纳米二氧化钛改性及其可见光光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光催化技术是一种新兴、高效、节能的现代绿色环保技术,是光催化剂在光辐射的作用下将水和空气中的有机污染物降解为无毒或者毒性较低的物质。Ti02作为最有潜力的半导体光催化剂之一,因其较强的氧化能力、低廉的价格、稳定的化学性能以及无毒性,被广泛应用于多种有机污染物的降解。但是,Ti02多相光催化技术,由于其光能利用率和量子效率均较低,给其实际应用带来了困难。所以,通过各种改性方法减小TiO2禁带能来提高可见光利用率,同时减少光生电子-空穴对的复合从而提高其量子效率,一直是TiO2光催化技术努力的方向。本论文通过沉积贵金属和掺杂非金属两种方法改性纳米TiO2,达到增强其光催化性能的目的。
     一般来说,贵金属的功函数(Φm)高于TiO2的功函数(Φs)(4.33-4.85eV),因此当贵金属沉积在TiO2表面时,光生电子将从TiO2颗粒迁移到贵金属表面,这样有效分离了光生电子-空穴对,有利于光催化反应的进行。为此,本文首先以商品级TiO2DegussaP-25为原料,采用等离子体法制备了金属Pt和Pd分别沉积以及共沉积的TiO2,分别标记为Pt/TiO2、Pd/TiO2和PtPd/TiO2。同时,采用传统热法,即程序升温还原(TPR)法制备了Pt和Pd分别沉积的TiO2催化剂,标记为Pt/TiO2(T)和Pd/Ti02(T)。对上述两种催化剂,在可见光下以20ppm亚甲基蓝溶液为底物进行光催化降解实验,并对这两种催化剂进行了氮气物理吸附、ICP、UV-Vis等表征。结果表明,与未改性的P-25相比,Pt/TiO2和Pd/TiO2的催化活性有显著提高;且当贵金属的担载量相同时,等离子体法制备的催化剂,比传统热法制备的催化剂表现出较高的催化活性。
     在介质阻挡放电(DBD)等离子体发生器中,以H2S/H2的混合气体为放电介质,对商品级二氧化钛Degussa P-25进行放电处理,制备出了淡黄色的S掺杂的TiO2,标记为S-TiO2。同时,采用传统热法,在同样的混合气体中对P-25进行处理,得到的催化剂标记为S/TiO2。对上述两种催化剂,在可见光下以20ppm亚甲基蓝溶液为底物进行光催化降解实验,并对两种改性催化剂进行了XRD、XPS和UV-Vis表征。结果表明,与未改性的P-25相比,等离子体法制得的S-TiO2表现出较高的催化活性;而热法处理得到的S/TiO2催化活性较P-25并未有所提高。XRD结果表明,两种改性方法并未明显改变TiO2的晶粒尺寸和晶相比例。通过UV-Vis表征发现,等离子法制得的S-TiO2与P-25相比,对可见光的吸收显著增强。同时计算结果显示,P-25带隙能为3.0eV,而S-TiO2的带隙能降低为2.7eV。XPS结果显示,采用等离子体法成功地将S元素以负价态的形式掺杂进入了TiO2表面,使得TiO2表面羟基数量减少,氧空穴数量增加。
     基于上述两种改性方法的良好效果,本文接理来进行了上述两种方法的结合。先利用浸渍法制备出沉积贵金属Pt和Pd的氧化物形式的Ti02,再利用H2S/H2等离子体进行非金属S的掺杂和贵金属的还原,一步得到S-Pt/TiO2和S-Pd/TiO2催化剂,同时考察了这些催化剂降解有机染料亚甲基蓝的光催化活性。通过对比发现,同时沉积了贵金属和掺杂了非金属的二氧化钛,与只沉积贵金属或者只掺杂了非金属的相比,光催化活性并没有提高,这可能是因为贵金属发生了S中毒,从而降低了催化剂的催化活性。
Photocatalytic technology, as a modern green environmental protection technology, is novel, highly effective and energy-efficient. It takes semiconductor as the catalysts and decomposes organic pollutant in water and the air into low toxicity or non-toxic substance under the radiation of the light. TiO2, as one of the most popular photocatalysts for decomposing various environmental pollutants, has received much attention due to its non-toxicity, low-cost, photostability, and chemical inertness. Although it has great potential, some problems still hinder practical application of TiO2, such as the low photo-quantum efficiency and low photocatalytic activity under visible light. Therefore, visible-light-active TiO2has been developed by reducing the band gap; meanwhile, to decrease the recombination of photogenerated electrons and holes has been another key point in modification of TiO2. In this paper, the modified TiO2photocatalysts have been synthesized by different procedures to improve their photocatalytic efficiency under visible light.
     Noble metal, serving as a Schottky-barrier to trap the charge carriers, is usually used to modify the TiO2surface to improve the photocatalytic efficiency. As a result, the second chapter of the paper illuminated modification of TiO2by loading platinum (Pt) and palladium (Pd) via H-plasma reduction (PR) method, which is easier and faster than conditional temperature programmed reduction (TPR). The catalysts were characterized by Nitrogen adsorption-desorpotion, ICP and UV-Vis. The photodecomposition of methylene blue in aqueous solution by all the samples above was also investigated respectively. The results showed that photoactivity of all the noble metal loaded TiO2(denoted as Pt/TiO2, Pd/TiO2, PtPd/TiO2) prepared by PR method were much enhanced, compared to the catalysts prepared by TPR method and Degussa P-25.
     Yellowish S-doped Degussa P-25(S-TiO2) powders were prepared via a H2S/H2plasma method in a dielectric barrier discharge (DBD) reactor. The other catalyst synthesized by thermal treatment of P-25with the H2S/H2mixture (S/TiO2) was used for comparison. The photocatalytic performances of the catalysts were evaluated by the degradation of a20ppm aqueous solution of a reactive dyestuff, Methylene Blue, under the visible light. The catalysts were characterized by XRD, XPS and UV-Vis. The results indicated that the activity of S-TiO2was much higher than that of P-25, while that of S/TiO2was not significantly improved. The XRD revealed that neither the structure nor the crystal phase ration of P-25 was influenced by the treatments with H2S/H2. The UV-Vis showed that the visible-light absorption of S-TiO2was higher than that of P-25. The band-gap energy of P-25was calculated to be3.0eV, while that of S-TiO2decreased to2.7eV. As evidenced XPS, the negative-valence S was incorporated on the surface of TiO2after the H2S/H2plasma treatment, leading to a decrease in the surface of OH groups and increase in the oxygen vacancies.
     On the basis of the above two kinds of modification, this paper took a combination of them to get a novel kind of photocatalyst. First, TiO2loaded metallic oxide were made with deposition-precipitation (DP) method, and then, they were treated by H2S (10%)/H2-plasma in order to dope S in the TiO2lattice and reduce metallic oxide on TiO2. In the end, a novel kind of catalyst were obtained and denoted as S-Pt/TiO2and S-Pd/TiO2. The photodecomposition of methylene blue in aqueous solution by all the samples above was also investigated respectively. In contrast to those catalysts only loaded noble metal or doped S, these novel catalysts showed worse photocatalytic activity under visible light.
引文
[1]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature.1972,238:37-38.
    [2]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J]. J. Am. Chem. Soc.,1977,99(1):303.
    [3]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [4]阎子峰.纳米催化技术[M].北京:化学工业出版社,2003.
    [5]张立德.纳米材料[M].北京:化学工业出版社,2000.
    [6]沈伟韧,赵文宽,贺飞等.TiO2光催化反应及其在废水处理中的应用[J].化学进展.1998,10(4):349-361.
    [7]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev.,1995,95 (1):69-96.
    [8]Augustynski J. The role of the surface of intermediates in the photoelectrochemical behavior of anatase and rutile TiO2[J]. Electrochim. Acta.,1993,38(1):43-46.
    [9]Ohno T, Sarukawa K, Matsumura M. Photocatalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution[J]. J. Phys. Chem.,2001,105:2417-2420.
    [10]Masahashi N, Mizukoshi Y, Semboshi S, et al. Enhanced photocatalytic activity of rutile prepared by anodic oxidation in a high concentration sulfuric acid electrolyte[J]. Appl. Catal. B.,2009,90(1-2):255-261.
    [11]Habibi M H, Vosooghian H. Photocatalytic degradation of some organic sulfides as environmental pollutants using titanium dioxide suspension[J]. J. Photochem. Photobiol. A.,2005,174(1):45-52.
    [12]Zhang J, Yan S, Fu L, et al. Photocatalytic degradation of Rhodamine B on antase, rutile, and bookite TiO2[J]. Chinese J. Catal.,2011,32(6):983-991.
    [13]Yan M, Chen F, Zhang J, et al. Preparation of controllable crystalline titania and study on the photocatalytic properties [J]. J. Phys. Chem. B.,2005,109(18): 8673-8678.
    [14]Anpo M, Shima T, Kodama S, et al. Photocatalytic hydrogenation of propyne with water on small-particle titania:size quantization effects and reaction intermediates [J]. J. Phys. Chem.,1987,91(16):4305-4310.
    [15]Sakai N, Ebina Y, Takada K, et al. Electronic band structure of titania semiconductor nanosheets revenled by electrochemical and photoelectrochemical studies [J]. J. Am. Chem. Soc,2004,126(18):5851-5858.
    [16]吴长江.不同纳米二氧化钛粒径的应用研究[J].广州化工.2006,34(1):26-27.
    [17]Nagaveni K, Hdgde M S, Ravishankar N, et al. Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity [J]. Langmuir.2004, 20(7):2900-2907.
    [18]Augugliaro V, Coluccia S, Loddo V, et al. Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst:mechanistic aspects and FT-IR investigation [J]. Appl. Catal. B.,1999,20(1):15-27.
    [19]王琪全,蒋伟川.TiO2光催化降解次甲基蓝的研究[J].环境科学与技术.1994,3:1-4.
    [20]樊彩梅,孙秀平.纳米TiO2对水中腐殖酸的吸附及光催化降解[J].应用化学.2001,18(11):912-914.
    [21]Marrison S R(Auth), WU H H(Trans). Electrochemistry at semiconductor and oxidation metal electrodes(半导体与金属氧化膜的电化学)[M].北京:科学出版社,1998.
    [22]Bekbolet M, Ozkosemen G. A preliminary investigation on the photocatalytic degradation of a model humic acid[J]. Wat. Sci. Tech.,1996,33:189-194.
    [23]黄玉明,李天安,章娴君等.TiO2光催化降解印染废水的研究[J].西南师范大学学报(自然科学版).1999,24(4):443-446.
    [24]Ogura K, Migita C T, Yamada T. Kinetics of the photochemical reactions of gas mixtures of methane and water and the effects of added oxygen[J]. J. Photochem. Photobio. A. 1990,52(2):241-253.
    [25]朱连杰,于德军,谢腾峰等.TiO2纳米粒子的光催化活性与光伏响应特性研究[J].高等化学学报.2001,22(5):827-829.
    [26]Bahanemann D, Bockelmann D, Goslich R. Mechanistic studies of water detoxification in illuminated TiO2 suspensions [J]. Solar Energy Mater.,1991,24(1-4):564-583.
    [27]Genscher H. A mechanism of electron hole pair separation in illuminated semiconductor particles[J]. J. Phys. Chem.,1984,88(25):6096-6097.
    [28]Sato S, White J M. Photodecomposition of water over Pt/TiO2 catalysts [J]. Chem. Phys. Lett.,1980,72(1):83-86.
    [29]Takeda K, Fujiwara K. Characteristics on the determination of dissolved organic nitrogen compounds in natural waters using titanium dioxide and platinized titanium dioxide mediated photocatalytic degradation[J]. Water Res.,1996,30(2):323-330.
    [30]Choi W, Termin A, Hoffmann M R, et al. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics [J]. J Phys. Chem.,1994,98(51):13669-13679.
    [31]Litter M I, Navio J A. Photocatalytic properties of iron-doped titania semiconductors[J]. J. Photochem. Photobio. A.,1996,98:171-181.
    [32]钱斯文,王智宇,王民权.La3+掺杂对纳米TiO2微观结构及光催化性能的影响[J].材料科学与工程学报.2003,21(1):48.
    [33]Coronado J M, Maira A J, Martinez-Arias A, et al. EPR study of the radicals formed upon UV irradiation of ceria-based photocatalysts[J]. J. Photochem. Photobio. A. 2002,150:213-221.
    [34]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science.2001,293(5528):269-271.
    [35]Sun H J, Liu H L, Ma J, et al. Preparation and characterization of sulfur-doped TiO2/Ti photoelectrodes and their photoelectrocatalytic performance [J]. J. Hazard. Mater. 2008,156(1-3):552-559.
    [36]Wu Z B, Dong F, Liu Y, et al. Enhancement of the visible light photocatalytic performance of C-doped TiO2 by loading with V20.5 [J]. Catal. Commun.,2009,11(2):82-86.
    [37]Wu G S, Chen A C. Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications [J]. J. Photochem. Photobiol. A.,2008,195(1):47-53.
    [38]崔玉民,张文保,洪文珊.二氧化钛光催化薄膜[M].北京:化学工业出版社,2011.
    [39]Umebayashi T, Yamaki T, Yamamoto S, et al. Sulfur-doping of rutile-titanium dioxide by ion implantation:Photocurrent spectroscopy and first-principles band calculation studies [J]. J. Appl. Phys.,2003,93(9):5156-5120.
    [40]Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of S-doped TiCX-photocatalysts and their photocatalytic activities under visible light [J]. Appl. Catal. A. 2004,265(1):115-121.
    [41]Ren W J, Ai Z H, Jia F L, et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 [J]. Appl. Catal. B.,2007,69(3-4):138-144.
    [42]Yu J, Ho W, Jiang Z, et al. Effects of F doping on the photocatalytic activity and microstructures of nanocrystalline TiOk powders [J]. Chem. Mater.,2002,14(9): 3808-3816.
    [43]Lin L, Lin W, Zhu Y X, et al. Phosphor-doped titania—novel photocatalyst active in visible light[J]. Chem. Lett.,2005,34(3):284-285.
    [44]Shojaie A F, Loghmani M H. La3+ and Zr4+ co-doped anatase nano TiCfe by sol-microwave method [J]. J. Chem. Eng.,2010,157(1):263-269.
    [45]Rengifo-Herrera J A, Pulgarin C. Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation [J]. Solar Energy.2010,84(1):37-43.
    [46]顾凌燕,王玉萍,彭盘英等.S与金属共掺杂Ti02催化剂的制备及其光催化性能[J].中国有色金属学报.2009,19(5):910-918.
    [47]张金龙,陈峰,何斌.光催化[M].上海:华东理工大学出版社,2004.
    [48]Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surface [J]. Chem. Rev.,1993,93(1):267-300.
    [49]钱新明,宋庆,白玉白等.CdS敏化对TiO2纳米薄膜电极光生电荷转移特性的影响[J].高等学校化学学报.2000,21(2):295-297.
    [50]赵化侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993.
    [51]Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing[M]. Hoboken, New Jersey. John Wiley & Sons, Inc.,2005.
    [52]朱爱国,许雪艳,朱仁义等.介质阻挡放电产生等离子体简介[J].巢湖学院学报.2008,10(6):56-60.
    [53]杨宽辉,王保伟,许根慧.介质阻挡放电等离子体特性及其在化工中的应用[J].化工学报.2007,58(7):1609-1618.
    [54]Kogelschatz U, Stucki S. Advanced ozone generation in process technologies for water treatment[M]. New York & London:Plenum Press,1988.
    [55]Liu T, Song Z M, Shi C, et al. Plasma induced decomposition of nitrogen oxides in a dielectric-barrier discharge reactor[J]. Environmental Science.2000,21(5):80-82.
    [56]秦明磊.氢等离子体制备过渡金属磷化物及其加氢脱硫性能考察[D]:(博士学位论文).大连:大连理工大学,2012.
    [57]Herrmann J M, Guillard C, Pichat P. Heterogeneous photocatalysis:an emerging technology for water treatment [J]. Cata. Today.1993,17(1-2):7-20.
    [58]Guo Y F, Liao X B, Ye D Q. Catalytic effect on toluene removal by non-thermal plasma technology[C]. Bioinformatics and Biomedical Engineering,2009. ICBBE 2009.3rd International Conference on,2009:1-4.
    [59]Kang M, Kim B J, Cho S M, et al. Decomposition of toluene using an atmospheric pressure plasma/TiO2catalytic system[J]. J. Mole. Cata. A:Chem.,2002,180 (1):125-132.
    [60]Chen C, Bai H, Chang S M, et al. Preparation of N-doped TiCk photocatalyst by atmospheric pressure plasma process for VOCs decomposition under UV and visible light sources[J]. Journal of Nanoparticle Research.2007,9:365-375.
    [61]Kumar S M, Deshpande P A, Krishna M, et al. Photocatalytic activity of microwave plasma-synthesized TiO2 nanopowder[J]. Plasma Chem. Plasma Process.2010,30:461-470.
    [62]Li F B, Li X Z, Hou M F et al. Enhanced photocatalytic activity of CeJ"-Ti02 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control [J]. Appl. Catal. A.,2005,285(1-2):181-189.
    [63]Lin J, Lin Y, Liu P, et al. Hot-fluid annealing for crystalline titanium dioxide nanoparticles in stable suspension [J]. J. Am. Chem. Soc.,2002,124(38):11514-11518.
    [64]Spurr R A, Myers H. Quantitative analysis of anatase-rutile mixtures with an X-Ray diffractometer [J]. Anal. Chem.,1957,29(5):760-762.
    [65]Oregan B, Gratzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353(6346):737-740.
    [66]李仁宏.金属修饰TiO2及光催化活性的研究[D]:(硕士学位论文).杭州:浙江理工大学,2009.
    [67]Chen T, Wu G P, Shi J Y, et al. Kinetics of photogenetated electrons involved in photocatalytic reaction of methanol on Pt/TiO2[J]. Chi. J. Chem. Phys.,2007,20(4): 483-488.
    [68]Colmenares J C, Aramendia M A, Marinas A, et al. Synthesis, Characterization and photocatalytic activity of different metal-doped titania systems [J]. Appl. Catal. A., 2006,306:120-127.
    [69]Takeda K, Fujiwara K. Characteristics on the determination of dissolved organic nitrogen compounds in natural waters using titanium dioxide and platinized titanium dioxide mediated photocatalytic degradation [J]. Wat. Res.,1996,30(2):323-330.
    [70]Abdullah M, Low G K-C, Matthews R W. Effects of common inorganic anions on rates of photocatalytic degradation of organic carbon over illuminated titanium dioxide[J]. J. Phys. Chem.,1990,94:6820-6825.
    [71]Abe H, Kimitani T, Natio M. Influence of NH3/Ar plasma irradiation on physical and photocatalytic properties of TiO2 nanopower[J]. J. Photochem. Photobio. A. 2006,183(1-2):171-175.
    [72]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293:269-271.
    [73]Yu J C, Zhang L Z, Zheng Z, et al. Synthesis and characterization of phosphate mesoporous titanium dioxide with high photocatalytic activity[J]. Chem. Mater.,2003,15, 2280-2286.
    [74]Yu J C, Ho W, Yu J G, et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania [J]. Environ. Sci. Technol. 2005,39(4):1175-1179.
    [75]Pore V, Ritala M, Leskela M, et al. H2S modified atomic layer deposition process for photocatalytic TiO2 thin films [J]. J. Mater. Chem.,2007,17(14)-.1361-1371.
    [76]Ozaki H, Fujimoto N, Iwamoto S, et al. Photocatalytic activities of NH3-treated titanias modified with other elements [J]. Appl. Catal. B.,2007,70(1-4):431-436.
    [77]Ihara T, Miyoshi M, Ando M, et al. Preparation of a visible-light-active HO2 photocatalyst by RF plasma treatment [J]. J. Mater. Sci.,2001,36(17):4201-4207.
    [78]Lichtman D, Craig J H, Sailer V, et al. AES and XPS spectra of sulfur in sulfur compounds [J]. Appl. Surf. Sci.,1981,7(1):325-331.
    [79]ZhangQW, Wang J, Yin S, et al. Synthesis of a visible-light active TiO2-xSx photocatalyst by means of mechanochemical doping [J]. J. Am. Ceram. Soc.,2004,87(6):1161-1163.
    [80]Yoshinaga M, Yamamoto K, Sato N, et al. Remarkably enhanced photocatalytic activity by nickel nanoparticle deposition on sulfur-doped titanium dioxide thin film [J]. Appl. Catal. B.,2009,87(3-4):239-244.
    [81]Hebenatreit E L D, Hebenstreit W, Dieboldl U. Structures of sulfur on TiO2 (110) determined by scanning tunneling microscopy, X-ray photoelectron spectroscopy and low-energy electron diffraction [J]. Surf. Sci.,2001,470(3):347-360.
    [82]Hu S Z, Wang A J, Li X et al. Hydrothermal synthesis of ionic liquid [Bmim]0H modified Ti02 nanoparticles with enhanced photocatalytic activity under visible light [J]. Chem. Asian J.,2010,5(5):1171-1177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700