北祁连造山带早古生代花岗岩岩石学特征及其与构造演化的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北祁连造山带经历了多期次、多阶段的复杂构造演化,形成了不同类型的花岗岩类。本文选择了祁连山地区东部13个花岗岩体,进行了系统的岩石地球化学、锆石U-Pb年代学和锆石原位Hf同位素、全岩Rb-Sr、Sm-Nd同位素地球化学研究,并在前人工作的基础上,结合花岗岩类岩石地球化学特征及年代学结果,划分了花岗质岩浆活动的期次,阐述了各期次花岗岩类的岩石成因、源区物质特征及其形成的地球动力学背景。
     北祁连造山带的花岗质岩浆活动可划分为4期共5个阶段:第1期(505.4-498.6Ma)属晚寒武世,主要为出露于北祁连造山带东南侧的石英闪长岩、花岗闪长岩,具有Ⅰ型花岗岩的特点,属于VAG型花岗岩。第Ⅱ期(464.6-440.9Ma)属早中奥陶世,该期岩浆活动规模最大,分布范围最广,具有I-S过渡型花岗岩的特征。早阶段(464.6-450.6Ma)形成的石英闪长岩—花岗闪长岩—花岗岩具有低硅、高FeOT、∑REE、Y,弱过铝质的特征;晚阶段(450.3-440.9Ma)形成具有低∑REE、Y特征的两类花岗岩:一类具有高Sr、低Y的特征;另一类为低Sr、低Y的特征。第Ⅲ期(435-421.3Ma)属晚奥陶世,在整个祁连山地区不同的构造块体上均有分布,具有低硅、高铝、高Sr、高Y,富碱的特征,属于造山带根部的岩石圈发生拆沉,引起造山带上不同块体的伸展、滑塌环境下形成的造山后Ⅰ型花岗岩类。第Ⅳ期(422~418.1Ma)属中晚志留世,主要为分布在走廊过渡带的A型花岗岩,具有高硅、低铝、低Na2O/K20、低Sr,轻重稀土具有弱分馏、强负铕异常(δEu=0.11-0.49)的雁行式配分特征,标志着北祁连俯冲造山带造山过程的结束。
     锆石原位Lu-Hf同位素及全岩Sr-Nd同位素研究表明,第Ⅰ期花岗岩类的εHf(t)=-5.7--2.5、二阶段模式年龄(TDM2)=1.31-1.83Ga,其源岩为壳幔混合物质,主要为中元古代幔源物质。第Ⅱ期早阶段(464.6-450.6Ma)分布在北祁连俯冲造山带南侧的花岗岩类的εHf(t)=-1.4~12、TDM2=0.68-1.53Ga,推测其源岩主要为新元古代幔源物质,并混入少量中元古代壳源物质。分布在北祁连俯冲造山带北侧的早阶段(464.6-450.6Ma)花岗岩类(样品07CL113、114)的πNd(t)值分别为-8.2、-12.0,TDM2分别为1.86、2.17Ga,表明源岩主要为古老陆壳物质;晚阶段(450.3-440.9Ma)形成的花岗岩类εNd(t)(-5.5~-0.1)、翻f(t)(-1.8~4.8)值增大、模式年龄减少(TDM2=1.2-1.6Ga、TDM2=1.12-1.54Ga),具有壳幔混合源区的特征。第Ⅲ期花岗岩类的εHf(t)变化范围较大(-12.2-1.8)、TDM2=1.3-2.19Ga,表明源岩为新元古代幔源与古元古代壳源物质的混合源。第Ⅳ期形成的A型花岗岩,推测其源岩可能为定位于陆—陆碰撞后造山环境的下地壳变质火成岩。
     在上述研究的基础上,探讨了古生代北祁连俯冲造山带的构造演化特点:(1)寒武纪(512-501Ma)北祁连洋向南俯冲;(2)早—中奥陶世(464.6-440.9Ma)北祁连洋向南俯冲受阻,转为向北俯冲,并最终导致洋盆闭合;(3)晚奥陶世(435Ma-421.3Ma)进入晚造山阶段;(4)中晚志留世(422~418.1Ma)造山作用结束,进入陆内演化阶段。
North Qilian Orogenic Belt (NQOB) underwent complex multi-phase and multi-stage tectonic evolution which yielded different types of granitoids. Thirteen granite bodies in the eastern part of Qilian Mount Area(QMA) were selected in this paper and their petrology, geochemistry, zircon geochronology and in situ zircon Hf isotope as well as whole rock Rb-Sr and Sm-Nd isotope were systematically analyzed,. On the basis of previous works, the granitic magma episodes for NQOB were divided in terms of geochemical characteristics and geochronology results, then petrogenesis of granitoids from NQOB, their source material and geodynamic setting were thereafter illustrated.
     Granitic magma activities of NQOB can be subdivided into four periods(or five stages altogether):The first period (505.4-498.6Ma),occurred in Late Cambrian, mainly consists quartz diorite and granodiorite which belongs to VAG(Volcanic Arc Granite) exposed in the southeast part of NQOB and has the characteristics of type-I granite. The second period (464.6-440.9Ma) belongs to the Early and Middle Ordovician which occurred the largest and most widely distributed granitoids with I-S transitional characteristics. Among which, the earlier stage (464.6-450.6Ma) mainly formed the peraluminous quartz diorite-granodiorite-granite with low SiO2and high FeOT,∑REE, Y content, while the Late stage (450.3-440.9Ma) predominantly generated two types of granitoids with low content of∑REE and Y:one type has the characteristics of the high Sr, low Y; another has low Sr and Y. The third period (453-421.3Ma) granitoids in Late Ordovician are widely distributed in the QMA with low content of SiO2, high Al2O3, Sr, Y and K2O+Na2O content. It is generated by the delamination of the orogen roots, as well as orogenic belt stretching and slump. The fourth period (422-418.1Ma) mainlyn formed A-type granites in the Late Silurian. It has the characteristics of high content of SiO2, low Al2O3, Na2O/K2O and Sr content, merely weak fractionation of LREE/HREE, and strong negative Eu anomalies (δEu=0.11-0.49) which demonstrated the late orogenic process of NQOB, and then entering the intracontinental evolution stage.Zircon Lu-Hf isotope and whole rock Sr-Nd isotopic results show that:the εHf) value of granitoids zircons in first period ranging from-5.7to2.5, their TDM2are1.31-1.83Ga, implying that the protolith of granitoids is mainly Neoproterozoic crust with small amount of mantle-derived component. The εHf(t) value of grantoids zircons from first stage of second period which mainly distributed in the south part of NQOB ranging from-1.4to12, their TDM2are0.68-1.53, suggesting that the protolith is mainly mantle-derived component with small amount of Mesoproterozoic crustal material. Futthermore the εND(t) value of sample 07CL113/114range from-12--8.2, their TDM2are1.86-2.17, implying that the protolith is mainly the ancient continental crust. The εHf(t)(-1.8-4.8) and εNd(t)(-5.5--0.1) value of grantoids zircons from second stage of second period indicated the protolith is crust-mantle mixture. The εHf(t) value of granitoids zircons from the third period range from-12.2to1.8, their TDm2are1.3-2.19Ga, suggesting that the protolith is mainly Paleoproterozoic crust with small amount of Neoproterozoic mantle-derived component. The protolith of fourth period A-type granites might be the metamorphic igneous material from the continent-continent collisional environment.
     Based on the investigations mentioned above, the characteristics of tectonic evolution of NQOB were discussed:(1)North Qilian Ocean(NQO) southward subduction in Cambrian(512-501Ma);(2) northward Subduction of NQO, and ultimately the closure of the ocean basin in the stage of Early-Middle Ordovician (464.6-440.9Ma);(3) Post-orogenic stage in435Ma-421.3Ma;(4) the end of the orogenic process and then came the intracontinental evolution stage(422-418.1Ma).
引文
Atherton M P and Petford N.1993.Generation of sodium-rich magmas from newly underplated basaltic crust.Nature,362,144-46.
    Barbarin B. A review of the relationships between granitoid types,their origins and their geodynamic environments. Lithos,1999,46:605-626.
    Batchelor R A,Peter Bowden.l985.Petrogenetic interpretation of granitoid rock series using multicationic parameters.Chemical Geology,48(1-4):43-45.
    Bryant J A,Yogodzinski G M,Hall M L.2006.Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic Zone,Ecuador.Journal of Petrology,47,1147-1175.
    Castillo P R.2006.An overview of adakite petrogensis.Chinese Science Bulletin. 51(3):257-268.
    Chappell BW, White A J R. Two contrasting granite types.Pacific. Geol.1974.,8:173-174.
    Chien Y T, Houng Y Y,WAN Y S,et al.2006.Finding of Neoproterozoic (-775 Ma) magmatism recorded in metamorphic complexes from the North Qilian orogen: Evidence from SHRIMP zircon U-Pb dating.51(8).
    Crofu F, Hanchar J M, Hoskin P W O, et al.2003. Atlas of zircon textures.Reviews in Mineralogy and Geochemistry,53:469-495.
    Clemens J D,John R.Holloway,White A J R et al.l986.Origin of an A-type granite:Experimental constraints.American Mineralogi st,71:317-324.
    Chappell B W.1999.Aluminium saturation in I and S-type granites and the characterization of fractionated haplogranites. Lithos,46:535-551.
    Costa S and Rey P.1995.Lower crustal rejuvenation and growth during post-thickening collapse.Insight from a crustal cross section through a Variscan Metamorphic core complex.Geology,23:905-908.
    Defant M J,Drummond M S. Derivation Of Some Modern Arc Magmas By Melting Of Young Subducted Lithosphere[J].Nature,1990,347:662-665.
    Elhlou S, Belousova E, Griffin W L, et al.2006.Trace Element And Isotopic Composition Of GJ-red Zircon Standard By Laser Ablation[J]. Geochim CosmochimActa, suppl,A158.
    Forster H J, Tischendorf G, Trumbull R B.1997.An evaluation of the Rb Vs (Y+Yb)discrimination diagram to infer tectonic setting of silicic igneous rocks.Lithos,40:261-293.
    Frost B R., Barnes C G., Collins W J et al.2001.A geochemical classification for granitic rocks.Journal of Petrology,42,2033-2048.
    Feng Yimin, He Shiping. Orogenic process of the Qilian Mountains. Acta Geosci Sinica,1996, Spec il Issue:1-5.
    Froster H J, Tischendorf G and Trumbull R B.1997.An evaluation of the Rb vs (Y+Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks.Lithos,40:261-293.
    Joseph B W, Kenneth L C and Bruce W C.1987.A-type granites:geochemical characteristics, discrimination and petrogenesis. Earth and Environmental Science,95(4):407-419.
    Hanchar J M, Miller C F.1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images:Implications for interpretation of complex crustal histories. Chemical geology,110:1-13.
    Hawkeswortha C J, Gallaghera K, Hergtb J M et al.1994. Destructive plate margin magmatism:Geochemistry and melt generation. Lithos,33(1-3):168-188.
    JULIAN A.PEARCE, NIGEL B. W.HARRIS and ANDREW G.TINDLE.1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology,25(4):956-983.
    Jin-Hui Yang, Fu-Yuan Wu, Sun-Lin Chung et al.2006.A hybrid origin for the Qianshan A-typegranite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence.Lithos,89(1-2):89-106.
    Kelemen P B,Kinzler R JJohnson K T M et al.,1990.High field strength element depletons in arc basalts due to mantle magma interaction.Nature,345:521-524.
    Kinny U S, Strachan R A, Kocks H et al.2003.U-Pb geochronology of the Neoproterozoic augen granites in the Moine Supergroup, NW Scotland:dating of rift-related, felsic magmatism during supercontinent breakup? journal of the Geological Society.London,160:925-934.
    Li Chao-Feng, Li Xian-Hua, Li Qiu-Li, Guo Jing-Hui, Li Xiang-Hui, Tao Liu.2011a. An evaluation of a single-step extraction chromatography separation method for Sm-Nd isotope analysis of micro-samples of silicate rocks by high-sensitivity thermal ionization mass spectrometry. Analytica Chimica Acta,706:297-304.
    Li Chao-Feng, Li Xian-Hua, Li Qiu-Li, Guo Jing-Hui, Li Xiang-Hui, Yang Yue-Heng. 2012. Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme. Analytica Chimica Acta,727:54-60.
    Li Chao-Feng, Li Xian-Hua, Li Qiu-Li, Guo Jing-Hui, Li Xiang-Hui.2011b. Directly determining 143Nd/144Nd isotope ratios using thermal ionization mass spectrometry for geological samples without separation of Sm-Nd. J. Anal. At. Spectrom,26: 2012-2022.
    MAO Jingwen,ZHANG Zuoheng,JIAN Ping,et al.2000.U-Pb Zircon Dating of the Yeniutan Granitic Intrusion in the Western Sector of the North Qilian Mountains.Acta Geologica Sinica-English Edition,74(4):781-785.
    Macpherson C G, Dreher S T,Thirlwall M F et al.2006.Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao,the Philippines.Earth and Planetary Science Letters,243,581-593.
    McMenamin M,McMenamin D.1990.The Emergence of Animals:The Cambridge Breakthrough(Critical Moments in Palebiology and Earth History Series).NewYork:Colubia University Press.
    Phinney R. A., etal. (eds).A National Program for research in continental dynamics, the IRIS Consortium, Arlington,1989.USA.
    Pitcher W S.1979.The nature,ascent and emplacement of granitic magmas.Journal of the Geological Society, London,136:627-662.
    Pitcher W S. The nature and origin of granite. London:Chapman and HallPitcher W S. Granite type and tectonic environment. Mountain Building Processes.1983.London: Academic Press.19-40.
    PEARCE J A,HARRIS N B W and TINDLE A G.1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology,25(4):956-983.
    Pearce J A,Peate D W.1995.Tectonic implications of the composition of volcanic arc magmas.Annual Reviews of Earth and Planetary Sciences,23:251-285.
    Peacock S M,Rushmer T,Thompson A B.1994.Partial melting of subducting oceanic crust.Earth and Planetary Science Letters,121,227-244.
    Robert M P, Clemens J D.1993. Origin of high-potassium, Calc-alkaline, I type granitoids. Geology,21:825-828.
    Robin G.2010. Igneous Rocks and Processes-A Practical guide. wiley-Blackwell,204-205.
    Rubatto D, Gebauer D.2000. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe:Some examples from the western Alps. Cathodoluminescence in Geoscience, Springer-Verlag Berlin Heidelberg, Germany.373-400.
    Smith P E,Tatsumoto M,Farquhar R M.1987.Zircon Lu-Hf systematics and the evolution of the Archean crust in the southern Superior Province,Canada.Contrib Mineral Petrol,97:93-104.
    Song S G, Niu Y L, Su L,et al.2012.Tectonics of the NorthQilianorogen,NW China. Gondwana Research, in press.
    Stolz A J, Jochum K P, Spettel B et al.1996. Fluid and melt related enrichment in the subarc mantle:Evidence from Nb/Ta varitions in island-arc basalts Geology,24:587-590.
    S S.Sun and W F.McDonough.1989.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes.Geological Society,42:313-345.
    Tarney J, Jones C E.1994. Trace element geochemistry of orogenic igneous rocks and crustal growth. J. Geol. Soci. London,151:855-868.
    Williamson B J, Shaw A,Downes H et al.1996.Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France. Chem.Geol.,127:25-42.
    Xia Linqi,Xia Zuchun,Xu Xueyi.Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains, China.Geological Society of America Bulletin.2003, 115(12):1510-1522.
    Xia Linqi, Xia Zuchun, Xu Xueyi.2003.Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains, China.Geological Society of America Bulletin,115(12):1510-1522.
    Yang H Y, Wu Y M, Wu C. Petrology of an arc-oceanic crust contact zone in the Laohushan back-arc basin, the eastern section of the North Qilian Mounatins, NW China. Acta Geol Sin-Engl Ed,2002,76:1—13.
    Ya-Jun Xua,Yuan-Sheng Dua,Peter A.Cawood et al.,2010.Detrital zircon record of continental collision:Assembly of the Qilian Orogen, China.Sedimentary Geology,230(1-2):35-45.
    Yang Yue-Heng, Zhang Hong-Fu, Chu Zhu-Ying, Xie Lie-Wen, Wu Fu-Yuan.2010. Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm—Nd isotope systems using Multi-Collector ICP-MS and TIMS. Int. J. Mass Spectrom.290:120-126.
    Zhang Zhimeng, Liou J G., Coleman R G. An outline of the plate tectonic of China. 1984. Geo.Soc.Amer. Bull,95:.295-312.
    Zheng Y F, Wu Y B, Chen F K, et al.2004.Zircon U-Pb and oxygen iso-tope evidence for a large-scale 180 depletion event in igneous rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta,68:4145-4165.
    鲍志东,李儒峰,冯增昭.1999.鄂尔多斯盆地东西部奥陶系对比研究[J].地质论评,(4):375~381.
    陈化奇.2007.北祁连冷龙岭地区宁缠河花岗岩体的地球化学特征及大地构造意义[J].甘肃地质,4:37~42.
    崔学军,李中兰,朱炳泉等.2008.北祁连西段寒山金矿床铅同位素等时线年龄及意义[J].地质科技情报,27(3):47~72.
    陈隽璐,徐学义,曾佐勋等.2008.中祁连东段什川杂岩基的岩石化学特征及年代学研究[J].岩石学报,,24(4):841~852.
    常华进,储雪蕾,王金荣等.2009.北祁连山东段埃达克岩带Cu、Au成矿初探.《中国科学院地质与地球物理研究所2008学术论文汇编》
    董必谦,邱凤岐.1984.北祁连山蛇绿岩和蛇绿杂岩的特征及其地质构造意义[J].北京:地质出版社,14:217~234.
    董国安,杨怀仁,杨宏仪等.2007.祁连地块前寒武基底锆石SHRIMP U-Pb年代学及其地质意义[J].科学通报,52(13):1572~1585.
    董治平,张元生.2007.河西走廊中部地区三维速度结构研究[J].地球学报,3:270~276.
    董申保,洪大卫,许保良.2001.花岗岩拓扑学的研究展望[J].地质论评,47(4):356~360.
    段吉业,夏德馨,安素兰.2005.新疆库鲁克塔格新元古代一早古生代裂陷槽深水沉积与沉积一构造古地理[J].地质学报,1:7-14.
    杜远生,张哲,周道华等.2002.北祁连-河西走廊志留纪和泥盆纪古地理及其对同造山过程的沉积响应[J].古地理学报,4:1-8.
    杜远生,朱杰,韩欣.2004.从弧后盆地到前陆盆地——北祁连造山带奥陶纪—泥盆 纪的沉积盆地与构造演化[J].地质通报,10:911-917.
    杜远生,朱杰,顾松竹.2006.北祁连肃南一带奥陶纪硅质岩沉积地球化学特征及其多岛洋构造意义[J].地球科学:中国地质大学学报,1:101~109.
    冯益民,吴汉泉.1992.北祁连山及其邻区古生代以来的大地构造演化初探[J].西北地质科学,2:61~74.
    冯益民,何世平,闫军.1994.北祁连山中段早中奥陶世蛇绿岩中席状岩墙杂岩的发现及其地质意义[J].地质论评,40(3):252-264.
    冯益民,何世平.1995.北祁连山蛇绿岩地质和地球化学研究[J].岩石学报,11(增刊):125-146.
    冯益民,何世平.1996.祁连大地构造与造山作用[M].北京:地质出版社:37-109.
    冯益民.1997.祁连造山带研究概况—历史、现状及展望[J].地球科学进展,12(4):307-313.
    马昌前.2003.造山岩套中镁铁质和长英质岩浆的相互作用研究进展[J].地质科技情报,22(3):1-8.
    马昌前,明厚利,杨坤光等.2004.大别山北麓的古生代岩浆弧:侵入岩年代学和地球化学证据[J].岩石学报,20(3):393-402.
    葛肖虹,刘俊来.1999.北祁连造山带的形成与背景[J].地学前缘,6(4):223~229.
    葛肖虹,刘俊来.1999.北祁连造山带的形成与背景[J].地学前缘,6(4):223-229.
    耿元生,王新社,沈其韩等.2006.内蒙古阿拉善地区前寒武纪变质基底阿拉善群的再厘定[J].中国地质,33(1):138~143.
    宫江华,张建新,于胜尧.2011.阿拉善地块南缘龙首山岩群及相关岩石的起源和归属——来自LA-ICP-MS锆石U-Pb年龄的制约[J].岩石矿物学杂志,5:795~818.
    郭进京,陆松年.1999.中国新元古代大陆拼合与Rodinia超大陆[J].高校地质学报,2:148-156.
    侯可军,李延河,邹天人,等.2007LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报[J],23(10):2595-2604.
    霍福臣,曹景轩,董燕生等.1987.贺兰山-阿拉善地区下,中前寒武系的划分对比及其变质,成矿作用特征[J].长春地质学院学报,17(1):35~46.
    何世平,李荣社,王超等.2010.祁连山西段甘肃肃北地区北大河岩群片麻状斜长角闪岩的形成时代[J].地质通报,9:1275~1280.
    洪大卫,王式洗,韩宝福.1995.碱性花岗岩的构造分类及其鉴别标志[J].中国科学D辑,4:418~426.
    黄汲清.1984.中国大地构造特征的新研究[J].中国地质科学院院报,(9):5-18.
    黄汲青,张正坤,张之孟等.1965.中国优地槽和冒地槽以及它们的多旋回发展[M]. 北京:中国工业出版社.
    贾小辉,王强,唐功建.2009.A型花岗岩的研究进展及意义[J].大地构造与成矿学,3:465~480.
    李承东,张旗,苗来成等.2004.冀北中生代高Sr低Y和低Sr低Y型花岗岩:地球化学、成因及其与成矿作用的关系[J].岩石学报20:269~284.
    李智佩,任有祥,宋忠宝等.1999.北祁连山西段奥陶系海相碱性火山岩地球化学与成岩构造环境[J].地质论评,45(7):1054-1061.
    李献华,李武显,李正祥.2007.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报,52(9):981-990.
    李献华,苏犁,李正祥.2005.金川超镁铁岩体形成时代的SHRIMP斜锆石定年.《第六届世界华人地质科学研讨会和中国地质学会二零零五年学术年会论文摘要集》
    李文渊,汤中立,郭周平等.2004.阿拉善地块南缘镁铁-超镁铁岩形成时代及地球化学特征[J].岩石矿物学杂志,23(2):117-126.
    李大民.2012.甘肃北祁连毛藏寺埃达克岩及其成因类型[J].地质科学,42(2):347~359.
    李春昱,刘仰文,朱宝清等.1978.秦岭及祁连山构造发展史[J].国际交流地质学术论文集,(1):174-187.
    李春昱.1980.中国板块构造轮廓[J].中国地质科学院院报,2(1):11-22.
    李惠民,陆松年,郑健康等.2001.阿尔金山东端花岗片麻岩中3.6Ga锆石的地质意义[J].矿物岩石地球化学通报,20:259~262.
    李文渊,赵东宏,申少宁.2003.西北地区有色金属矿床成矿条件约束及勘查潜力[J].地质与勘探,5:11~17.
    李怀坤,陆松年,相振群等.2007.北祁连山西段北大河岩群碎屑锆石SHRIMP U-Pb年代学研究[J].地质论评,1:132~140.
    李志琛.1992.甘肃西部变质岩系时代的厘定及意见[J].甘肃地质科技情报,3.
    李天斌.1997.宁夏香山群地层时代的再讨论[J].西北地质,2:1-9.
    刘昌实,朱金初.1989.华南四种成因类型花岗岩类岩石化学特征对比[J].岩石学报,2:38-48.
    陆松年,李怀坤,陈志宏等.2004.新元古代时期中国古大陆与罗迪尼亚超大陆的关系[J].地学前缘,11(2):515~522.
    陆松年.1998.新元古时期Rodinia超大陆研究进展综述[J].地质论评,44(5):489~495.
    陆松年,杨春亮,李怀坤等.2002.华北古大陆与哥伦比亚超大陆[J].地学前 缘,9(4):225~233.
    卢欣祥.1998.秦岭花岗岩揭示的秦岭构造演化过程—秦岭花岗岩研究进展[J].地球科学进展,13:213~214.
    卢良照,林强.2004.成因岩石学[M].吉林大学出版社.
    聂树人,贾紫宸.1991.北祁连含蓝闪石岩的特征及成因[J].现代地质,1:41-50.
    邱家骧.1985.岩浆岩岩石学[M].地质出版社,208~209.
    邱瑞照,邓晋福,周肃等.2003.青藏高原中新生代花岗岩Sr、Nd同位素研究.地球学报,6:611-617.
    任纪舜.1980.中国大地构造及其演化1:400万中国大地构造图简要说明[M].科学出版社.
    宋述光.1997.北祁连山俯冲杂岩带的构造演化[J].地球科学进展,12(4):351-363.
    宋述光.2009.北祁连山古大洋俯冲带高压变质岩研究评述[J].地质通报,12:1769~1778.
    史仁灯,杨经绥,吴才来等.2004.北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据[J].地质学报,5:649~657.
    史美良.1987.阿拉善地区地质构造问题的几点认识[J].中国区域地质,3:268~278.
    苏玉平,唐红峰.2005.A型花岗岩的微量元素地球化学[J].矿物岩石地球化学通报,7:245~251.
    汤中立,李文渊.1995.金川铜镍硫化物含K矿床成矿规律及地质对比[M].北京地质出版社.
    万渝生,许志琴等.2001.祁连山带及邻区前寒武纪深变质基底的时代和组成[J].地质学报,75(4):483-483.
    万渝生,许志琴,杨经绥等.祁连造山带及其邻区前寒武纪深变质基底的时代及组成[J].地球学报,2003,2(4):319~324.
    王方成,汪双双,李泰德等.2011.祁连山花岗岩分类及找矿方向初探[J].岩石学报,27(12):3823~3830.
    王德滋,舒良树.2007.花岗岩构造岩浆组合[J].高校地质学报,13(3):362~370.
    王永和,焦养泉,李建星等.2008.中祁连北缘奥陶纪岩浆弧地层[J].现代地质,22(5):724~727.
    王永和,孙南一.2001.北祁连造山带西段前造山期伸展构造特征—以肃北县鱼儿红地区为例[J].西北地质,4:1-8.
    王德滋,赵广涛,邱检生1995.中国东部晚中生代A型花岗岩的构造制约[J].高校地质学报,1(2):13~20.
    魏晋庭,陈其平,安国堡.2009.北祁连中段北缘铀成矿带钠交代与铀成矿关系探讨 [J].矿产与地质,23(1).
    吴鸿梅,童海奎,刘沣等.2008.北祁连红土沟-川刺沟金矿与韧性剪切带的成矿关系[J].吉林大学学报(地球科学版),38(4):581~586.
    吴才来,姚尚志,杨经绥等.2006.北祁连洋早古生代双向俯冲的花岗岩证据[J].中国地质,33(6):1197-1208.
    吴才来,杨经绥,杨宏仪等.2004.北祁连东部两类Ⅰ型花岗岩定年及其地质意义[J].岩石学报,20(3):425~432.
    吴才来,徐学义,高前明等.2010.北祁连早古生代花岗质岩浆作用及构造演化[J].岩石学报,26(4):588~597.
    吴汉泉,杨宏仪等.2002.北祁连新元古代俯冲事件及早古生代消减方向的转换,第三届海峡两岸祁连山及邻区地学研讨会—中央造山带的演化(论文集).
    吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,49(16):1589~1601.
    王德滋,周金城.1999.我国花岗岩研究的回顾与展望[J].岩石学报,2:161~169.
    王荃,刘雪亚.1975.我国西部祁连山区的古海洋地壳及其大地构造意义[J].地质科学,(1):42-55.
    肖序常,陈国铭,朱志直.1978.祁连山古蛇绿岩带的地质构造意义[J].地质学报,(4):281~295.
    肖序常,李廷栋,李光岑等.1988.喜马拉雅岩石圈构造演化总论[M].北京:地质出版社.
    肖序常,陈国铭,朱志直.1974.祁连山古板块构造的一些认识[J].地质科技,(3):73-78.
    夏林圻,夏祖春,任有样.1991.祁连秦岭山系海相火山岩[M].武汉:中国地质大学出版社.
    夏林圻,夏祖春,徐学义.1996.北祁连山海相火山岩岩石成因[M].北京:地质出版社.
    夏林圻,夏祖春,徐学义.1998.北祁连山早古生代洋脊—洋岛和弧后盆地火山作用[J].地质学报,72(4):301-312.
    夏林圻,夏祖春,徐学义.2001.北祁连构造-火山岩浆-成矿动力学[M].北京:中国地质大学出版社.
    夏林圻,夏祖春,徐学义.2003.北祁连山奥陶纪弧后盆地火山岩浆成因[J].中国地质,1:48~60.
    夏小洪,宋述光.2010.北祁连山肃南九个泉蛇绿岩形成年龄和构造环境[J].科学通报,15,1465~1473.
    许志琴,除惠芬,张建新等.1994.北祁连走廊南山加里东俯冲杂岩增生地体及其动 力学[J].地质学报,68(1):1-15.
    许志琴,杨经绥,李海兵等.2007.造山的高原:青藏高原的地体拼合、碰撞造山及隆升机制[M].北京:地质出版社.
    徐亚军,杜远生,杨江海等.2010.北祁连造山带老君山组沉积地球化学与物源分析[J].中国科学:地球科学,40(4):414~425.
    徐旺春,张宏飞,柳小明.2007.锆石U-Pb定年限制祁连山高级变质岩系的形成时代及其构造意义[J].科学通报,52(10):1174~1179.
    薛宁,王瑾,谈生祥等.2009.中祁连北缘野牛沟-托勒地区晋宁期花岗岩的地质意义[J].青海大学学报:自然科学版,4:23~28.
    姚建新,许志琴,杨经绥.2004.祁连和秦岭地区寒武纪和奥陶纪古生物区系关系的探讨[J].古地理学报,3:347~354.
    殷秀华,黎益仕,1999.南北构造带北段重磁异常的对应分析[J].地震地质,4:370~376.
    杨经绥,史仁灯,吴才来等.2004.柴达木盆地北缘新元古代蛇绿岩的厘定—罗迪尼亚超大陆裂解的证据?地质通报,23(9-10):892-897.
    杨振德,潘行适,杨易福.1988.阿拉善地块及邻区地质构造特征与矿产[M].北京:科学出版社,1-254.
    尹安.2001.喜马拉雅--青藏高原造山带地质演化—显生宙亚洲大陆生长[J].地球学报,22(3):193~230.
    雍拥,肖文交,袁超等.2008.中祁连东段古生代花岗岩的年代学,地球化学特征及其大地构造意义[J].岩石学报,24(4):855~864.
    于津海,周新民,赵蕾等.2005.壳幔作用导致武平花岗岩形成—Sr-Nd-Hf-U-Pb同位素证据.岩石学报,21(3):651~662.
    张旗,孙晓猛,周德进.1997.北祁连蛇绿岩的特征、形成环境及其构造意义[J].地球科学进展,12:366—393.
    张旗,周国庆.2001.中国蛇绿岩[M].北京:科学出版社.
    张宏飞,陈岳龙,徐旺春等.2006.青海共和盆地周缘印支期花岗岩类的成因及其构造意义[J].岩石学报,12:2910~2922.
    张振法.1998.论塔里木地台与华北地台的关系[J].物探与化探,5:384~393.
    章贵松,张军.2006.鄂尔多斯盆地西部奥陶纪岩相古地理特征[J].油气勘探,34~38.
    张翔,张本旗,芦青山等.2007.北祁连直河蛇绿岩的地质和地球化学特征[J].兰州大学学报(自然科学版),43(3):8-12.
    赵生贵.1996.祁连造山带特征及其构造演化[J].甘肃地质学报,5(1):16-29.
    郑文林.1991.甘肃省七.五基础地质研究的新进展[J].甘肃地质科技情报,3.
    周志强,曹宣铎,赵江天等.1996.祁连山东部早古生代地层和沉积—构造演化[J].西北科学地质,1:1~58.
    曾建元,杨怀仁,杨宏仪等.2007.北祁连东草河蛇绿岩:一个早古生代的洋壳残片[J].科学通报,52(7):825-833.
    朱杰,杜远生.2007.北祁连造山带老虎山奥陶系硅质岩地球化学特征及古地理意义[J].古地理学报,1:69~76.
    左国朝.1986.北祁连地区早古生代碰撞缝合作用[J].中国北方板块构造文集.北京:地质出版社,(1):27-35.
    左国朝,刘寄栋.1987.北祁连早古生代大地构造演化[J].地质科学,(1):14-24.
    左国朝,吴汉泉.1997.北祁连山中段早古生代双向俯冲--碰撞造山模式剖析[J].地球科学进展,12(4):315~323.
    左国朝,吴茂炳,毛景文.1999.北祁连西段中元古代早期蛇绿岩的确定[J].甘肃地质学报,2.
    左国朝,刘义科,张崇等.2002.北祁连造山带中—西段陆壳残块群的构造—地层特征[J].地质科学,3:302~312.
    周立发.1992.阿拉善地块南缘早古生代大地构造特征和演化[J].西北大学学报:自然科学版,1:107~115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700