连续竞争反应装置的效益优化方法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续竞争反应(Consecutive-competitive Reaction)指的是反应过程中,中间产物会参与生成其他产物的反应,通常可以用A→B→C的形式进行表示。连续竞争反应是化学中最基本的复杂反应之一,也是化工生产中一类重要的生产工艺。目前,石油及化工行业中许多重要的产品,如异丙醇胺、乙醇胺等的生产过程,都属于连续竞争反应。对于此类反应,其动力学参数虽然可以通过理论计算得到,然而由于反应的复杂性与实际生产工艺条件的影响,理论的计算结果往往与实际生产过程存在较大的差异,导致很难对实际的生产过程进行准确的控制;同时,连续竞争反应中各反应步骤的同步性决定了其反应产物必然是多种产品的混合物,生产企业无法通过单独生产某种产品的方式获得最大利润。由于产品价格、原料价格、能源价格及其消耗量、市场需求等因素在内的市场条件的不断变化,要求生产企业能够根据市场信息对产品组合进行优化,得到满足生产约束条件的最大盈利产品组合,同时及时地对操作条件进行调整,实现生产的高度灵活化与企业效益的最大化。
     本文首先对化工生产过程中的建模与产品组合优化中的研究难点及其应用现状进行了深入而全面的总结,将遗传算法与反应机理相结合,提出了一种可用于复杂化工过程建模的灰箱建模算法;在此基础上,从系统的角度出发,将操作条件、产品组合、企业利润结合起来,提出了一种基于遗传算法的产品组合优化算法,以实现商务与生产的集成,并通过典型的连续竞争反应验证该算法的有效性;最后,将本研究所介绍的算法应用于乙醇胺生产过程,基于生产数据的仿真研究取得了良好的效果。本文的工作主要包括:
     (1)针对复杂化工过程的特点,在结合机理模型与统计模型各自优势的基础上,提出了一种基于遗传算法的灰箱模型,该模型以反应机理为模型框架,通过遗传算法对模型参数进行辨识估计,在保证模型可靠性的同时提高了模型的预测精度。最后,通过典型连续竞争反应过程的仿真研究,验证了该算法的有效性。
     (2)从产品组合优化及操作条件优化两个方面着手,以产品组合为中间变量,建立了操作条件、产品组合以及企业利润三者之间的关系。并以此为基础,采用遗传算法对基于企业生产利润最大化的产品组合与相关操作条件进行优化。同时在第二章研究工作的基础上,采用上述方法计算最大化利润下的产品组合以及相关操作条件,取得了良好的效果。
     (3)将本文所提算法应用到乙醇胺生产过程中,根据实际生产的历史数据建立了反映乙醇胺产品分布与操作条件之间关系的过程模型,随后根据企业的实际情况,建立了描述产品组合与企业利润之间关系的经济模型。并将上述两个模型进行联立,利用遗传算法对该企业最大利润下的产品组合与相关操作条件进行了优化求解。结果表明,本文所提算法可有效地对连续竞争反应的生产过程进行优化控制,具有较好的实际应用价值。
Consecutive-competitive reaction (CCR) is one of popular chemical reaction forms in chemical industry, for example, the production of ethanolamines and isopropanolamines. The path of CCR can be described by the form A→B→C, where its intermediate products would be processed into multiple finished products through further reaction steps. Finally the product-mix of CCR can be separated through a distillation operation. From business point of view, in order to maximize the enterprise's profits, it is critical to determine and manipulate a desired finished-product-mix under an uncertain market place with the changes of demand of finished-products as well as the prices of feedstock and energy. Consequently, the tasks of an integrated business and production system are twofold: determine an optimal product-mix and the relevant control strategy to meet the business goal subject to both business and production constraints.
     This thesis starts with a general review of the research progresses on system modeling and product-mix optimization for chemical processes. By combining first principles with genetic algorithm (GA), a grey-box modeling approach to complex chemical reaction processes was developed. This study also proposes a GA-based product-mix optimization solution with a bridge between profits, product-mix and operation optimization, and then the proposed solution is applied to the production of ethanolamines, a typical consecutive-competitive reaction system. The production data based simulation results show that the proposed solution could be applied in CCR processes to implement the business and production integration. The main topics studied in this thesis are summarized as follows:
     (1) This thesis proposes a GA based grey-box model which is fully utilizing the strengths of first-principles model and statistical model. This proposed grey-box model is developed with first-principles oriented model structure and unknown model parameters. The later could be estimated by using GA algorithms. The effectiveness of the proposed grey-box model is proven by the simulation results for a typical consecutive-competitive reaction.
     (2) This thesis also proposes an integrated solution that combines product-mix optimization with operation optimization. The proposed optimization solution is tested with a production data based grey-box model for an example consecutive-competitive reaction process.
     (3) The proposed solutions are further applied to a production-scale ethanolamine production line. In this study, a process model presenting the relationship between operation conditions and product-mix, and a profits model presenting the relationship between product-mix and the resulting profits are developed respectively. On the basis of the combining these two models, GA is used to optimize the production profit for the ethanolamine production line.
     The proposed integrated solutions have great potentials in the optimization control for many other consecutive-competitive chemical reaction processes.
引文
[1]许光.支持向量机在化工过程建模中的应用[D].硕士学位论文,浙江大学,2004
    [2]牟盛静.石化工业过程建模与优化若干问题研究[D].博士学位论文,浙江大学,2004
    [3]孙娅苹.灰箱建模方法研究及其在间歇反应过程中的应用[D].硕士学位论文,北京化工大学,2010
    [4]蒋慰孙,俞金寿.化工过程动态数学模型[M].化学工业出版社,1986,61-86
    [5]Carl Friedrich Gauss. Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium[M]. Culture et Civilisation, Bruxelles,1968
    [6]John Aldrich. R. A. Fisher and the making of maximum likelihood 1912-1922[J]. Statistical Science,1997,12 (3):162-176
    [7]Kalman, R. E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering,1960,82(1):35-45
    [8]Ingrid Daubechies, Ten Lectures on Wavelets[M]. Society for Industrial and Applied Mathematics,1992
    [9]Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities[C]. Proceedings of the National Academy of Sciences of the United States of America,1982,79(8):2554-2558
    [10]Martin Schetzen. The Volterra and Wiener Theories of Nonlinear Systems[M]. Krieger Publishing Company,2006
    [11]王寅.化工过程混合建模问题研究[D].博士学位论文,浙江大学,2000
    [12]Mohamed, N. N., Bhavik, R. B., Prem, K. G., Xiaotong, Shen. Process modeling by Bayesian latent variable regression [J]. AIChE Journal,2002,48(8):1775-1793
    [13]李向阳,朱学峰,刘焕彬.间歇制浆蒸煮过程的混合建模方法研究[J].中国造纸学报,2001,16(02):24-28
    [14]成飙.两种随机优化算法的改进及其化工应用研究[D].博士学位论文,浙江大学,2007
    [15]Newton, I. Philosophiae Naturalis Principia Mathematica[M]. London:Joseph Streater,1687
    [16]Leibniz, G. W. New Method for the Greatest and the Least[M]. Acta Eruditorum, 1684
    [17]Dantzig, G. B. Maximization of a linear function of variables subject to linear inequalities[M]. New York:John Wiley & Sons,1951
    [18]Bagley, J. D. The behavior of adaptive systems which employ genetic and correlation algorithms[D]. Ph.D. Dissertation, University of Michigan, Ann Arbor,1967
    [19]Eberhart, R. C., Kennedy, J. A new optimizer using particle swarm theory[C]. Proceeding of Sixth International Symposium on Micro Mathine and Human Science, Japan,1995
    [20]Kennedy, J., Eberhart, R. C. Particle swarm optimization[C]. Proceedings of IEEE International Conference on Neural Networks,1995
    [21]Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, Edward Teller. Equation of state calculations by fast computing machines[J]. Journal of Chemical Physics,1953,21(6):1087-1092
    [22]Glover, F. Future paths for integer programming and links to artificial intelligence[J]. Computers and Operations Research,1986,5:533-549
    [23]Boettcher, S., Percus, A. G. Extremal optimization:methods derived from co-evolution[C]. Proceedings of the Genetic and Evolutionary Computation Conference,1999,825-832
    [24]Schwaab, M., Biscaia, E., Monteiro, J. L., Pinto, J. C. Nonlinear parameter estimation through particle swarm optimization[J]. Chemical Engineering Science,2008,63(6):1542-1552
    [25]张丽平,俞欢军,陈德钊等.基于粒子群优化算法的神经网络在农药定量构效关系建模中的应用[J].分析化学,2004,32(12):1590-1594
    [26]侯云鹤,鲁丽娟,熊信艮,程时杰,吴耀武.改进粒子群算法及其在电力系统经济负荷分配中的应用[J].中国电机工程学报,2004,24(7):95-100
    [27]赵波,曹一家.电力系统无功优化的多智能体粒子群优化算法[J].中国电机工程学报,2005,25(5):1-7
    [28]夏蔚军,吴智铭.基于混合微粒群优化的多目标柔性Job-shop调度[J].控制与决策,2005,20(2):137-141
    [29]Kirkpatrick, S., Gelatt, Jr. C. D., Vecchi M. P. Optimization by simulated annealing[J]. Science,1983,220(4598):671-680
    [30]王子才,张彤,工宏伟.基于混沌变量的模拟退火优化方法[J].控制与决策,1999,14(4):381-384
    [31]康立山等.非数值并行算法—模拟退火算法[M].北京:科学出版社,1998
    [32]Choong, K. L., Smith, R. Optimization of batch cooling crystallization[J]. Chemical Engineering Science,2004,59:313-327
    [33]Choong, K. L., Smith, R. Optimization of semi-batch reactive crystallization processes[J]. Chemical Engineering Science,2004,59:1529-1540
    [34]周明,孙树栋,彭炎午.基于遗传模拟退火算法的机器人路径规划[J].航空学报,1998,19(1):118-120
    [35]陈雄,徐心和.基于模拟退火轧制批量计划问题的两阶段算法[J].控制理论与应用,1999,16(2):209-212,216
    [36]陈根军,李继洗,王磊,唐国庆.基于Tabu算法的配电网络规划[J].电力系统自动化,2001,7:40-44
    [37]张晓龙,程文.基于改进的禁忌搜索的蛋白质三维结构预测[J].计算机工程,2009,35(4):31-34
    [38]施文俊,何小荣,陈丙珍,邱彤.TS法的改进及其在求解化工优化问题中的应用[J].2004,55(10):1665-1668
    [39]席裕庚,柴天佑,恽为民.遗传算法综述[J].控制理论与应用,1996,13(6):697-708
    [40]Hollstien, R. B. Artificial genetic adaptation in computer control systems[D]. Ph.D. Thesis, Dept. Computer and Communication Sciences, University of Michigan,1971
    [41]Holland, J. H. Adaption in Nature and Artificial System[M]. Cambridge:MIT Press,1975
    [42]De Jong, K. A. An Analysis of the Behavior of a Class of Genetic Adaptive Systems[D]. Ph.D. Dissertation, University Microfilms, No.76-9381, University of Michigan, Ann Arber,1975
    [43]Lu Chenying, Delgado Frias, J. G., Wei Lin. A Clustering and Genetic Scheme for Large TSP Optimization Problem[J]. Cybernetics and system,1998,29(2): 137-157
    [44]梁艳春,冯大鹏,周春光.遗传算法求解旅行商问题时的基因片段保序[J].系统工程理论与实践,2000(04):7-18
    [45]Sandgren, E., Jensen, E. D., Welton, J. Topological design of structural components using genetic optimization methods Sensitivity Analysis and Optimization with Numerical Methods[C]. Proceedings of the Winter Annual Meeting of ASME, Dallas,1990:31-43
    [46]Nguang, S. K., Chen, L. Z., Chen, X. D. Optimisation of fed-batch culture of hybridoma cells using genetic algorithms[J]. ISA Transactions,2001,40(4): 381-389
    [47]Espejo, P. G., Ventura, S., Herrera, F. A survey on the Aapplication of genetic programming to classification [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2010,40 (2):121-144
    [48]Pasolli, E., Melgani, F., Donelli, M. Gaussian process approach to buried object size estimation in GPR images[J]. Geoscience and Remote Sensing Letters, IEEE, 2010,7(1):141-145
    [49]Awad, M., Chehdi, K., Nasri, A. Mufti-component image segmentation using a hybrid dynamic genetic algorithm and fuzzy C-means[J]. Image Processing, IET, 2009,3(2):52-62
    [50]Hong, J., Cho, S., Cho, U. A novel evolutionary approach to image enhancement filter design:method and applications[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2009,39(6):1446-1457
    [51]Elliott, R. C., Krzymien W. A. Downlink scheduling via genetic algorithms for multiuser single-carrier and multicarrier MIMO systems with dirty paper coding[J]. IEEE Transactions on Vehicular Technology,2009,58(7):3247-3262
    [52]Lee, S., Heber, A. Ethylene removal using biotrickling filters:part II. Parameter estimation and mathematical simulation[J]. Chemical Engineering Journal,2010, 158(2):89-99
    [53]Benyahia, B., Latifi Ma, Fonteix, C., Pla, F., Nacef, S. Emulsion copolymerization of styrene and butyl acry late in the presence of a chain transfer agent:Part 1:Modelling and experimentation of batch and fedbatch processes[J]. Chemical Engineering Science,2010,65(2):850-869
    [54]Senties, O., Pibouleau, L., Domenech, S. Multi-objective scheduling for semiconductor manufacturing plants[J]. Computers and Chemical Engineering, 2010,34(4):555-566
    [55]Oliveira, R., Sequeira, J., Sentieiro, J. Selection of controller parameters using genetic algorithms[J]. Engineering Systems with Intelligence,1991,431-438
    [56]Preechakul, C., Kheawhom, S. Modified genetic algorithm with sampling techniques for chemical engineering optimization[J]. Journal of Industrial and Engineering Chemistry,2009,15(1):110-118
    [57]蒋旭峰,曾崇余,任晓乾,黄永春.二异丙醇胺合成反应动力学[J].南京工业大学学报,2002,24(1):102-104
    [58]蒋旭峰.高选择性合成二异丙醇胺反应动力学及新工艺研究[D].硕士学位论文,南京化工大学,2000
    [59]Lu Yongzai. Profit-driven manufacturing enterprise optimization:problem and solution[C]. Proceedings of 23rd Chinese Control Conference, August,2004
    [60]王军强.基于约束理论的产品组合优化决策研究[D].博士学位论文,西北工业大学,2006
    [61]蒋卓婕,陈文明.用线性规划模型解决宝钢产品结构优化[J].微型电脑应用,1997(2):22-26
    [62]韩颖,边旭,范光玉.石化产品的结构优化模型[J].石油化工技术经济,2001,17(1):42-44
    [63]李嘉庆,张在旭,李阳初,付峰,安贵鑫.炼油企业产品结构优化模型[J].山东理工大学学报(自然科学版),2003,17(6):6-10
    [64]卢焕章等.石油化工基础数据手册[M].北京:化学工业出版社,1982
    [65]Knorr L. Chem. Rev.1897,30:909-911
    [66]范竹文.乙醇胺生产的先进技术[J].化工设计,1995,5(1):51-53
    [67]罗铭芳.乙醇胺装置流程模拟与开发研究[D].硕士学位论文,天津大学,2003
    [68]梁玉文.乙醇胺连续化生产过程中的产品比例调整[D].硕士学位论文,南京理工大学,2007
    [69]冯汝明,刘仲能,顾荣,曹勇,谢在库.环氧乙烷胺化制乙醇胺[J].化学进展,2009,21(7-8)1636-1643
    [70]程华农,毛文峰,魏凤,岳金彩,郑世清.乙醇胺反应工艺模拟与分析[J].计算机与应用化学,2006,23(1):69-72
    [71]李艳辉,汪永宗,王红,环氧乙烷-氨法生产乙醇胺的反应过程模拟研究[J].化学工程,2008,36(5):72-75
    [72]Eastham, A. M., Darwent, B. deB., Beaubien, P. E. Chemistry of ethylene oxide. Ⅱ. Kinetics of the reaction of ethylene oxide with amines in aqueous solution [J], Can. J.of Chem.,1951,29:575-84
    [73]Zahedi, G., Amraei, S., Biglari, M., Simulation and optimization of ethanol amine production plant[J]. Korean Journal of Chemical Engineering,2009, 26(6):1504-1511
    [74]Ferrero, P., Berbe, F., Flamme, L. R., Kinetic study of the synthesis of ethanolamines[J]. Bulletin des Societes Chimiques Belges,1947,56:349-368
    [75]Park, K. Y., Park, T. K., Lee, B. K., A study on the reaction kinetics for ethanolamine synthesis[J]. Hwahak Konghak,1985,23(6):409-415
    [76]Miki, M., Ito, T., Hatta, M., Okabe, T., Reaction of ethylene oxide with ammonia[J]. Journal of Japan Oil Chemists'Society,1966,15:215-220
    [77]吴兆立,乙醇胺生产高压管式反应系统的改进[P].中国专利:101148413A,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700