化物及其加氢脱硫催化性能研究[D].大连:大连理工大学化工学院,2012.
    [20]Brock S L, Perera S C, Stamm K L. Chemical routes for production of transition-metal phosphides on the nanoscale:implications for advanced magnetic and catalytic materials [J].Chem. Eur. J.,2004,10(14):3364-3371.
    [21]Brock S L, Senevirathne K. Recent developments in synthetic approaches to transi-tion-metal phosphide nanoparticles for magnetic and catalytic applications [J]. J. Solid State Chem.,2008,181(7):1552-1559.
    [22]Schnering H G V,Hoenle W. Chemistry and structural chemistry of phosphides and polyphosphides [J].Chem. Rev.,1988,88(1):243-273.
    [23]Li W, Dhandapani B, Oyama S T. Molybdenum phosphide:A novel catalyst for hydrodenit rogenation [J].Chem Lett,1998,27(3):207-208.
    [24]Guan Q X, Li W. A novel synthetic approach to synthesizing bulk and supported metal phosphides [J].J. Catal.,2010,271(2):413-415.
    [25]Seo H R, Cho K S, Kim S H, et al. Effects of a Phosphorus Precursor on Structure and Activity of Ni2P/SiO2, Hydrotreating Catalysts:EXAFS Studies [J]. Journal of the Korean Physical Society,2010,56(6):2083-2087.
    [26]Cho K S and Lee Y K. XAFS studieson highly dispersed Ni2P/SiO2 catalysts for hydrodesulfurization of 4,6-dimethyldibenzothiophene [J]. Nuclear Instruments and Methods in Physics Research A,2010,621:690-694.
    [27]Cho K S, Seo H R, Lee Y K. A new synthesis of highly active Ni.P/Al2O3, catalyst by liquid phase phosphidation for deep hydrodesulfurization [J]. Catal. Communications,2011,12:470-474.
    [28]Nozaki F, Tokumi M. llydrogenation activity of metal phosphides and promoting effect of oxygen [J].J. Catal.,1983,79(1):207-210.
    [29]Sun F X, Wu W C, Wu Z L, et al. Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP, Ni2P, and Ni-Mo-P catalysts [J]. J. Catal. 2004,228(2):298-310.
    [30]Wu Z L, Sun F X, Wu W C, et al.On the surface sites of MoP/Si02 catalyst under sulfiding conditions:IR spect roscopy and catalytic reactivity studies [J].J. Catal.,2004,222(1):41-52.
    [31]Robinson W R A M, van Gestel J N M, Koranyi T I, et al. Phosphorus Promotion of Ni(Co)-Containing Mo-Free Catalysts in Quinoline Hydrodenitrogenation [J]. J. Catal.,1996,161(2):239-550.
    [32]Zhao H Y,Li D, Bui P, et al. Hydrodeoxygenation of guaiacol as model compound for pyrolysisoil on transition metal phosphide hydroprocessing catalysts [J]. Applied Catalysis A,2011,391(1):305-310.
    [33]Oyama S T, Novel catalysts for advanced hydroprocessing transition metal phos-phides [J].J. Catal.,2003,216:343-352.
    [34]Wang X, Clark P, Oyama S T. Synthesis, Characterization and Hydrotreating Activity of Several Iron Group Transition Metal Phosphides [J].J. Catal.,2002,208 (2):321-331.
    [35]Wang A, Qin M, Guan J, et al. The Synthesis of Metal Phosphides Reduction of Oxide Precursors in a Hydrogen Plasma [J]. Angew. Chem. Int. Ed.,2008,47(32):6052-6054.
    [36]Oyama S. T., Wang X,Lee Y K,et al.Active phase of Ni2P/SiO2 in hydroprocessing reactions [J].J. Catal.,2004,221:263-273.
    [37]Topsoe II. Catalysis-Science and Technology [M].New York:Springer-Verlag,1996, 217
    [38]A. J. A. Konings, W. L. J. Brentjens, D. C. Koningsberger, et al.ESR studies on hydrode-sulfurization catalysts:Nickel or cobalt promoted sulfided tungsten or molybdenum containing catalysts [J]J. Catal.,2001,67(1):145-158
    [39]E. G. Derouane, E. Pedersen, B. S. Clausen, et al.EPR studies on unsupported and alumina-supported sulfided Co Mo IIDS catalysts [J].. J. Catal.,2001,105:253-261
    [40]S. T. Oyama, P Clark,V. L. S. Teixeira da Silva, et al. XAFS Characterization of Highly Active Alumina-Supported Molybdenum Phosphide Catalysts (MoP/Al2O3) for llydrotrea-ting [J].J. Phys. Chem.B,2001,105:4961-4966
    [41]Oyama S T,Wang X,Lee Y K, et al.Active phase of Ni2P/SiO2 in hydroprocessing reactions [J].J. Catal.,2004,221:263-273.
    [42]Kawai T, Bando K K,Lee Y K, et al. KXAFS measurements of a working catalyst in the liquid phase:An in situ study of a Ni2P hydrodesulfurization catalyst. [J].J. Catal.,2006,241:20-24.
    [43]Wu Z, Sun F,Wu W, et al.On the surface sites of MoP/SiO2 catalyst under sulfiding conditions:IR spect roscopy and catalytic reactivity studies [J]. J. Catal.,2004, 222(1):41-52.
    [44]Zuzaniuk V, Prins R. Synthesis and characterization of silica supported transi tion metal phosphides as IIDN catalysts [J].J. Catal.,2003,219:85-96.
    [45]Sun F, Wu W, Wu Z, et al. Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP, Ni2P and Ni-Mo-P catalysts [J]. J. Catal.,2004, 228(2):298-310.
    [46]Tonks L, Langmuir I. [J]Phys. Rev.,1929,33:195-211.
    [47]胡征.等离子体化学基础.[J].化工时刊.1999(11):39-41
    [48]T J M博伊德等.等离子动力学[J].北京:科学出版社(译),1977
    [49]Fridman A, Chirokov A, Gutsol A. Non-thermal atmospheric pressure discharge [J] Appl. Phys.,2005,38:1-24
    [50]徐学基等.气体放电物理学[M].上海:复旦大学出版社,1996:309-336.
    [51]许根慧,姜恩永,盛京,等.等离子体技术与应用[M].北京:化学工业出版社,2006,3.
    [52]Chang J S. [J]. IEEE Transactions on Plasma Science.1991,19(6):1152
    [53]Eliassion B,Kolgelschatz U.Modeling and Application of Silent Discharge Plasmas[J]. IEEE Transactions on Plasma Science.1991,19(2):309-323
    [54]Kolgelschatz U,Eliassion B, Egli W. Dielectric-barrier discharges principle and applications[C]. International conference on Phenomena in Ionized Gases. Toulouse, France:July 1997:17-22
    [55]Kolgelschatz U. Proceedings of the Tenth International Conference on Gas Dsicharges and Their Applications[C].1992,2:972.
    [56]Eliasson B. J. Phys. D:Appl. Phys.1987,20:1423
    [57]高晓莉,盛京.等离子体聚合及其研究进展[J].精细石油化工.1999,4:53-56
    [58]Qin W, Ishihara A, Ogawa S, et al. Study of hydrodesulfurization by the use of S-labeled dibenzothiophene hydrodesulfurization mechanism on sulfided Mo/A1203 [J].J. Phys. Chem.,1994,98(3):907-911.
    [59]Toshiaki Kabe, Atsushi Ishihara, Qing Zhang. Deep desulfurization of light oil. Part 2:hydrodesulfurization of dibenzothiophene,4-methyldibenzo-thiophene and 4,6-DM-DBT [J].Applied Catalysis A:General.1993,97(1):1-9.
    [60]Huamin Wang, Roel Prins. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over sulfided Mo/γ-Al2O3 [J].J. Catal.,2008,258: 153-164.
    [61]Xinping Duan, Yang Teng, An jie Wang, et al. Role of sul fur in hydrotreating catalysis over nickel phosphide [J].J. Catal.,2009,261:232-240.
    [62]段新平.磷化镍(钼)催化剂的制备、改性及加氢精制性能的研究[D].大连:大连理工大学,2009.
    [63]Stephanie J. Sawhill, et al. Thiophene hydrodesulfurization over nickel phosphide catalysts:effect of the precursor composi t ion and support [J]. J. Catal.,2005,231: 300-313
    [64]Autumn W. Burns, Kathryn A. Layman, Denise H. Bale,et al. Understanding the rela-tionship between composition and hydrodesulfurization properties for cobalt phos-phide catalysts [J]. Applied Catalysis A:General.2008,343:68-76
    [65]Michael J. Girgis, Bruce C. Gates. Reaction networks, and kinetics in high-pressure catalytic hydroprocessing [J]. Ind. Eng. Chem. Res.,1991,30(9):2021-2058
    [66]Frederic Bataille, Jean-Louis Lemberton, Philippe Michaud, et al. Alkyldibenzo-thiophenes Hydrodesulfurization-Promoter Effect, Reactivity, and Reaction Mechanism [J].J. Catal.,2000,191(2):409-422
    [67]S.Ted Oyama. Novel catalysts for advanced hydroprocessing:transition metal phosphides [J].J. Catal.,2003,216(1-2):343-352
    [68]S. T. Oyama,X. Wang, Y. K. Lee, et al. Effect of Phosphorus Content in Nickel Phosphide Catalysts Studied by XAFS and Other Techniques [J].J. Catal.,2002, 210(1):207-217
    [69]Li Xiang, Wang Anjie, Egorova Marina, et al. Kinetics of the HDS of 4,6-dimethyl-dibenzo-thiophene and its hydrogenated intermediates over sulfided Mo and NiMo on Al2O3 [J].J. Catal.,2007,250(2):283-293
    [70]Sun Yinyong, Prins Roel.Mechanistic studies and kinetics of the hydrodesulfurization of dibenzothiophene on Co-MoSz/Al2O3 [J].J. Catal.,2009, 267(2):193-201
    [71]Wang Huamin, Prins Roel. Hydrodesulfurization of dibenzothiophene,4,6-dimethyl-dibenzothiophene, and their hydrogenated intermediates over Ni-MoS2/Al2O3 [J]. J. Catal.,2009,264(1):31-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700