金属氧化物纳米材料在污染物处理及环境分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米科学技术是上世纪八十年代末诞生并正在蓬勃发展的一种高新科技,它的内容是在纳米尺寸范围内认识和改造自然,通过直接操纵和安排原子分子而创造新物质。纳米材料是纳米科技的基础,被誉为21世纪最有前途的材料。纳米材料一般是指尺寸在1nm到100nm之间的粒子,是处在原子簇和宏观物体交界的过渡区域。纳米材料分为两个层次,即纳米超微粒子与纳米固体材料,纳米超微粒子指的是粒子尺寸为1~100nm的超微粒子;纳米固体是指由纳米超微粒子制成的固体材料。由于纳米粒子本身的结构和特性决定了纳米固体材料的许多新特性。它所具有的体积效应、表面效应、量子尺寸效应和宏观量子隧道效应使得纳米材料在固体力学、电学、磁学、光学和化学活性等方面具有奇特的性能,因而在许多方面有着广阔的应用前景。
     环境污染是全世界所关注的问题,能否有效地治理环境污染,对于保护环境、维持生态平衡、实现可持续发展具有重大意义。半导体纳米材料由于具有独特的光化学反应活性、双电层羟基配位吸附特性以及高比表面积,已引起了人们的广泛兴趣。近年来,具有半导体特性的金属氧化物纳米粒子,如纳米二氧化钛、纳米硫化镉等,在光降解处理环境污染物中得到了广泛的应用.但这类处理方法常需要光催化活性很高的纳米’TiO_2和人工光源,光量子效率低;光催化剂不易固定;反应酸度较高,需在通入O_2或N_2的条件下进行且要求被处理体系具有良好的透光性,在实际应用中受到了限制。因此,如何利用纳米材料的独特性质,在较简单的工艺条件下,有效地处理环境污染物,一直是一个具有挑战性和开拓性的课题。
     染料污染处理是目前国内外学者所面临的难点问题之一,染料污染主要有偶氮类染料污染、罗丹明染料污染等。近年来,纳米二氧化钛由于其独特的性质,在光催化降解处理染料污染中得到了广泛的应用,但研究对象多为偶氮类染料,对罗丹明染料的处理及光解机理研究,有关报道则较少。
     环境分析是环境污染物治理的眼睛,有着举足轻重的作用,但在实际工作中,环境样品的成分经常非常复杂,由于基体干扰及分析方法灵敏度等原因,往往不能
Nanometer science & technology has been rapidly developing ever since 1980's, which means recognizing and reconstructing the nature on the level of nanometer size, and also creating new substances through directly driving atoms and molecules. Nanometer sized materials, as the basis of nanometer science & technology, are considered as the most promising materials in the 21~th century. Generally speaking, nanometer sized materials refer to those particles sized between 1-100 nm, which falls into the interface area of atom clusters and macroscopical substances. Nanometer sized material is classified into two levels: nanometer particles and nanometer sized solid materials, the former refers to ultra-micro particles sized in l-100nm, and the later is just the solid material made from such particles. The special structure of nanometer particles has resulted in many unique properties of nanometer sized solid materials. That is to say, the volume effect, surface effect, quantum effect and macroscopical tunnel effect have lead to its special characteristics in mechanics, electrics, magnetics, optics and chemical activity, and thus decided the wide application foreground in many fields.Environment pollution is an issue attracted the scientists all over the world. Whether environment pollution can be controlled effectively or not is very significant in protecting environment, maintaining zoology balance and achieving sustained development. Nanometer-sized semiconductor materials are characterized with photochemical reaction activity, double electrical layers hydroxide conjugate adsorption and higher specific surface area, which have attracted many researchers. In recent years, metal oxides semiconductors, such as nanometer-sized TiO_2 and CdS, have been applied widely in photo-degradating the environmental pollutants. However, this kind of methods based on nanometer-sized TiO_2 which has high photo- catalyzing activity is always faced with some problems, i.e., a manual light source is needed, photons efficiency is rather poor, immobilization of the photo catalyzer is difficult, strong acid reaction medium is needed, additional introduction of O_2 or N_2 into the system is necessary and the taken system must be light-pervious. Hence the application of the methods is limited. Therefore, to deal with the environmental pollutants with using nanometer-sized materials under relatively simple technical conditions has all the times been a challenging and innovative subject.Dealing with the dye pollution is one of the difficult matters that confront scholars all over the world. Dye pollution mainly comes from the azo dyes and rhodamine dyes.
    During recent years, nano-TiO2 has been applied widely in photodegradation of the environmental pollutions due to its specific characteres, whereas the studied objects are usually the azo dyes and reports on the treatment and degradation mechanism of rhodamine dyes are relatively less seen.Environmental analysis is the eye of environmental pollutants control, which is very important. However, in the practical work, the environmental samples are very complex and difficult to analyze because of the background interference and restriction of sensitivity of analysis methods. Solid-phase micro-extraction is an effective technique for separating and concentrating. The property of the adsorption materials used is a crucial factor affecting the analytical sensitivity and the selectivity. Thus, to find the new excellent adsorption materials is a significant job.The elemental chemical speciation points at the actual forms of elements and compounds existmg in certain ionic or molecular formation. Various form of an element will present quite different environmental behaviors and biological toxicity as well as different availability. So, it is much more significant to study the form of trace element than to analyze its concentration. Obviously, it is highly depended on new methods of form analysis.It is always demanded a quite high sensitivity and selectivity in form analysis, what is more, the formation of the object should be kept unchanged during the sampling and analyzing procedure. Therefore, form analysis is usually more difficult than quantitative determination of an element or a compound, and it is always connected with separation and concentrating operations.Nowadays, various of separation techniques have been applied in form analysis, which include HPLC, IC, SFC, GC, CZE, and so on. However, these separation techniques always need particular instruments with high cost.Adsorption materials have also been applied in form analysis today. On basis of the difference in adsorbing ability of the materials between different forms, some formation is concentrated or eliminated so as to facilitate the subsequent determination.In this thesis, the work is focused on the application of nanometer sized metal oxides in the fields described above, which mainly includes the following aspects.1. Three kinds of nanometer metal oxide powder were synthesized with Sol-Gel method. The diameter of powder was controlled with surfactants. The average diameter and specific surface area were measured. The synthesis condition, average diameter, specific surface area, stability and photo-catalyzing activity of the three oxides were
    compared systematically.2. The photo-chemical reactivity of nanometer ZnO was applied in photo-degradation of Rhodamine dye. Dynamic molecular spectroscopy was used to trace the kinetics and mechanism of dye on the surface of ZnO. The applicability of nanometer sized ZnO in photo-degradation of rhodamine dye is studied.3. Adsorption behaviors of several metal ions, to say, V(V),Cr(VI),Mo(VI) and W(VI) on nanometer ZrO2 and Fe2O3 were studied systematically. Factors affecting the adsorption and diluting of these ions were examined. Special emphasis was put on the study of Cr(VI), a kind of highly toxic pollutant, thus a new method for treating Cr(VI) ion was built up based on the adsorption power ofZrOi and Fe2O3.4. Adsorption behaviors of V(V) on nanometer ZrO2 was studied and a separation and pre-concentration method for trace amount of V(V) in environmental samples was proposed. The sensitivity and selectivity of the method was much higher than existing methods.5. Adsorption behaviors of three kinds of azo dyes on nanometer ZrO2 were studied. Experimental conditions were optimized and the possibility of eliminating pollution of dyes with nanometer ZrO2 was discussed.6. Adsorption behaviors of As(III)/As(V) on Z1O2 as well as affecting factors including the diluting conditions were studied with spectrophotometry, hence the application of ZrO2 in form analysis was looked in.7. Based upon the above work, the adsorption mechanism of these nanometer sized metal oxides was discussed preliminarily. And the possibility of reusing these metal oxides was studied.
引文
1.张志琨,崔作林.纳米技术与纳米材料,北京:国防工业出版社,2000年.
    2.李泉,曾广赋,席时权.纳米粒子.化学通报,1995,6:29.
    3.张竞敏,唐正文,杨治中.纳米粒子及其材料的特性、应用和制备.广州化学,1995,3:54.
    4.严东生.纳米材料的合成与制备.无机材料学报,1995,10(1):1.
    5.张剑峰,郑强,高长有 等.溶胶—凝胶法制备高分子/无机复合材料.功能材料,2000,31(4):357.
    6.巩雄,张桂兰,汤国庆等.纳米晶体材料研究进展.化学进展,1997,9(4):349.
    7.连伟,刘春艳.金属和半导体纳米微粒薄膜的制备.感光科学与光化学,2001,19(4):286.
    8. Hoffman M.R., Mortin S.T., Choi W., et. aL. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95(1): 69.
    9. Henglein A.. Small-particle research: Physicochemical properities of extremely small colloidal metal and semiconductor particles. Chem. Rev., 1989, 89(8): 1861.
    10.王传义,刘春艳,沈涛.半导体光催化剂的表面修饰.高等学校化学学报,1998,19(12):2013.
    11.付宏祥,吕功煊,李树勇 等.重金属离子的光催化还原研究进展.感光科学与光化学,1995,13(4):325.
    12. 沈伟韧,赵文宽,贺飞等.TiO_2光催化反应及其在废水处理中的应用.化学进展,1998,10(4):349.
    13.张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术进展.环境科学进展,1997,5(3):1.
    14.董庆华.半导体光催化.感光科学与光化学,1993,11(2):76.
    15.喻德忠,蔡汝秀,潘祖亭.纳米技术在处理环境中无机污染物的研究现状.分析科学学报,2003.19(4):389.
    16. Mattews R.W.. Photocatalytic oxidation of organic contaminants in water: an aid to environmental preservation. Pure Appl. Chem., 1992, 64 (9): 1285.
    17. Arejandro M.A., Ung T., Blanco A., et. al.. Silica-coated metals and semiconductors: stabilization and nanostructuring. Pure Appl. Chem., 2000, 72(2): 257.
    18. Oills D.F., Pelizzetti E., Serpone N.. Destruction of water contaminants. Environ. Sci. Technol., 1991, 25 (9): 1523.
    19. Lewis L.N.. Chemical catalysis by colloids and clusters. Chem. Rev., 1993, 93 (8): 2693.
    20. Mills A.. Davies R.H., Worsley D.. Water purification by semiconductor photocatalysis. Chem. Soc. Rev., 1993, 22 (6): 417.
    21. Fox M.A., Dulay M. T.. Heterogeneous photocatalysis. Chem. Rev., 1993, 93 (1): 341.
    22. Linsebigler A.L., Lu G.. Yates Jr. J.T.. Photocatalysis on TiO_2 surfaces: principles, mechanisms and selected results. Chem. Rev. 1995, 95: 735.
    23.高铁,钱朝勇.TiO_2光催化氧化水中有机污染物进展.工业水处理,2000,20(4):10.
    24.贺北平,王占生,张锡辉.半导体光催化氧化有机物的研究现状及发展趋势.环境科学,1994,15(3):80.
    25.张岩峰,魏雨,武瑞涛.TiO_2纳米粉体的制备及应用进展.功能材料,2000,31(4):354.
    26.崔晓莉,江志裕.纳米TiO_2薄膜的制备方法.化学进展,2002,14(5):325.
    27.姚建年.氧化物半导体薄膜的光电效应及其应用.感光科学与光化学,1997,15(4):363.
    28.汪敏强,李广社,易文辉等.功能纳米复合材料的研究现状与展望.功能材料,2000,31(4):337.
    29.刘华蓉,葛学武,倪永红等.无机/有机纳米复合材料的研究进展,化学进展,2001,13(5):403。
    30.李新勇,李树本.纳米半导体研究进展.化学进展,1996,8(3):231.
    31.张池明,姜月顺,刘旺等.TiO_2超微粉光催化还原Cr_2O_7~(2-)的研究.太阳能学报,1991,12(2):176.
    32.Wang S. S., Wang Z. H, Zhuang Q. X.. Appl. Catal., 1992, 1B(4):257.
    33.马万红,蔡汝秀,林智信.流动注射分析在线研究Cr(Ⅵ)在纳米TiO_2表面上的吸附动力学性质.高等学校化学学报,1998,19(10):1566.
    34. Papp J., Shen H.S., Kershaw K. et.al.. Titanium (Ⅳ) oxide photocatalysts with palladium, Chem. Mater., 1993, 5: 284.
    35. Rufus I.B., Ramakrishnan V., Viswanathan B., et. al.. Rhodium and rhodium sulfide coated cadmium sulfide as a photocatalyst for photochemical decomposition of aqueous sulfide. Langrniur, 1990, 6(3): 565.
    36. Sciafani A. ,Mozzanega M.N. ,Pichat P.. Effect of silver deposite on the photocatalytic activity of titanium dioxide samples for the dehydrogenation or oxidation of 2-propanol. J. Photochem. Photobiol., 1991, 59A (2): 181.
    37. Rufus I.B., Viswanathan B., Ramakrishnan V., et. al.. Effect of photodepositon of nickel on the photocatalytic, photoelectrochemical and surface properties of CdS. Indian J. Chem., 1992, 31A(1): 6.
    38. Vogel R., Hoyer P. ,Weller H.. Quantum-sized PbS, CdS, Ag_2S, Sb_2S_3 and Bi_2S_3 particles as sensitizers for various nanoporous wide-bandgap semiconductor. J. Phys. Chem., 1994, 98(12): 3183.
    39. Do Y.R., Lee W., Dwight K., Wold A.. The effect of WO_3 on the photocatalytic activity of TiO_2. J. Solid State Chem., 1994, 108(1): 198.
    40. Hirai T., Watanabe T., Komasawa I.. Preparation of semiconductor nanoparticle-polyurea composites using reverse micellar systems via an in situ diisocyanate polymerization. J. Phys. Chem., 1999, 103B (46): 10120.
    41. Patrick B., Kamat P.V.. Photosensitization of large-bandgap semiconductors. Charge injection from triplet excited thionine into ZnO colloids. J. Phys. Chem., 1992, 96(3): 1423.
    42.毛海舫,田宏建,周庆复等.共吸附对卟啉、酞菁/二氧化钛复合电极光电特性的影响.高等学校化学学报,1997,18(2):268.
    43.袁锋,黎甜楷,沈涛等.荧光素衍生物LB膜对TiO_2电极的光敏化作用.物理化学学报,1995,11(6):526.
    44. Wang Z.H., Zhuang Q.X.. Photocatalytic reduction of pollutant Hg(Ⅱ) on doped WO3 dispersion. J. Photochem. Photobioi., 1993, 75A(2): 105.
    45. Yoneyama H., Yamashita Y.. Heterogenous photocatalytic reduction of dichromate on n-type semiconductor catalysis. Nature, 1979, 282: 817.
    46. Prairie M.R., Evans L.R.. Environ. Sci. Technol., 1993, 27: 1776.
    47. Inel Y. , Ertek D.. Photocatalytic deposition of bismuth(Ⅲ) ions onto TiO_2 powder. J. Chem. Soc. Faraday Trans., 1993, 89(1): 129.
    48. Zouboulis A.I., Kydrs K.A., Marls K.A.. Removal of hexavalent chromium anions from solutions by pyrite fines. Wat. Res., 1995, 29(7):1755.
    49. Sharma D.C., Forster C.F.. Removal of hexavalent chromium using sphagnum moss peat. War. Res., 1993, 27(7): 1201.
    50.陈静远,赵贵英,宋承英等.含碱性表面活性基团活性炭去除Cr(Ⅵ)的研究.工业水处理,2002,22(9):19.
    51. Lin W.Y., Chang W., Rajeshwar K.. Photocatalytic reduction and immobilization of hexavalent chromium at titanium dioxide in aqueous basic media. J. Electrochem. Soc., 1993, 140(9): 2477.
    52. Munoz J., Domenech X.. TiO_2 catalysed reduction of Cr(Ⅵ) in aqueous solutions under ultraviolet illumination. J. Appl. Electrochem., 1990, 20(3): 518.
    53. Domenech J., Munoz J.. Photocatalytical reduction of Cr(VI) over ZnO powder. Eiectrochimica. Acta., 1987, 32(9): 1383.
    54. Domenech J. ,Munoz J.. Photochemical elimination of Cr(Ⅵ) from neutral-alkaline solutions. J. Chem. Tech. Biotechnol., 1990, 47: 101.
    55. Aguado M.A., Gimenez J., March S.C.. Continuous photocatalytic treatment of Cr(VI) effluents with semiconductor powders. Chem. Eng. Comm., 1991,104:71.
    56.许宜铭,陈效良.光化学法处理含铬(Ⅵ)含氰废水的研究.环境科学,1991,12(3):41.
    57.张青红,高濂,郭景坤.TiO_2纳米晶光催化降解铬酸根离子的研究.高等学校化学学报,2000,21(10):1547.
    58. Khalil L.B., Mourad W.E., Rophael M.W.. Photocatalytic reduction of environmental pollutant Cr(Ⅵ) over some semiconductors under UV/visible light illumination. Appl. Catal., 1998,17B (3): 267.
    59. Tanaka K., Harada K., Murata S.. Photocatalytic deposition of matal ions onto TiO2 powder. Solar Energy, 1986,36(2): 159.
    60. Tennakone K., Thaminimulle C.T.K., Senadeera S., et. al.. TiO_2-catalysed oxidative photodegradation of mercurochrome: an example of an organo-mercury compound. J. Photochem. Photobiol., 1993, 70A(2): 193.
    61. Martin S.T. et. al.. Chemical mechanism of inorganic oxidants in the TiO_2/UV process: Increased rates of degradation of chlorinated hydrocarbons. Environ. Sci. Technol. 1995, 29 (10): 2567.
    62.冷文华,张昭,成少安等.光电催化降解苯胺的研究—外加电压的影响.环境科学学报,2001,21(6):710.
    63. Hada H., Tanemura H., Yonezawa Y.. The photoreduction of the silver ion in a zinc oxide suspension. Bull. Chem. Soc. Jan., 1978, 51(11): 3154.
    64. Hada H., Yonewa Y., Saikawa M.. Photoreduction of the silver ion in a titanium dioxide suspension. Bull. Chem. Soc. Jan., 1982, 55(7): 2010.
    65. Gao Y.M., Lee W., Trehan R., et. al.. Improvement of photocatalytic activity of titanium(Ⅳ) oxides by dispersion of Au on TiO_2. Mat. Res. Bull., 1991, 26(12): 1247.
    66. Reiche H., Dunn W.W., Bard A.J.. Heterogeneous photocatalytic and photosynthetic deposition of copper on TiO_2 and WO_3 powders. J. Phy. Chem., 1979,83(17): 2248.
    67. Foster N.S., Noble R.D., Koval C.A.. Reversible photoreductive deposition and oxidative dissolution of copper ions in titanium dioxide aqueous suspensions. Environ. Sci. Technol., 1993, 27: 350.
    68. Gessert T.A., Williamson D.L., Nozik A.J.. Mossbauer spectroscopy study of the kinetics of photoreduction of Fe~(3+) on CdS semiconductor powders. J. Phy. Chem., 1990, 94(5): 1958.
    69. Amadelli R., Maldotti A., Sostero S., Carassiti V.. Photodeposition of uranium oxides onto TiO_2 from aqueous uranyl solutions. J. Chem. Soc. Faraday Trans., 1991, 87(19): 3267.
    70. Frank S.N. , Bard A.J.. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at TiO_2 powders. J. Am. Chem. Soc., 1977, 99(1): 303.
    71. Hidaka H., Nakamura T., Ishizaka A., et. al.. Heterogeneous photocatalytic degradation of cyanide ion at TiO_2 surfaces. J. Photochem. Photobiol., 1992,66A(3): 367.
    72. Matsumura M., Saho Y., Tsubomura H.. Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. J. Phys. Chem., 1983, 87(19): 3807.
    73. Bedja I., Kamat P.V.. Capped semiconductor colloids. Synthesis and photoeletrochemicai behavior of TiO_2 capped SnO_2 nanocrystallites. J. Phys. Chem., 1995, 99(22): 9182.
    74. Yamashita H., lchihashi Y., Anpo M.. Photocatalytic decomposition of NO at 275K on titanium oxides included within Y-zeolite cavities: the structure and role of the active sites. J. Phys. Chem., 1996, 100(40): 16041.
    75.郭林,吴波,庄亚辉等.钴氧化物纳米催化剂的制备及其对N_2O的分解.环境科学学报,1998,18(5):457.
    76. Navio J.A., Colon G., Trillas M., et. al.. Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(Ⅵ) reduction on iron-doped titania prepared by the wet impregnation method. Appl. Catal., 1998, 16(2): 187.
    77.张艳,赵宜江,嵇鸣等.印染废水物理化学脱色方法的研究进展.水处理技术.2001,27(6):311.
    78.陈银生,张新胜,袁渭康.印染废水处理技术.化工进展,2001,19(5):39.
    79.余刚,杨志华,祝万鹏等.染料废水物理化学脱色技术的现状与进展.环境科学,1994,15(4):75.
    80.冯冰凌,叶菊招,郎雪梅.聚氨基葡糖超滤膜的研制及其在印染废水处理中的应用.工业水处理,1998,18(4):16.
    81. Reed B.E., Matsumoto M.R., et al. Physicochemical processes. Wat. Environ. Res., 1998,70(4): 449.
    82.朱小华.混凝沉淀法预处理丝绸砂洗废水.环境污染与防治,1992,14(4):9.
    83. Lin S.H., Peng C.E. Treatment of textile wastewater by electrochemical method. Wat. Res., 1994, 28(2): 277.
    84.汪凯民,靳志军.印染废水治理技术进展.环境化学,1991,12(4):62.
    85.赵文宽,方佑龄,董庆华.用高温热水解法制备高活性TiO_2纳米微晶光催化剂.物理化学学报,1998,14(5):424.
    86. Ohno T., Saito S., Fujihara K. et. al.. Photocatalyzed production of hydrogen and iodine from aqueous solutions of iodide using platinum-loaded TiO_2 powder. Bull. Chem. Soc. Jpn., 1996, 69 (11): 3059.
    87.王伯勇,魏丰华,刘娅琳等.TiO_2、ZnO和CdS的光催化甲基橙脱色比较.工业水处理,2002,22(4):40.
    88.王怡中,符雁,汤鸿霄.甲基橙溶液多相光催化降解研究.环境科学,1998,19(1):1.
    89.符小荣,张校刚,宋世庚等.TiO_2/Pt/glass纳米薄膜的制备及对可溶性染料的光电催化降解. 应用化学,1997,14(4):77.
    90.杨水,金凌艳,雷葵红等.光催化法处理活性绿染料废水.湖北化工,1997,14(1):53.
    91. Vinodgopal K., Wynkoop D.E., Kamat P.V.. Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, acid orange 7, on TiO_2 particles using visible light. Environ. Sci. Technol. 1996, 30(5): 1660.
    92. Vinodgopal K., Wynkoop D.E., Kamat EV.. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO_2 coupled semiconductor thin films. Environ. Sci. Technol. 1995, 29 (3): 841.
    93.陈菲力,刘晓国.太阳能光催化降解法去除罗丹明染料的研究.化工环保,1997,17(1):3.
    94.岳林海,樊邦棠.半导体复合材料光催化降解水溶性染料研究.环境污染与防治,1994,16(4):2.
    95.吴海宝,董晓耒.太阳能-TiO_2非均相光催化氧化染料污水脱色研究.中国环境科学,1997,17(1):93.
    96.崔玉民,朱亦仁,王克中.用复相光催化剂WO_3/CdS深度处理印染废水的研究.工业水处理,2001,21(2):9.
    97.杨晶,施利毅,张仲燕等.活性艳红X—3B氧化脱色的研究.上海大学学报,1998,4(5):586.
    98.尹晓红,张敏莉,张艳芳 等.二氧化钛悬浆体系光催化降解4BS染料的研究.工业水处理,2000,20(10):15.
    99.侯海军,单宝田,马根之等.活性炭催化氧化对活性艳红X—3B脱色的试验。水处理技术,2002,28(3):152.
    100.石建敏,李巧玲,周仁贤 等.二氧化钛光催化降解水溶性分散染料的研究.水处理技术,2002,28(2):105.
    101.马万红,蔡汝秀,刘志宏等.偶氮类化合物在纳米TiO_2表面光降解的UV—Vis光谱示踪研究(Ⅰ)—中间体的发现及动力学行为.高等学校化学学报,1999,20(10):1542.
    102.Watanabe T., Takizawa T, Honda K.. Photocatalysis through excitation of adsorbates. 1. highly efficient N-deethylation of Rhodamine B adsorbed tO CdS. J. Phys. Chem. 1977,81:1845.
    103.马颖,姚建年.罗丹明在TiO_2薄膜和P—25涂层催化下光反应的比较.感光科学与光化学,1998.16(2):117
    104. Anderson C., Bard A.J.. An improved photocatalyst of TiO_2/SnO_2 prepared by a sol-gel synthesis. J. Phys. Chem., 1995, 99 (24): 9882.
    105. Mattews R.W.. Photooxidative degradation of coloured organics in water using supported catalysts. Wat. Res., 1991, 25 (10): 1169.
    106.郭新章,邓南圣.TiO_2、WO_3对活性染料水溶液的光催化降解.工业水处理,1992,12 (2):15.
    107.樊邦棠,李坚.可溶性染料光催化降解研究.环境污染与防治,1989,11(4):16.
    108.祝万鹏,王利,杨志华等.光催化氧化法处理染料中间体H酸水溶液。环境科学,1996,17(4):7.
    109. Hustert K., Zepp R.G.. Photocatalytic degradation of selected azo dyes. Chemosphere, 1992, 24 (3): 335.
    111. Dieckmann M.S., Gray K.A., Zepp R.G.. The sensitized photocatalysis of azo dyes in a solid system: a feasibility study. Chemosphere, 1994, 28:1021.
    111.王九思,赵红花.负载型纳米TiO_2光催化降解活性艳红X—3B染料.应用化学,2002,19(8):792.
    112.王娅娟,李斌,魏培海等.溶胶—凝胶法制备TiO_2/玻璃膜和光催化降解玫瑰红B的研究.应用化学,2001,18(1):36.
    113.崔斌,韩欢牛,李淑妮等.Fe_2O_3掺杂TiO_2薄膜对甲基紫溶液光催化降解.应用化学,2001,18(12):958.
    114.蒋正静,戴洁,张志兰等.锌、镉掺杂纳米级钛酸铅的制备及对活性翠蓝的光催化降解.应用化学,2001,18(7):552.
    115.杨秋华,傅希贤,王俊珍等.La_(1-x)Sr_xFeO_3光催化降解水溶性染料.应用化学,2000,17(6):585.
    116.刘惠玲,周定,李湘中等.网状Ti/TiO_2电极光电氧化罗丹明B.环境科学,2002,23(4):47.
    117.曹长春,蒋展鹏,余刚等.TiO_2薄膜光电协同催化氧化降解活性艳红X—3B.环境科学,2002,23(6):108.
    118.杨曦,余刚,孔令仁等.酸性红3B的杂多酸光催化降解动力学.环境科学,2002,23(3):40.
    119.吴海宝,董晓耒.太阳能光催化降解染料污水脱色研究.太阳能学报。1997,18(4):380.
    120.崔玉民,范少华.复合纳米微粒Rh~(3+)/TiO_2/SnO_2的合成、表征及光催化降解4—(2—吡啶偶氮)问苯二酚的研究.感光科学与光化学,2003,21(3):161.
    121.汤斌,张庆庆.光析出二氧化钛负载银膜的制备及其光催化特性.感光科学与光化学,2003,21(5):328
    122. Yamashita H., Ichihashi Y., Harada M. et. al.. Photocatalytic degradation of l-octanol on anchored titanium oxide and on TiO_2 powder catalysts. J. Catal., 1996, 158: 97.
    123. Tennakone K., Kottegoda I.. Photocatalytic mineralization of paraquat dissolved in water by TiO_2 supported on polythene and polypropylene films. J. Photochem. Photobiol., 1996, 93A : 79.
    124. Tada H., Tanaka M.. Dependence of TiO_2 photocatalytic acitivity upon its films thickness. Langmiur, 1997, 13: 360.
    125. Ma Y., Yao J.N.. Photodegradation of Rhodamine B catalyzed by TiO_2 thin films. J. Photochem. Photobiol., 1998, 116A: 167.
    126.吴奇藩,孔庆安,王超.混凝剂FAS的制备及性能研究.环境科学,1995,16(3):41。
    127.刘万毅等.复合絮凝剂PAFCS的絮凝研究.工业水处理,1996,16(4):29.
    128.黄彩海,苏广路,杨丽娟.粉煤灰基混凝剂制备及应用研究.环境科学,1995,16(2):47.
    129. Domenech J., Anders M.. Photocatalytic reduction of mercury(Ⅱ) ions in aqueous suspensions of titanium dioxide and tungsten trioxide. Gazzetta Chimica Italiana., 1987,117(8) : 495.
    130. Morterra C.. An infrared spectroscopic study of anatase properties. J. Chem. Soc. Faraday Trans., 1988, 84(5): 1617.
    131. Ragai J., Selim S.I. Ion-exchange and surface properties of titania gels from Ti (Ⅲ) solutions. J. Colloid Interface Sci., 1986,115(1) : 139.
    132. Bieam W.E, Mcbride M.B.. The chemistry of adsorbed Cu (Ⅱ) and Mn (Ⅱ) in aqueous titanium dioxide suspensions. J. Colloid Interface Sci., 1986,110(2): 335.
    133. Fuerstenau D.W., Osseo-Asare K.. Adsorption of copper, nickel and cobalt by oxide adsorbents from aqueous ammoniacal solutions. J. Colloid Interface Sci., 1987,118(2): 524.
    134. Ma W.H., Cai R.X., Lin Z.X.. Flow-injection microcolumn on-line preconcentration for the determination of chromium (Ⅵ). Wuhan University J. (Natural Sci.), 1998,3(3): 464.
    135.魏云鹤,主沉浮,高峰等.正电纳米材料—氢氧化铝镁对Cr(Ⅵ)的吸附.工业水处理,2002,22(11):31.
    136.肖亚兵,钱沙华,黄淦泉等.纳米二氧化钛对砷(Ⅲ)和砷(Ⅴ)吸附性能的研究.分析科学学报,2003,19(2):172.
    137.张海霞,朱彭龄.固相萃取.分析化学,2000,28(9):1172.
    138. Vassileva E., Proinova I., Hadjiivanov K.. Solid-phase extraction of heavy metal ions on a high surface area titanium dioxide (anatase). Analyst, 1996,121: 607.
    139.余体芳,周凌风.负载炭粉分离富集纯铝中铁、锰、铜、锌后原子吸收光度法测定.光谱学与光谱分析,1995,15(5):57,
    140.余体芳.活性炭吸附分离-火焰原子吸收光度法测定钼中Co、Ni、Cu、Zn.分析试验室,1996,15(3):79.
    141.袁湘林,张寒琦,崔振峰等.改进的微波等离子体炬用于原子发射光谱法在线富集铁的研究.分析测试学报,1997,16(4):1.
    142.孙俊梅,廖振环,江祖成.复合螯合剂/活性炭分离和ICP-AES同时测定水样中痕量元素.环境科学与技术,1998,2:24.
    143.滕文锋,徐恒瑰,张国娟.双硫腙-活性炭柱富集分离水中痕量铅的条件研究.光谱实验室,1998,15(2):52.
    144.徐慧,王继林,王国彦等.矿石中超痕量铂钯金铑的同时测定.光谱学与光谱分析,1999,19(2):191.
    145.木冠南,李琳,扬立英等.氧化活性炭吸附Cd(Ⅱ)离子及表面活性剂对其吸附量的影响.离子交换与吸附,1999,15(5):468.
    146. Rajakovic L.V.. The sorption of arsenic onto activated carbon impregnated with metallic silver and copper. Sep. Sci. & Tech., 1992, 27: 1423.
    147.刘奇,李全民,张永才.负载水杨酸荧光酮-活性炭吸附富集-分光光度法测定水中痕量钒.分析试验室,2000,19(3):25.
    148. Hiraide M., Sorouradin M.H., Kawaguchi H.. Immobilization of dithizone on surfactant-cated alumina for preconcentration of metal ions. Anal. Sci., 1994,10: 125.
    149. Hiraide M., Iwasawa J., Hiramatsu S. et. al.. Using of surfactant aggregates formed on alumina for the preparation of chelating sorbents. Anal. Sci., 1995,11: 611.
    150. Hiraide M., Ohta Y., Kawaguchi H.. Immobilization of 1-nitroso-2-naphthol on surfactant-cated alumina for the collection of traces of cobalt (Ⅱ) ions. Fresenius J. Anal. Chem., 1994,350: 648.
    151. Manzoori J., Sorouraddin M.H, Shabani A.. Determination of mercury by cold vapour atomic absorption spectrometry after preconcentration with dithizone immobilized on surfactant-coated alumina. J. Anal. At. Spectrom., 1998, 13: 305.
    152.赛音,杨文斌,张晓钰.流动注射在线富集火焰原子吸收测定痕量砷.光谱学与光谱分析,1995,15(4):91.
    153.吕鉴泉,吕桂英,周兴旺.BDAB键合硅胶富集测定水体中痕量汞(Ⅱ)的研究.环境科学,1999,20(1):95.
    154.吕鉴泉,吕桂英,王金呜.镉试剂2B改性硅胶富集和测定水体中的镉.分析科学学报,1999,1S(2):140
    155. Filho N.L.D., Gushikem Y., Polito W.L.. 2-Mecaptobenzothiazole clay as matrix for sorption and preconcentration of some heavy metals from aqueous solution. Anal. Chim. Acta., 1995, 306: 167.
    156.李琳,冯易君,黄淦泉.氢氧化铝共沉淀浮选石墨炉原子吸收测水中铬(Ⅲ)与铬Cr(Ⅵ).光谱学与光谱分析,1998,18(3):354.
    157. Towler P.H., Smith J.D., Dixon D.R.. Magnetic recovery of radium, lead and polonium from seawater samples after preconcentration on a magnetic adsorbent of manganese dioxide coated magnetite. Anal. Chim. Acta., 1996, 328: 53.
    158. Dasmahapatra G.E, Pal T.K., Bhadra A.K. et. al.. Studies on separation characteristics of hexavalent chromium from aqueous solution by fly ash. Sep. Sci. & Tech., 1996, 31: 2001.
    159.张兆春,刘振学,牛富玲.活性矸对硫、氟、铬阴离子吸附的研究.环境化学,1996,15(5):415.
    160.袁东星,王小如,杨艽原等.化学形态分析.分析测试通报,1992,14(4):1.
    161. Templeton D., Ariese F., Cornelis R. et. al.. Guidelines for terms related to chemical speciation and fractionation of elements, definitions structural aspects and methodological approaches. Pure Appl. Chem., 2000, 72: 1453.
    162.陈新坤,马锦秋,黄志荣.高压液相色谱—电感耦合等离子体发射光谱联用技术在元素形态分析中的应用.岩矿测试,1998,17(1):51.
    163.严秀平,倪哲明.联用技术应用于生物分子中金属和类金属的形态分析.光谱学与光谱分 析,2001,21(2):129.
    164. Guerin T., Astruc A., Astruc M.. Speciation of arsenic and selenium compounds by HPLC hyphenated to specific detectors. Talanta, 1999, 50: 1.
    165. Campanella L., Pyzynska K., Trojancwicz M.. Chemical speciation by flow-injection analysis. Talanta, 1996, 43: 825.
    166. Posta J., Gaspar A., Toth R. et. al.. Cr(Ⅲ) and Cr(Ⅵ) on-line preconcentration and determination with high performance flow flame emission spectrometry in natural samples. Fresenius J. Anal. Chem., 1996,355:719.
    167.田肖丹,杨艽原,何星存等.毛细管区带电泳用于分离分析砷化合物的研究 高等学校化学学报,1998,19(1):27.
    168.孔庆安,吴奇藩,林罗发等.活性氧化铝富集火焰原子吸收法测定铬(Ⅲ)和铬(Ⅵ).分析测试学报,1996,15(4):74.
    169. Yu J.C., Wu X.J., Chen Z.L.. Separation and determination of Cr(Ⅲ) by titanium dioxide-filled column and inductively coupled plasma mass spectrometry. Anal. Chim. Acta., 2001,436: 59.
    170. Romero-Gonzalez M., Williamx C.J., Gardiner P.H.E.. The application of dealginated seaweed as a cation exchanger for on-line preconcentration and chemical speciation of trace metals. J. Anal. At. Spectrom., 2000,15: 1009.
    171.李顺兴,黄淦泉,钱沙华。固氮蓝藻分离富集石墨炉原子吸收光谱法测定痕量Cr(Ⅵ)/Cr(Ⅲ).分析科学学报,1995,11(1):42.
    172. Bag H., Turker A.R., Lale M. et. al.. Separation and speciation of Cr(Ⅲ) and Cr(Ⅵ) with saccharomyces cerevisiae immobilized on sepiolite and determination of both species in water by FAAS. Talanta, 2000, 51: 895.
    173. Xue A.E, Qian S.H., Huang G.Q.. Separation and preconcentration of chromium speciation on chitosan and determination by graphite furnace atomic absorption. J. Anal. At. Spectrom., 2000,15: 1513.
    174. Donais M.K., Henry R., Rettberg T.. Chromium speciation using an automated liquid handling system with inductively coupled plasma-mass spectrometric detection. Talanta, 1999, 49: 1045.
    175. Hirata S., Honda K., Shikino O., et. al.. Determination of chromium(Ⅲ) and total chromium in seawater by on-line column preconcentration inductively coupled plasma mass spectrometry. Spectrochim. Acta., 2000,55B: 1089.
    176. Demirata B., Tor I., Filik H. et. al.. Separation of Cr(Ⅲ) and Cr(Ⅵ) using melamine-formaldehyde resin and determination of both species in water by FAAS. Fresenius J. Anal. Chem., 1996, 356: 375.
    177. Adria-Cerezo D.M., Llobat-Estelles M., Mauri-Aucejo A.. Preconcentration and speciation of chromium in waters using solid-phase extraction and atomic absorption spectrometry. Talanta, 2000, 51: 531.
    178.蒋育澄,张志琪,庞奖励.流动注射在线分离富集火焰原子吸收光谱法用于cr(Ⅲ)和cr(Ⅵ)的形态分析.陕西师范大学学报,2000,28(2):69.
    179.罗津新.TBP萃淋树脂分离GFAAS法测定水与废水中铬(Ⅵ)和铬(Ⅲ).中国环境监测,1999,15(4):36.
    180. Smichowski P., Marrero J., Ledesma A.. Speciation of As(Ⅲ) and As(Ⅴ) in aqueous solutions using baker's yeast and hydride generation inductively coupled plasma atomic emission spectrometric determination. J. Anal. At. Spectrom., 2000, 15: 1493.
    181. Anezaki K., Nukatsuka I., Ohzeki K.. Determination of arsenic(Ⅲ) and total arsenic(Ⅲ,Ⅴ) in water samples by resin suspension graphite furnace atomic absorption spectrometry. Anal. Sci., 1999, 15: 829.
    182. Latva S., Peraniemi S., Ahlgren M.. Separation of microgram quantities of As(Ⅴ),As(Ⅲ) and organoarsenic species in aqueous solutions and determination by energy dispersive X-ray fluorescence spectrometry. Analyst, 1999,124: 1105.
    183. Li S.X., Qian S.H., Huang G.Q. et. al.. Gomez M., Camara C., Palacios M.. Separation and preconcentration of Se(Ⅳ)/Se(Ⅵ) speciation on algae and determination by graphite furnace atomic adsorption spectrometry in sediment and water. Fresenius J. Anal. Chem., 1999, 365: 469.
    184.姜建生,黄淦泉,钱沙华等.交联壳聚糖在硒的形态分析中的应用研究.光谱学与光谱分析,1999,19(1):75.
    185. Robles L.C., Feo J.C., Cells B. et. al.. Speciation of selenite and selenate using living bacteria. Talanta, 1999, 50: 307.
    186. Pyrzynska K.. Separation of inorganic selenium species on anion-exchange resins. Analyst, 1995, 120: 1933.
    187. Pyrzynska K., Drzewicz P., Trojanowicz M.. Preconcentration and separation of inorganic selenium species on activatied alumina. Anal. Chim. Acta., 1998, 363: 141.
    188. Larraya A., Cobofernandez M., Palacios M. A. et. al.. Preconcentration of inorganic selenium species(Se(Ⅳ) and Se(Ⅵ)) in an alumina filled microcolumn and on-line determination by hydride generation atomic absorption spectrometry. Fresenius J. Anal. Chem., 1994, 350: 667.
    189. Yan X. P., Sperling M., Welz B.. On-line coupling of flow injection microcolumn separation and preconcentration to electrothermal atomic absorption spectrometry for determination of (ultra) trace selenite and selenate in water. Anal. Chem., 1999, 71: 4353.
    190. Vilano M., Rubio R.. Liquid chromatography-UV irradiation-hydride generation-atomic fluorescence spectrometry for selenium speciation. J. Anal. At. Spectrom., 2000, 15: 177.
    191. Aller A.J., Robles L.C.. Determination of selenocystamine by slurry sampling electrothermal atomic absorption spectrometry after a selective preconcentration by living pseudomonas putida. J. Anal. At. Spectrom., 1998, 13: 469.
    192.邹海峰,田丽玉,姜桂兰 等.聚氨酯泡塑对不同价态金吸附性能的研究及应用.岩矿测试,2001,20(3):187.
    193.叶映雪.流动注射固相萃取预富集原子吸收光谱测定铁的价态.分析测试技术与仪器,2000,6(1):31.
    194.徐光明,叶映雪,殷学峰 等.在线固相萃取预富集一原子吸收联用测定痕量Fe(Ⅱ)和铁总量.高等学校化学学报,2000,21(3):350.
    195. Adams M.L., Poweli K.J.. Flow injection method for iron fractionation by reaction with oxine-derivatised fractogel. Anal. Chim. Acta., 2001, 433: 289.
    196. Bagheri H., Gholami A., Najafi A.. Simultaneous preconcentration and speciation of iron(Ⅱ) and iron(Ⅲ) in water samples by 2-mercaptobenzimidazole-silica gel sorbent and flow injection analysis system. Anal. Chim. Acta., 2000, 424: 233.
    197. Powell K.J.. Application of flow injection analysis adsorption-elution protocols for aluminium fractionation. Analyst, 1998,123: 797.
    198.李玉珍,陈德勋.环境样品中铝的形态分析.岩矿测试,1999,18(4):241.
    199. Xue A.F., Qian S.H., Huang G.Q.. Separation and preconcentration of Mn~(Ⅶ)╱Mn~(Ⅱ) speciation on crosslinked chitosan and determination by flame atomic absorption spectrometry. Analyst, 2001, 126: 239.
    200. Madrid Y., Cabrera C., Corona T.P. et. al.. Speciation of methylmercury and Hg(Ⅱ) using Baker's yeast biomass (saccharomyces cerevisiae). Determination by continuous flow mercury cold vapor generation atomic absorption spectrometry. Anal. Chem., 1995, 67 : 750.
    201. Corona T.P., Madrid Y., Camara C. et. al.. Living organisms as an alternative to hyphenated techniques for metal speciation. Evaluation of Baker's yeast immobilized on silica gel for Hg speciation. Spectrochim. Acta, 1998, 53B: 321.
    202. Robles L.C., Feo J.C., Aller A.J.. Selective preconcentration of phenyl-mercury by living escherichia coli and its determination by cold vapour atomic absorption spectrometry. Anal. Chim. Acta., 2000, 423: 255.
    203.王梅林,黄淦泉,钱沙华等.交联壳聚糖在汞的形态分析中的应用研究.分析化学,1998,26(1):12.
    204. Jian W., Mcleod C.W.. Rapid sequential determination of inorganic mercury and methylmercury in natural waters by flow injection-cold vapour-atomic fluorescence spectrometry. Talanta, 1992, 39: 1537.
    205. Blanco R.M., Villanueva M.T., Uria J.E. et. al.. Field sampling, preconcentration and determination of mercury species in river waters. Anal. Chim. Acta., 2000, 419: 137.
    206. Baena J.R., Gallego M., Valcarcel M.. Speciation of inorganic lead and trialkyllead compounds by flame atomic absorption spectrometry following continuous selective preconcentration from aqueous solutions. Spectrochim. Acta., 1999, 54B: 1869.
    207. Naghmush A. M., Pyrzynska K., Trojanowicz M.. Flame AAS determination of lead in water with flow-injection preconcentration and speciation using functionalized cellulose sorbent. Talanta, 1995, 42: 851.
    208. Salih B.. Speciation of inorganic and organolead compounds by gas chromatography-atomic absorption spectrometry and the determination of lead species after preconcentration onto diphenylthiocarbazone-anchored polymeric microbeads. Spectrochim. Acta., 2000, 55B: 1117.
    209. Garbos S., Rzepecka M., Bulska E.. Microcolumn sorption of antimony (Ⅲ) for antimony speciation studies. Spectrochim. Acta., 1999, 54B: 873.
    210. Corona T. P., Madrid Y., Camara C.. Evaluation of selective uptake of selenium (Se(Ⅳ) and Se(Ⅵ)) and antimony (Sb(Ⅲ) and Sb(Ⅴ)) species by Baker's yeast cells (saccharomyces cerevisiae). Anal. Chim. Acta., 1997, 345: 249.
    211.姜建生,黄淦泉,钱沙华 等.交联壳聚糖在锑的形态分析中的应用.分析测试学报,1998,17(4):1.
    212. Sayago A., Beltran R., Goez-Ariza J.L.. Hydride generation atomic fluorescence spectrometry (HG-AFS) as a sensitive detector for Sb(Ⅲ) and Sb(Ⅴ) speciation in water. J. Anal. At. Spectrom., 2000, 15: 423.
    213. Gaspar A., Posta J.. Rapid and simple chromatographic separation of V(Ⅴ) and V(Ⅳ) using KH-phthalate and their determination by flame atomic absorption spectrometry. Fresenius J. Anal. Chem., 1998, 360: 179.
    214. Wuilloud R. G., Wuilloud J.C., Olsina R.A. et. al.. Speciation and preconcentration of vanadium(Ⅴ) and vanadium(Ⅳ) in water samples by flow injection-inductively coupled plasma optical emission spectrometry and ultrasonic nebulization. Analyst, 2001, 126:715.
    215. Vassileva E., Hadjiivanov K., Stoychev T. et. al.. Chromium speciation analysis by solid-phase extraction on a high surface area TiO_2. Analyst, 2000, 125: 693.
    216.梁沛,李春香,秦永超等.纳米二氧化钛分离富集和ICP-AES测定水样中Cr(Ⅲ)/Cr(Ⅵ).分析科学学报,2000,16(4):300.
    217.高鸿.分析化学前沿.北京:科学出版社,1991年.
    218. Hadjiivanov K., Klissurski D., Kantcheva M. et. al.. State and localization of cobalt, nickel and copper ions adsorbed on titania(anatase). J. Chem. Soc. Trans., 1991, 87: 907.
    219. Vassileva E., Varimezova B., Hadjiivanov K.. Column solid-phase extraction of heavy matal ions on a high surface area CeO_2 as apreconcentration method for trace determination. Anal. Chim. Acta., 1996, 336: 141.
    220.梁沛.武汉大学博士学位论文,2002年.
    221.李春香,秦永超,梁沛等.用等离子体发射光谱法研究纳米二氧化钛对钨酸根离子的吸附行为.分析化学,2001,29(12):1419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700